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Abstract Categories and Subject Descriptors

We explore fundamental performance limits of trackinga  H.1.1 [Systems and Information Theory: Information
target in a two-dimensional field of binary proximity sensors, theory, Value of information
and design algorithms that attain those limits. In particular,
using geometric and probabilistic analysis of an idealized General Terms

model, we prove that the achievable spatial resolufidn Algorithms, Theory
localizing a target’s trajectory is of the orderé{, whereR Keywords
is the sensing radius ampds the sensor density per unit area. Sensor Networks, Target Tracking, Binary Sensing, Fun-

Using an Occam’s razor approach, we then design a geometyamental Limits, Distributed Algorithms
ric algorithm for computing an economical (in descriptive .

complexity) piecewise linear path that approximates the tra- 1 Introduction

jectory within this fundamental limit of accuracy. We em-
ploy analogies between binary sensing and sampling theoryW
to contend that only a “lowpass” approximation of the tra-

We investigate the problem of target tracking using a net-
ork of binary proximity sensors: each sensor outputs a 1
. . . e - when the target of interest is within its sensing range, and
jectory is attainable, and explore the implications of this 0b- ¢ yherwise. This simple sensing model is of both funda-
servation for est|mat|ng the t_argets veIomFy. mental and practical interest for several reasons. First, be-

We show through simulation the effectiveness of the ge- cayse of the minimal assumption about the sensing capa-
ometric algorithm in tracking both the trajectory and the ve- iy it provides a simple and robust abstraction for a ba-
locity of the target for idealized models. For non-ideal sen- gj¢ tracking architecture of broad applicability, which can
sors exhibiting sensing errors, the geometric algorithm can e gnhanced in a situation-specific fashion to take advan-
yield poor performance. We show that non-idealities can 546 of additional information such as target velocity or dis-

be handled well using a particle filter based approach, andisnce if available. Second, the communication requirements
that geometric post-processing of the output of the Particle ¢4, the binary proximity model are minimal—each sensor

Filter algorithm yields an economical path description as in can smooth out its noisy observations and express its out-
the idealized setting. Finally, we report on our lab-scale ex- ,t 45 one or more disjoint intervals of time during which
periments using motes with acoustic sensors to validate OUrihe target is in its range, which can be encoded efficiently

theoretical and simulation results. by timestamps when the output changes from 0 to 1 and vice

*This work was supported by the National Science Foun- versa. _':'”"?"_'y’ the S'mpl.'C|ty of the model _pe_rmlts the deriva-
dation under grants ANI-0220118, CCF-0431205, CNS-0520335, tion of intuitively attractive performance limits, which serve
CCF 0514738, the Office of Naval Research under grant N00014- both to guide design of tracking algorithms and to provide
06-0066, and by the Institute for Collaborative Biotechnologies lower bounds on tracking performance with more sophisti-
through grant DAAD19-03-D-0004 from the U.S. Army Research cated sensors.

Office. We begin by exploring the fundamental limit epatial
resolutionthat can be achieved in tracking a target within a
two-dimensional field of binary proximity sensors. The spa-
tial resolution measures the accuracy with which a target’s
trajectory can be tracked, and it is defined as the worst-case
deviation between the estimated and the actual paths. We
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it also shows that, for a fixed number of sensors, the accu-significantly across sensors, and exhibits nonmonotonicity:
racy improves linearly with an increase in the sensing radius, the probability that a target is detected does not necessarily
which occurs because an increase in the sensing radius leadgo down monotonically with distance from the sensor. We
to a finergeometric partitionof the field. Our spatial reso- employed two approaches to deal with real-world noisy data:
lution theorem helps explain empirical observations reported (i) preprocessing of the noisy sensor outputs to clean up ob-
in prior work on tracking in binary sensor networks [12]. vious error patterns, followed by thHeccaMTRACK algo-
Next, we consider minimal representations and velocity rithm, and (ii) the Particle Filter algorithm followed by ge-
estimation for the target’s trajectory. There are infinitely ometric post-processing. Both these approaches show good
many candidate trajectories consistent with the sensor ob-tracking performance.
servations and within the guaranteed spatial resolution of the
true trajectory, and all of which are “good enough” for local- Related Work
ization accuracy. On the other hand, the velocity estimation ~ Object tracking has long been an active area of research
for the target depends crucially on the shape of the trajectory.for battle-field [9], robotics [16] and other applications. Any
We use an analogy between binary sensing and the samplingensor that generates a signal dependent on distance from a
theory and quantization to argue that “high-frequency” vari- target can be used for tracking. Accordingly different sens-
ations in the target's trajectory are invisible to the sensor field ing modalities such as radar, acoustic, ultrasonic, magnetic,
at a spatial scale smaller than the resolufioTherefore, we ~ seismic, video, RF and infrared [15], and occasionally com-
can only hope to estimate the shape or velocity for a “low- binations of multiple modalities [3], have been considered
pass” version of the trajectofyWe then consider piecewise ~for tracking applications in both theory and practice. The
linear approximations to the trajectory that can be describedrange and capabilities of these sensors vary widely, and many
economically. We give sufficient conditions for the lowpass different approaches to modeling and data processing have
version of the true target trajectory under which such mini- been investigated. For instance, ultrasonic signals carry rich
mal representations can estimate the velocity accurately.  information about the range of the object, whereas infrared
Our results on velocity estimation can be paraphrased asSensors are best modeled as detectors or binary sensors [17].
follows: velocity estimates for a segment of the trajectory We do not attempt to do justice to the vast literature on track-
approximated by a straight line are good if the segment is Ing, but briefly review closely related work. o
long enough. This motivates an Occam’s razor approach for ~ The robustness and effectiveness of tracking using binary
describing the trajectories in terms of piecewise linear paths Sensing models has been convincingly demonstrated for a
in which the line segments are as long as possible, withoutlarge-scale sensor network in [1]. The success of this project
exceeding the approximation error limit provided by our spa- Provides strong motivation for the fundamental exploration
tial resolution theorem. We develop tlEcaMTRACK al- of binary sensing undertaken here. The authors of [12]
gorithm, which efficiently computes such piecewise linear consider a model identical to ours. They employ piece-
trajectories, and associated velocity estimates, from the senWise linear path approximations computed using variants of
sor observations. The efficacy of the algorithm in achieving @ weighted centroid algorithm, and obtain good tracking per-
the fundamental limits on spatial resolution and velocity es- formance if the trajectory is smooth enough. Our funda-
timation error is demonstrated via simulations. mental limits provide an explanation for some of the empiri-
Next, we consider more realistic sensor models, in which ¢al observations in [12], while our algorithms provide more
the coverage areas for different sensors may be different, and@ccurate and more economical path descriptions. Another
not exactly known to the tracker node. For such non-ideal closely related paper is [2], which considers a different sens-
sensors exhibiting sensing errors, BeCAMTRACK algo- ing modgl, whe(e sensors provide information as to V\_/hether
rithm can yield poor performance. We show that sensor non- & targéet iIs moving towards or away from them. While the
idealities can be handled well using a particle filter approach SPecific results for this model are quite different from ours,
adapted to non-ideal binary sensing. While this particle fil- the philosophy is similar in that the authors of [2] use geo-
ter algorithm is robust to nonidealities, the paths it outputs metric aryalyss to characterlze fundamental limits. Howe_ve(,
are not smooth, and therefore not easy to describe economithe sensing model in [2] can lead to unacceptable ambigui-
cally. We show that geometric post-processing of the output i€s in the target's trajectory (the authors offer an example of
of the particle filtering algorithm leads again to minimal rep- parallel trajectories that are indistinguishable without addi-
resentations in terms of piecewise linear trajectories with a tional proximity information). In contrast, the binary prox-
small number of line segments, with the required goodness!Mity mc_)del considered he_re,_desplte its m|n|mal_|sm, is able
of fit guided by the fundamental limits on spatial resolution. to localize the target to within a spatial feSO'”“M;%R)-
Simulations are used to demonstrate the effectiveness of thdn [13], Liu et al. present some interesting ideas using geo-
overall algorithm in providing accurate tracking with mini- metric duality to track moving shadows in a network of bi-
mal path representations. nary sensors. Although their technique is not applicable to
Finally, we carried out a lab-scale demonstration with our problem setting, their notion of cells in dual space has
motes equipped with acoustic sensors for a quick validation some resemblance to our localization patches.
of our framework. We found that the coverage area varies ~ Classical tracking is often formulated as a Kalman fil-
tering problem, using Gaussian models for sensor measure-
1A technical definition of the lowpass trajectory is given in Sec- ments and the target trajectory. Distributed tracking based
tion 3.4.1. on Kalman filtering has recently been considered in [14].
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Figure 1. A target moving through a field of three binary proximity sensors, X, Y and Z; (b) shows sensor outputs as
a function of time; (c) shows thelocalization patcheso which the target is localized over time intervals with constant
signature; and (d) shows thearcs marking boundaries between patches.

Particle filters [5] offer an alternative to Kalman filters in tracker node Given the minimal communication needs of bi-
non-Gaussian setting, and have been investigated for track-nary proximity sensors, such a centralized architecture may
ing using sensor networks in [4]. Most prior work on particle well be the most attractive choice for implementation in
filtering assumes more sensed information (with a more de- many settings, using multihop wireless communication be-
tailed probabilistic model) than provided by the binary sens- tween the sensors and the tracker node(s). In any case, it
ing model of this paper. Khan et al. [10, 11] have used par- is relatively straightforward to develop communication- and
ticle filtering for an insect tracking application, where the storage-efficient hierarchical distributed versions of our cen-
insect targets are assumed to interact according to a Markovralized algorithms: for example, the tracker node can be
random field. Fox et al. [7] provide a survey of particle-filter chosen dynamically based on the target’s location, and it can
based methods for the problem of mobile robot localization, convey its summary of the particular segment of the target’s
where robots wish to determine their location, and the lo- trajectory to the next tier of the hierarchy.

cations of other robots, using sensory inputs. Our contribu-  For simplicity, we assume that each sensor has a circular
tion in this paper is to provide a particularly simple parti- sensing region of radiuR: a sensor outputs a 1 if a target
cle filtering algorithm that provides robust performance us- falls within thesensing dislof radiusR centered at its loca-
ing the minimal information obtained from non-ideal binary tion. The parametedRis termed thesensing rangetHowever,

Sensors. our framework also applies to sensing regions of more com-
. . plex shapes that could vary across sensors. We assume noise-
2 The Geometry of Binary Sensing less sensing for the time being: the sensor output is always

In this section, we describe an idealized model for a bi- 1 if & targetis within its sensing range, and always 0 if there
nary sensor network, and the structure of the geometric in-!S NO target within its sensing range, with 100% accuracy.
formation it provides regarding a target's location. This ge- Methods for handling noisy sensor readings are considered

ometric structure forms the basis for our theoretical bounds IN later sections. _ o . .
and algorithms. The geometry of binary sensing is best illustrated via an

Consider a network oh sensors in a two-dimensional €X@mple. Figure 1(a) shows a target moving through an area
plane. Each sensor detects an object withirséasing re- covered by three sensors. Figure 1(b) shows the sensor out-

gion, and generates one bit of information (1 for presence PUtS as a funcdt!on of 'timel. We defin?‘etg'agnatureo; any

and 0 for absence) about the target; we call this the ideal PO!Nt P IN two-dimensional space as thebit vector of sen-
binary sensing modelWe get no other information about SO réadings, whosiéh position represents the binary output
the location, speed, or other attributes of the target. The in- gf fs'enSErl for a target athlo%atmrp. Ianlgure 10 Wg
formation of a sensor is efficiently encoded by the transitions 9€fin€ the signature as the bits output by sen3or¢ and
between its 0 and 1 bits, and so its output can be summarized- I that order, then the target's signature evolves over time
by the timestamps marking these transitions. We assume thaf'S fqllows. 000,100, 110,010,011,001,000 In|t|.aIIy, It Is

the sensors are synchronized in time to sufficient accuracy_out5|de the sensing disks of all three sensors; then it enters

several timing synchronization algorithms are available in th€ disk ofX, thenY, then it leaves the disk oX, enters

the literature (e.g., [6]). We also assume that the location of Nt 0fZ, and so on. The time instantt } mark the transi-

each sensor is known—the sensor locations can be recorde(]tl__(_)nS when the target either enters or leaves a sensor's range.
at the time of deployment, or can be estimated using local-

igure 1(c) shows that the target can be localized witha a
ization techniques (e.g., [18]). calization patchFj during the time intervaltj,tj.1), which
Our emphasis is on discovering and attaining fundamen-  2the notion of signature is a conceptual tool. Our algorithms
tal limits of tracking performance, and therefore we abstract go not actually use the entire bitmap for a given target location, but
away lower layer networking issues by assuming that the work with a much smaller localized version, as explained in the
sensor observations are communicated to, and fused at, aext section.




corresponds to the set of possible locations corresponding tovector of sensor outputs. The spatial resolution is therefore
the signature during this interval. When the target moves given by thediameterof the largest patch induced by the
from a patchF; to the next patcli; 1, we note that exactly  binary sensing field. In the following, we argue thatainy
one sensor’s bit changes: either the target enters the sensingonfiguration of sensors, this diametetagver boundedy
disk of some sensor, or it leaves the disk of some sensor. The‘%, for an absolute constant which gives arupper bound
two patchesF; andFj1, therefore, share lacalization arc on the achievable resolution.

A of the disk of the sensor whose reading has flipped, as
shown in Figure 1(d). A simple but important observation
is that, at the transition timeg, the two-dimensional uncer-
tainty in the target’s location is reduced to a one-dimensional
uncertainty.

In general, alocalization patch need not be connected and,
correspondingly, the localization arc of two such patches can
also have two or more pieces. (As a simple example, con-
sider three sensing disk& B,C, respectively, centered at
points(0,0), (1,0), and(2,0), where the radius of the disks Figure 2. lllustration for Theorem 1.
is 1.5. Then, the patch with signatuf®,1,0) has two dis-
connected pieces—these are the regions that are inside disk
B but outsideA andC.) Although disconnected patches are
mainly an artifact of low sensor density, one can also create THEOREM 1. If a network of binary proximity sensors has
pathological examples where a patch can have two piecesaverage sensor densityand each sensor has sensing radius
even under high density. The non-connectivity of patches, R, then the worst-cask., error in localizing the target is at
however, does not impact the tracking resolution, becauseleastQ(1/pR).

our Theorem 2 ensures that even if a patch is disconnectedproor We are interested in asymptotic behavior and so we
all of its pieces lie within the resolution bound of each other. assume that the sensor field is large relativi,tand we can
The preceding geometric information structure forms the ignore the boundary behavior by focusing on the portion of
basis for our results in subsequent sections. Our derivation ofthe field that is at leas® away from the boundary. Since
fundamental limits in Section 3 is based on estimation of the the average sensor densityp'fm the field, there must be a
size of the region;j. The geometric algorithms for comput-  circular region of radiugR that contains at most (the average
ing minimal description trajectory estimates consist of com- number of)N = p(4TR?) sensors in it. Lex be the center of
puting piecewise linear approximations that pass through thethis circle, letC; denote the circle of radiuR centered ax,
patched; or the arcsA; in the order specified by the evolu-  and letC, be the circle of radiugR centered at. (See Fig. 2

tion of the target’s signature. for illustration.) We observe that only the sensors contained
o in C, can sense a target that lies@. Since there are at
3 Fundamental Limits mostN such sensors, their sensing disks can partition the
. . . . H H : 2 “ »
We assume ideal sensing with sensing raRder each inner circleC, into at mostN®— N +2 “patches”. On the

sensor, and an average sensor density sénsors per unit other hand, the circl€; has areatiR?, szo at least one of the
area. Thus, the performance limits we derive depend only Paiches must have area at lears®’ /N2, for some constant
on the parameters andR. We first show that the spatial ~ ¢ Plugging in the value o, we get that some patch @y
resolution cannot be better than orderpéf, regardless of must have area at least

the spatial distribution of the sensors. We then show that this cniR? _ Q(i)

resolution can be achieved using standard uniform random 16mp2R p2R27

distributions as well as regular grids. Finally, we show that 1, e theliameter(the longest projection) of this patch
binary sensing is analogous to discrete sampling, in that it .

1 )
provides information only about a “lowpass” version of the Is at Iegs@(p—R), the square root of the area, which proves
target's trajectory, and discuss the implications for obtaining the claim. O

minimal path representations and velocity estimates. Theorem 1 makes no assumptions on the distribution of
. . sensors: it only makes use of the average sensor density
3.1 An Upper Bound on Spatial Resolution bound, and upper bounds the best resolution one can hope

The localization error of an estimated trajectory is de- 0 achieve in an ideal deployment. In the next subsection,
fined to be the maximum deviation of the estimated path We address the complementary question: is this ideal resolu-
from the actual path. This is just the, norm of the differ- t|on_ach|e_vable, a_nd Wh_at d_lstrlbutlons of sensor nodes can
ence between the actual and estimated trajectories, viewed aealize this? Our investigation here is analytic, with a goal
functions of time. Thespatial resolutionof a binary sensor o show that certain simple configurations of sensors lead
field is the worst-case localization error for any target trajec- t0 regions where the maximum, error matches the bound
tory through the field. of Theorem 1. Algorlthmlc questions of computing compact

As observed in Section 2, binary sensing localizes a targettrajectory approximations are addressed in the following sec-
to within apatchcorresponding to a specific signature, or bit tion.



3.2 Achievability of Spatial Resolution Bound  respectively, denote the area of the symmetric difference and
the union of the two disks, it follows from the Poisson distri-

The spatial resolution of Theorem 1 can be achieved (ne- bution that

glecting edge effects) by simply arranging the sensors in a
regular grid. Since such an ideal deployment is often impos- PIX Al g P(Au—Ad)
sible in practice, we now show that a random Poisson distri- X>x =e 1—ePA

bution with densityp also achieves the desired resolution. In . .
. . - We note thatdyg < Ay, with equality forx > 2R, so that
the process, we also derive a sharp tail bound on the size OffD[x > ¥ = 0for x> 2R Thus,X is upper-bounded bgR.)

alocalization patch. Elementary geometric calculations yield that
Mathematically, the Poisson distribution of mgameans Y9 y

that (i) the number of sensors in a region of areds a Ag = (2y+sin2y)R2

Poisson random variablBly with meanpA, and (ii) for ] o o

two nonoverlappingegions, the corresponding numbers of Whereyis the angle shown in Figure 3, satisfyisgy = 5.
sensors are independent random variables. We assume afior our purpose, it suffices to loosely bouhglbelow as
asymptot.ic regime in which the probability of a point in the Ag > 2R%siny = xR

plane being within range of at least one sensor tends to one.
For an arbitrary poinP, this condition is satisfied if there  (usingy > siny). This implies that

is at least one sensor in a disk of radigentered aP. oAy — o pRX

Thus,P[no sensor in disk of radiug] = e P — 0which PX>x < ePd<e®?, 1)

requires thapR? — w. (In practice, values 0pR? of the  which guarantees the promised asymptotic decay gyifbr

order of 4 or more suffice to guarantee adequate coverage)x = £, In fact, the exponent of decay is approximately twice

. pR"
The following theorem states our result. as large as that used in our proof: this follows because the

values ofx, andy, we are considering are small, aAd ~
2xR, which yieldsP[X > x] ~ e=2PRX ]

0<x<2R

3.3 Remarks on Spatial Resolution Theorems

Theorems 1 and 2 show that the spatial resolution cannot
be better thaﬁ)(piR), and that this resolution can be achieved

with a random (Poisson) sensor deployment. The depen-
dence on sensor density seems to match common intuition:
the more sensors we have, the better the spatial accuracy one
should be able to achieve. On the other hand, the dependence
on sensing radius may seem counterintuitive—because these
are binary proximitysensors, they do not actually measure

THEOREM 2. Consider a network of binary proximity sen-  the distance to the target, and so having a large sensing radius
sors, distributed according to the Poisson distribution of den- may seem like a disadvantage. Indeed, as the sensing radius
sity p, where each sensor has sensing radius Then the increases, we seem to get less information from an individual

localization error at any point in the plane is of ordgg. IseesnsS(;r; i(t)surlt%i(telt?rgertrlizsehsowg t:tr%i:sttz r?1 I?er\?gltrhaer Z?:.ctlr?a:/ceyrthe_

PrROOFE See Figure 3 for an illustration. Consider an arbi- improves with larger sensing radius. This is a good example
trarily chosen poinP in the plane, and an arbitrarily chosen of the advantage afetworkedsensing, where the increase in
direction of movement, starting from that point. Given the an individual sensor’s uncertainty is counter-balanced by a
isotropic nature of the Poisson distribution, without loss of quadraticincrease in the number of patches into which the
generality, this direction can be chosen as going right along sensor field is partitioned by the sensing disks. When the
the horizontal direction. LeX denote the minimum move-  sensing radius is small, the sensing disks are either disjoint
ment required in that direction before there is a change in or overlap only a little, and there are or@®(n) patches. As
signature (i.e., before the boundary of some sensor’s disk isthe radius begins to grow, more disks pairwise intersect, and
crossed). We wish to characterize the tail of the distribution at sufficiently large radius, all pairs intersect, partitioning the
of X. sensor field intd@(n?) patches, thereby reducing the size of
To this end, consider a poiQ that is a distanc& away each patch and improving the localization accuracy. In a fi-
from P along the direction of movement, as shown in Fig- nite sensor field, of course, this improvement stops when the
ure 3. Any sensor detectirig(resp. Q) must lie in the disk radius becomes comparable to the length of the field.
of radiusR with center atP (resp. Q). Thus,P andQ have Our theorems also help explain some of the empirical re-
the same signature if and only if the symmetric difference sults of Kim et al. [12] for target tracking using binary prox-
of these two disks (the shaded region in Figure 3) containsimity sensors. They found that for a fixgdR? (which we
no sensor, assuming that eitlieor Q is detected by at least  can interpret as fixing the average number of sensors that
one sensor. (Under the assumption it is large, the last  can detect a target at a given position), better accuracy was
condition is met with high probability.) Lettingdq andA,, achieved for the combination of “higher density and smaller

Figure 3. lllustration for proof of Theorem 2.



radius” than “lower density and larger radius,” leading them velocity cannot be estimated based on binary sensor read-
to propose that deployments with higher sensor density andings. This suggests that, among many spatially equivalent
smaller sensing radius are preferable. This empirical obser-paths, piecewise linear approximations adequately represent
vation is a directonsequencef our theoretical results: for  the output of the sensor field in terms of both spatial resolu-
constanpR?, reducing the sensing radius by 1/2 corresponds tion and velocity estimation. An analysis of velocity estima-

to a factor of 4 increase in the density, while reducing the tion errors using such piecewise linear representations leads
density by 1/2 corresponds t62 increase in the radius. The to the intuitively pleasing conclusion that paths that use few
former combination yields a higher value pR, which im- segments (frugal representation) are also the paths that lead
plies better spatial resolution. to good velocity estimation! These ideas lay the foundation
for our algorithms (described in Section 4) that employ an

_ Finally, our resolution theorems easily generalize to any 54y razor approach to the construction of estimated tra-
fixed dimension, and we can show that the achievable reso-;

lution in d dimensions i9(1/(pR41)). Jectories.
3.4.1 Lowpass Trajectories

3.4 Sampling and Velocity Estimation We begin with a simple but important interpretation of a

The geometric information structure introduced in Sec- binary sensor field as a device for spatial sampling. (et
tion 2 shows that binary sensors can only localize the targetdenote the two-dimensional vector specifying the true loca-
to localization patches, and the resolution theorems of Sec-tion of the target at time. Using the notation of Section 2,
tion 3 show that these patches attain localization accuracyWe can say that(t;) € Aj, where{t; } are the times at which
of A — O(piR)' Thus, as far as spatial accuracy is concerned, the target’s signature changes, akds the arc defining the

, . . boundary between the patchgsandF;1. For a moment,
nothing further remains to be said. For any sequence of patChassume that genieor anoracle actually tells us the precise

boundaries crossed by the target, there are infinitely many . _ e .
candidate trajectories crossing those patches in the same or!—o cationsx(t;), for the set of time instantgt; }. We can now

der, andany oneof which is as good as another because they infer the following about the velocity vects(t) = dx/dt.
all lie within the achievable localization accuracy. Clearly, t41

however, all these paths are not equally attractive as an es- /I V(t) dt = X(tj41) —X(tj).

timate of trajectory. On grounds of “representational fru- !

gality,” perhaps one would prefer a path that uses a small In other words, even with the genie’s aid, all that we can
number of segments as opposed to the one that uses a largsay about the target’s trajectory during the interftak;;1)
number of segments. A different criterion may be to choose is that (i) the target is confined to the patep and (ii) the
paths that track the second important quantity of interest in averagevector velocity of the target in the patch is
target tracking: itsvelocity. It turns out that these two top-

ics (path representation and velocity estimation) are in fact v = X(tj+1) —x(t)

closely related, and are the focus of this section. tjr1 — 1

X We denote the corresponding scalar average velocity by
' ' 193l

Note that we cannot infer anything about the deviation
V(t) —Vj in the vector velocity from its average over the path,
since this deviation integrates to zero in the time interval
tj,tj+1). This means that any high-frequency fluctuations
in the path that are of small enough amplitude to stay within
the patclF; are entirely “invisible” to the binary sensor field.

Indeed, for a one-dimensional field of sensors, the sam-
Figure 4. A trajectory exhibiting high frequency varia- pling and gquantization interpretation is immediate, without
tions that cannot be captured by binary sensors. requiring invocation of a genie: the patches reduce to inter-

vals and the arcs reduce to points. In this case, the binary

Our starting point is an analogy between binary sens- sensor field is identical to a level-crossing analog-to-digital
ing and analog-to-digital conversion based on sampling andconverter [19].
guantization, which immediately suggests that only a “low-  Therefore, at best we can hope to reconstrulciwgpass
pass” version of the trajectory can be reproduced. Consider,representatiorof the target’s trajectory, which waefineas a
for instance, the trajectory shown in Fig. 4, which corre- piecewise linear approximation over spatial ségleith line
sponds to the same sensor outputs as the trajectory of Fig. lsegments connecting the sequence of poifts, x(t2), . . ..
but includes “high-frequency” variations around a slowly Other definitions that interpolate more smoothly across the
varying trend. Within the spatial resolution afforded by our arcsA; are also possible, but the piecewise linear form has
sensor model, these two trajectories are indistinguishable.the virtue of being a minimal representation of the informa-
The high-frequency trajectory of Fig. 4, however, clearly tion obtained from the binary sensors and the genie (in par-
has a higher velocity than the smooth trajectory of Figure 1. ticular, it preserves information in the average velocity se-
But, as we note below, the high-frequency component of its quence{V }).




The trajectory shape and the velocity estimates for the therefore, only on the spatial variations of the path shape and
lowpass representation serve as a benchmark for comparingts velocity, and not on time scale.
the output of any algorithm based on the sensor readings. The main consequence of Eq. (2) is thatLifis large
Since this benchmark is defined with the genie’s help (which enough and the permissible variatidh (constrained both
eliminates the spatial uncertainty at each Ay, it is not by the sensor readings and the assumptions we make about
attainable in practice without some additional assumptions the true trajectory) is small enough, then we can obtain accu-
regarding the trajectory, as discussed in the next section.  rate velocity estimates. For example, in order for a velocity

; ; ; estimate to be accurate to within 10%, we need to be able

3.4.2 Velocity .Estlrr?atlc_)n Error o to guarantee thadL < 0.1L. If we assume that the scalar

The set of all piecewise linear paths that visit the sequenceyg|ocity is constant over large enough path sections, then we
of arcsA;j in thg order given by the sensor signature sequencemay be able to accurately estimate the veloaityong as the
forms an equivalence class under the spatial resolution: allyariations in path lengths consistent with the sensor readings
these paths are equivalent to the lowpass trajectory definedcan pe controlledControlling the path length fluctuations is
by the genie within the spatial resolutidn Let us call this the same as bounding the path length spread in our equiva-
setrREP, for spatialResolution Equivalence Pathkss. Even lence clasREP.
considering the lowpass representation, where all fluctua-  The following theorem characterizes the intrinsic ambigu-
tions of spatial scale smaller thanare removed, two paths jty (caused by the spatial resolutitin velocity estimation
in REP can differ in length by a factor of 2: in a triangle  pased on straight line approximations, arguing the the rela-

of side length), there are two possible paths, one of length tjye spread in path lengths is small if the line segment is long
A that follows one side, and one of lend?A following the enough.

other two sides. More generally, one path can be a straight . . .
line, and the other can zig-zag taki@g long detours for | HEOREM 3. Suppose a portion of the trajectory is approx-
each segment of lengthcovered along the straight line. imated by a straight line segment of lengitto within spatial

In the absence of any other information, we simply have rgsolutlonA. Then, thg maximum variation in the yelom_ty es-
no way to decide which among the many candidate paths intimate _due to thga choice dfifferentcandidate straight line
the equivalence classep offers the best approximation to ~ aPProximations is at most
the true path. The only way to decrease this uncertainty is to v <A> 2

assumeadditional conditions that help shrink the spread of ” <2

the path lengths in the equivalence class. In the following, we L

identify simple and naturaéchnical conditionsinder which Furthermore, this also bounds the relative velocity error if

all the paths in the equivalence class have roughly the samethe true trajectory is well approximated as a straight line

length, and therefore any choice is guaranteed to give a goodover the segment under consideration.

approximation. In particular, just as the accuracy of spatial proor By our spatial resolution theorem, the true trajec-

resolution is controlled by size of the localization patches, 14y js (approximately) a straight line that must lie within

the accuracy of the velocity estimation is controlled by the A of the straight line approximatios we are considering.

variance in the path lengths of the equivalence class. a5 it must lie in a rectangle of wid®A with s as its
We consider minimal representations of the trajectory in long axis. The maximum deviation in length from the ap-

terms of piecewise linear approximations with line segments . yimationsis if the true trajectory is the diagonal of this
spanning several patches, and ask when velocity estlmatlonSE)

computed using such a representation are accurate. That is,ectangle, Whgse lengthis+ 3L = 2,/(L/2)+ A%, which

we seek conditions under which the entire class of equivalentyields 8L ~ 24~ for A < L. Clearly, this bound also applies

paths provides a good approximation to the genie-aided av-for deviation of the true trajectory from the straight line ap-

erage scalar velocity function, which is a piecewise constant proximation being considered, as long as the true trajectory

sequence taking valug over the time intervalt;, tj.1). is well approximated as a straight I!ne over the current seg-
We first relate the relative error in velocity estimation to ment. We now apply Eg. (2) to obtain the desired resu.

the relative spread in path lengths in the equivalence class Theorem 3 implies that, if we want to control the relative
REP. Suppose that the estimated trajectory is of lerigth  velocity error to less thaausing a piecewise linear approxi-

between arcsy andAy;m. Assuming that the scalar velocity mation, then the length of each line segment must be at least
is constant over this path segment, it can be estimated as the

length divided by the time to go between afgsand Ay m: L> Lo — VA 3)
v=L/(txym—tk). Suppose the true trajectory betwetn =0 ’

VE
and A m has lengthL + dL. Then, our velocity estimate .
error isdv — 3L/ (te.m—t). We therefore obtain that As an example, to achieve error at mdé®4 segments of

length 5A suffice; error of5% requires segments of length
N oL ~ 6.32A. Put another way, if on average each linear approx-
v L (2) imation segment sparnslocalization arcs, then the average
relative velocity error iglv/v < 2/a?. Our simulation re-
That is, by considering the relative variatié)ﬁ in velocity sults show that even for fairly complex (synthetic) trajecto-
rather than the absolute variatidm, we are able to remove  ries, a piecewise linear approximation works well, wattat
dependence on time scaling. The results we derive depend|east 10 on average.



Note that, for trajectories that “wiggle” while staying in the order specified by the sensing outputs is consistent
within A of a (long enough) straight line, Theorem 3 can with the target’s true trajectory, within the accuracy bounds
be interpreted as guaranteeing accuracy in estimation of theof the model. Among all these possible trajectories, the Oc-
projectionof the velocity along the straight line. On the other cam'’s razor approach prefers the one that is the simplest. For
hand, if a trajectorgurvessharply, piecewise linear approx- instance, if all the regions could be traversed by a single line,
imations to withinA of the trajectory must necessarily use then alinear trajectory has the simplest descriptive complex-
shorter line segments, making the velocity estimation error ity, within the theoretical accuracy of tracking. Generalizing
worse. But this is unavoidable because over short spans, thehis, apiecewise lineatrajectory with the fewest number of
relative difference between two linear segments is larger, aslinear segments that traverses all the sensed regions in order

implied by Theorem 3: in the extreme case, wHere A, we is the trajectory of minimal complexity. In the following sec-

are back to the factor of two error discussed at the beginningtion, we describe a geometric algorith@¢cCcAMTRACK, for

of Section 3.4.2. computing such a trajectory. Our computational model as-
sumes that a tracker node collects the output from the sensor

4 Tracking Algorithms nodes, and runs the algorithm to compute the trajectory. The

algorithm, however, can also be implemented in a distributed

The theoretical considerations of the previous section mo- fashion by exchanging data among the neighboring nodes.
tivate an Occam’s razor approach to tracking. Among all .
the candidate paths meetirﬁ)g)J the spatial reso?ution bOL?nd, a 1 T_heOCCAMTRACK_ Algorithm
piecewise linear approximation that uses a minimal number ~ Algorithm 1 below describes th©CCAMTRACK at a
of segments has the advantage of compact representation a@seudo-code leveEis the set of all the sensors, and the algo-
well as accurate velocity estimation. Using the notation of fithm operates in discrete time stepswhich are simply the
Section 2, we know that the target is constrained to lie in re- instants at which one of the sensor’s binary state changes. At
gion F; during the time intervalt; t; 1], where{t;} are the ~ €ach of these discrete time stepthe algorithm determines
time instants at which there are changes in the bit vector of the setd andZ, and computes the regidn localizing the
sensor outputs. We formally define a localization regipn ~ target. Thetime-orderedsequence of these regioRsis the
corresponding to an intervt,tj,1), as follows, dropping spatial bandB that contains the target's trajectory. The func-
the subscripfj for convenience. Let be the subset of sen-  tion MINSEGPATH then computes a minimum piecewise lin-
sors whose binary output is 1 during the relevant interval, €ar path traversing the band.
and letZ be the remaining sensors whose binary output is 0 i
during this interval. Then the regidhof the plane to which ~ Algorithm 1 OCCAMTRACK(S)

the target can be localized during this interval is given as: 1. T — {sstart,s.end: Vse S};
2: sort(T);
F :mDi_UDiv 3: forall tcTdo
i€l i€z 4: | —{s:te[sstart,send};
whereD; is the sensing disk of radilR centered at sensor 5 Z<« {s:sc l.nbrlistAt ¢ [s.start,s.end};
i. Note that it is not necessary to consider the entireZset 6: F «ig Di — UiczDi;
in order to determiné-: it suffices to consider only those 7. B+ BUF;

sensors whose disks can intersect with any digk irhus, in 8: end for

our implementation, it is necessary only to maintain, foreach 9: L < MINSEGPATH (B);
sensors, aneighbor listof all other sensors whose sensing
disks intersect with the disk af

Figure 6. The path computed byOcCcAMTRACK has 3

Figure 5. The shaded band shows the region$F} to line segments. The sequence of arcs delineating the re-
which the trajectory is localized by the sensor outputs. gions of bandB are shown in thick lines.

Fig. 5 shows an example trajectory and the band consist- Inthe pseudo-code foW IN SEGPATH, the functionFIND-
ing of the regionsAnytrajectory that traverses these regions ARcCs determines the ordered sequence of localization arcs



corresponding to the localization baf The function optimal segments. (In practice, it is very close to optimal.)
FINDLINE either determines that a subsequence of arcsDue to lack of space, we omit the proof of this theorem.
0i,0i+1,---,0; cannot be “stabbed” (in the given order) by .

a single line, or finds such a stabbing line. The algorithm THEOREM 4. The algorithmOCCAMTRACK computes a
MINSEGPATH uses this function in a greedy fashion to find PlECewise linear path thqt visits the_ localization arcs in or-
the longest prefix of arcs that can be approximated by a sin-der and uses at most twice the optimal number of segments
gle line segment, removes those arcs, and then iterates o the worst-case. If there ama arcs in the sequence, then
the remaining sequence. There are only a finite number of e worst-case time complexity @CCAMTRACK is o(m?).

combinatorially distinct candidate lines one needs to test to
decide if a sequence of arcs can be stabbed by a line.
particular, it suffices to test the lines formed by pairs of en
points of arcs, or lines that are tangent to somé*dfigure 6
shows the minimal description path for the example of Fig-
ure 5.

d[n4.3 Robust tracking with non-ideal sensors

Algorithm 2 MINSEGPATH(B) ‘
1: A«— FINDARCS(B);
i+ 1;
:forall je1,2,....mdo
if = FINDLINE(A},Aiy1,...,Aj) then
L <~ LUFINDLINE(A,Aif1,...,Aj—1);
i
end if
end for

Figure 7. The non-ideal sensing model

PN AREODN

TheOccaMTRACK algorithm assumes ideal binary sens-
ing. In practice, sensing is imperfect and noisy: a sensor
4.2 Analysis ofOCCAMTRACK could detect an object outside its nominal range, or it may

By construction, the piecewise linear path computed by 2l 10 detect an object inside its range. We illustrate our ap-
OCCAMTRACK intersects the regions of the baBdn the proach to such non-idealities using a sensing model in which

same order as given by the binary sensors outputs—this fol.the target is always detected within an inner disk of radius

lows becausd/INSEGPATH constrains the path to visit the 1 Called thedetection regionand is detected with some
boundary arcs of consecutive regions in order. This, how- nonzero probability in an annulus between the inner disk and

ever, does not mean that the true trajectory and the piecewisé"m outer disk of ra_dluﬁio, calleduncertain region Targets
linear path visit thesame sequencef regions. The linear  OutSide the outer disk are never detected. Figure 7 gives an il-
shortcuts found byDCCAMTRACK can visit additional re- lustration of this model. Despite its simplicity, such a model
gions. This can happen if the linear segment crosses over® of f_alrly broad @PP"Cab"'Wv since ltarises ”at“fa!"y if sen-

a non.-convexvertex of one of the regions. The important sors integrate noisy samples over a reasonable time scale to
point to note, however, is that the maxirﬁum distance be- make blna(y qec's."on.s regarding target.pregence or absence.
tween the true trajectory and the computed path at any instant The main |mpl|ca't|on 9f the model in Figure 7'f0r t'he
(the L error) is still bounded byA = O(1/pR), because the =~ OCCAMTRACK algorithm is that we can no longer identify
path computed byDccAMTRACK does lie entirely within circular arcs corrgspondlng to an object entering and leaving
the union of theconvex hullsof the F regions in the band a Sensors dgtectlop range. While We can empﬂm;CAM-

B. Since the diameter of the convex hull of aRyregion is TRACK algorithm directly by approximating the sensing re-

bounded by, the error guarantee follows. The following 910N as a disk of some radilg whereR < R < Ro, sim-
theorem shows that the worst-case path approximation Com_ulatlons s_how that the pgrformance can be poor. We there-
puted byMINSEGPATH uses at most twice the number of (o€ consider an alternative approach, in which we employ
a particle filtering algorithm to handle non-idealities. While
SWhile a localization arc can have multiple pieces in a patholog- this produces a good approximation of the true trajectory,
ical case, the union of all its sub-arcs is still within the resolution it is not amenable to an economical description. We there-
bound (cf. Theorem 2). Thus, for the purpose of minimal path rep- fore employ a geometric post-processing algorithm to obtain
resentation, we can safely “interpolate” all the disconnected piecesg minimal representation for the output of the particle filter-
of the arc_and still remain v_vithin the tolerable error. However, to ing algorithm. While particle filtering is a well established
keep our implementation simple, we chose to ignore such patho- o chnique, the main novelty of the algorithm presented here
logical contingencies, and opted to simply ignore an arc if it were is the Way,in which it exploits the constraints of the sensing

found to be disconnected. . S : f
4In computational geometry, several theoretically more efficient model for a simple and efficient implementation.

methods (e.g. [8]) are known for these stabbing problems, but they I order to illustrate robustness to non-ideal sensing, we
are complicated to implement and involve significant overhead in take a worst-case approach to the information provided by
data structures. We chose to implement our algorithm because it isthe non-ideal sensing model in Figure 7, assuming the max-
simple, compact, works fast in practice. imal uncertainty consistent with the sensor readings. If a




sensor output is 1, then we assume that the target is someAlgorithm 3 FITLINE(p)

where inside the large disk of radi& centered at the sen- 1: Q—@

sor. If a sensor output is 0, then we assume that the target is 2: forall i< 1,2....,|p| do
somewhere outside the small disk of radRigentered at the 3:  if ERROR(QU p;) > Athen

sensor. A localization patdh at any time instant is given by 4 L «+ LULINESEGMENT(Q);
intersecting all such areas, just as before. 5: Q—@

6: endif
4.3.1 Particle Filtering Algorithm 7. Q< Qup;

8: end for

We now sketch the particle filtering algorithm; a more de-
tailed description and software implementation is available
from the authors upon request. At any timewe haveK

particles (or candidate trajectories), with the current location 5 Simulation Results

for thekth particle denoted byi[n]. At the next time instant We carried out extensive simulation tests to evaluate the
n-+1, suppose that the localization patctrisChoosencan-  performance of all our algorithms, under both ideal and non-
didates fon(n +- 1] uniformly at random fronf. We now ideal sensing models. The code f@CCAMTRACK was
havemK candidate trajectories. Pick thé particles with written in C and C++, the code fdPARTICLE-FILTER was
the best cost functions to get the ¢gt[n+ 1], k=1,.... K}, written in Matlab, and the experiments were performed on

where the cost function is to specified shortly. Repeat un- 5n AMD Athlon 1.8 GHz PC with 350 MB RAM. We first
til the end of the time interval of interest. The final output giscuss our results for the ideal sensing model.

is simply the patrticle (trajectory) with the best cost function.
Thus, Monte Carlo simulation is an intrinsic part of thisalgo- 5.1 OcCAMTRACK with ideal sensing
rithm, since random sampling is employed to generate candi- ) )
dates for evaluation. The sampling time interval is chosen to ~ OUr general experimental setup simulatetD80x 1000
be short compared to a localization patch, so as to generate &Nit field, containing00 sensors in a regule80 > 30 grid.
sufficiently rich set of candidates. The sensing range for each sensor was sEd@units. When
It remains to specify the cost function. We chose an addi- evaluating the scaling affects of the sensor parameters, we

tive cost function that penalizes changes in the vector veloc- kept the field size and one parameter fixed, while the other

ity, in keeping with our restriction to lowpass trajectories. pa@meter (rad|ustqr denglty) WalsM;)aned. ¢ ity of
Once a candidate[n + 1] is chosen from the current lo- e useggeometric random walks generate a variety o

At ; : i trajectories. Each walk consists of 10 to 50 steps, where each
calization patch, the increment in positiggn+ 1] — X[n Lo C= =
is an instaFr)wtaneous estimate of thpe vel‘zkiity ve]:ctor [at] time SteP chooses a random d'“’r‘c“on and walks in that dl'rect|on
n. The corresponding increment in the cost function is the for some length, before making the next turn. Each trajectory
norm squared of the difference between the velocity vector 25 the same total length, and we generated 50 such trajecto-

estimates at tima andn— 1. This is given by ries randomly.
5.1.1 Quality of trajectory approximation

Gl = [|0%(n+ 1] = x[n]) = O] — x[n— e On all 50 random walk trajectorie@ccAMTRACK de-

= | XN+ 2] +x[n — 1] — 2x[n]]| livers excellent performance. Figure 8(b) is a typical exam-
ple, where the true trajectory is virtually indistinguishable
from the approximation computed ICCAMTRACK.

We also ran the weighted-centroid algorithm of Kim et
. . al. [12] on these trajectories. In our comparison, we used
4.3.2  Geometric Postprocessing the adaptive path-basedersion of their algorithm, which is

The particle filtering algorithm described above gives a claimed to be well-suited for complex and non-linear trajec-
robust estimate of the trajectory consistent with the sensortories. For ease of reference, however, we still refer to this
observations, but it provides no guarantees of a “clean” or @lgorithm as theveighted-centroicscheme. We ran this al-
minimal description. This suggests the possibility of apply- gorithm with inner and outer radii both equal to the ideal
ing the geometric approach of Section 4.1 to the particle filter radius100
estimate to generate a more economical description. We omit  Figure 8(a) shows the output of the weighted-centroid
details due to lack of space, but provide a brief pseudo-codemethod, and is typical of its performance on all our ran-
description of an algorithrRITLINE to generate a piecewise dom walk trajectories. The weighted-centroid algorithm is
linear approximation with a small number of line segments. sample based, and it used 1000 vertices to approximate each
In the pseudo-cod@ s the ordered list of samples generated Of the trajectories. By contrast, tHt@CCAMTRACK used
by the particle filtering algorithr, is the output piecewise ~ between 20 and 70 vertices. Despite this frugal represen-

The net cost function for a candidate trajectory up to time
is simply the sum of these incremental cost§;_; ck[n].

linear approximation, and functioniINESEGMENT(Q) re- tation, the maximum localization error f@CCAMTRACK
turns a line segment that is within distartbef the sequence ~ Wasalwayssmaller than the weighted-centroid, on average
of pointsQ. by 30% and in some cases byfactor of five Due to its

highly efficient structureOCCAMTRACK is also 300 times
faster than weighted-centroid. In all cases, our algorithm
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Figure 8. Quality of trajectories produced by the weighted-centroid algorithm of [12] andOccAMTRACK. Figure (c)
shows the results of velocity estimation byDCCAMTRACK.

took less than 10 milliseconds, while weighted-centroid took 60 Y ce
between 2 and 20 seconds. sl e Time
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5.1.2 \elocity estimation performance

In our random walk trajectories, we also varied the scalar
velocity randomly at each turn, and then us@dcam-
TRACK to estimate the scalar velocity along the trajectory.
For each linear segment in the piecewise linear path com-

30

20

Max Error in Location

10

puted byOccAMTRACK, we used the first and the last lo- %o 100 2000 3000 4000 5000 6000 7000
calization arc to determine the time spent on that segment; ) il DT”S"V,““’) ,
recall that sensor outputs tell us the exact times for each arc. Figure 9. Spatial resolution vs. sensor density.

We estimate the scalar velocity for this segment by dividing
the length of the segment by this time. With a goal of es-

timating the velocity withire 0.1, namely,10% we esti- By the spatial resolution theorem, the localization error

mated the average velocity only over path segments of Iengthshould decrease inversely with the density. Figure 9 shows
’ that the measured error follows closely the theoretical curve

atleast. = v2A/+/&, as given by Eq. 3. o of 1/p, both for the grid as well as the random placement.
In Figure 8(c), we show the results of estimating the ve- |, each case, the reported error is the maximum error for the

locity for the sample trajectory of (b). The top figure shows raiectory, averaged over 50 random walk trajectories. (The
the overlay of both the true and the estimated velocities along ayerage error for each trajectory is much smaller.)

the trajectory, and one can see that the two agree very well.

In the bottom figure, we plot the relative error in the velocity 5.1.4 Spatial resolution as a function of sensing

to highlight deviation. The figure shows that the maximum range

deviation is always less tha©%, as predicted by theory. In this experiment, we kept the density constanf@®d
The results were very similar for all 50 trajectories. In nodes in the field, and varied the sensing radius from 50 to

particular, on average a segment@fCAMTRACK’S trajec- 400 units. Figure 10 shows the maximum error, averaged

tory spanned about 15 patches, meaning that an average lin@ver 50 random walk trajectories, for various values of the
segment in the approximation has length: 157, meaning sensing range. By the spatial resolution theorem, the lo-

that the velocity estimates are good, as explained by Theo-calization error should decrease inversely with the sensing
rem 3. range, and again the measured values closely follow the the-

In the following two experiments, we evaluated the lo- oretical curve ofl/R

calization accuracy dbccAMTRACK with varyingp andR "
over many random trajectories, to see how it compares to the . R p—
theoretical predictions of our theorems. % Theoret cunve: LR

20

5.1.3 Spatial resolution as a function of density

In this experiment, we measured the maximum error in
localizing the target’s trajectory for a varying values of the

15

10

Max Error in Location

sensor density. We kept the size of the field and the sensing 5

radiusR fixed, and then varied the number of sensors in the S

field fromn = 100to n = 640Q (Since the area of the field o oy 00 o0 o0

is 10°, this corresponds to variation in density frd@ to Figure 10. Spatial resolution vs. sensing radius.

6.4 x 1073.) We tried both the regular grid arrangement of
the sensors, as well as the random placement.



(a) OCCAMTRACK (b) Particle Filter (c) Particle Filter + Geometric

Figure 11. Trajectories computed by the three algorithms under the non-ideal sensing model.

5.2 Tracking with Non-ldeal Sensing

We now describe the results of our experiments with non-
ideal sensors. Our model of non-ideal sensors is the one
shown in Figure 7, where in the region between distaRce
andR,, the target is detected with probabili%y An imper-
fect detection is problematic for the ideal geometric algo-
rithm OccAMTRACK because it relies on contiguous time
intervals during which the target is inside the range. We used
a simple hysteresis process to mitigate the affect of erratic
detection: to signal the beginning of a detection interval, we Figure 12. The setup for our acoustic motes experiment.
require the sensor to output a 1 bit for 3 consecutive time
samples; similarly, to signal the end of a detection interval,

we require the sensor to output a 0 bit for 3 consecutive time 0; I 1
samples. % poul |

We generated a variety of geometric trajectories, sim- < 4| i
ulated the sensor outputs using our non-ideal sensing & o2} 1

model, and ranOCCAMTRACK, PARTICLE-FILTER, and 0
PARTICLE-FILTER with geometric post-processing, which
we callPARTICLE FILTER + GEOMETRIC. A sample trajec-
tory, along with the outputs of the three algorithms, is shown
in Figure 11.

As expected, the ideal algorith@®CCAMTRACK per-

forms poorly when the data is imperfect: such data lead for the PARTICLE-FILTER for the error 0f1.19. We sim-

to gaps in the sequence of localization patches and infea-ylated this experiment over several trajectories, using the
sible localization arcs. In our implementation, we simply non-ideal sensing, and observed the same trend. On a typ-
ignoredthese geometric inconsistencies, and just computedical input, the maximum localization error usiRgRTICLE-

the piecewise linear paths using the rest of the arcs. Of FiLTER + Geometric was comparable to the basic particle
course, in the worst-case, poor data can completely breakfilter algorithm, but in the worst-case it was almd%
OccAMTRACK, but we found that the algorithm recovers higher. On the other hand, the path description computed

rather well from these bad situations and produces acceptty PARTICLE-FILTER + Geometric was at leastfactor of 5
able trajectories, although not nearly as good as in the idealsmaller.

case. In fact, compared teARTICLE-FILTER, the output
of_OCCAMTRACK looks significantly worse: it has sig- 6 Mote Experiments
nificantly more pronounced turns and twist®ARTICLE-
FILTER seems much better at dealing with noisy data, butits  Finally, we set up a small lab-scale experiment using
drawback is that, like any sample-based scheme, it producesacoustic sensors to evaluate the performance of our algo-
trajectories with many vertices. This is where our combi- rithms. The setup consisted &6 MICA2 motes arranged
nation of PARTICLE-FILTER with geometric post-processing in a4 x 4 grid with 30 centimeter separation, as shown in
achieves the best of both worlds: it combines the robustnessFigure 6. The motes were equipped with a MTS310 sen-
of PARTICLE-FILTER with the economic paths of the ideal sor board, which has an acoustic sensor and a tone detec-
OCCAMTRACK. tor circuit. (The tone detector can detect acoustic signals
In particular, in the example of Figure 11, the output of in a specific frequency range.) We adjusted the gain of the
PARTICLE-FILTER + Geometric uses 10 segments and has sound sensor so that the detection range for each sensor is
maximum error ofL.73, compared to 51 segments required about45 cm. The target is also a MICA2 equipped with

0 20 40 60 80 100 120 140
Distance (cm)

Figure 13. Probability of target detection with distance

for an acoustic sensor.
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(a) OcCAMTRACK (ideal) (b) OcCAMTRACK (c) Particle Filter (d) Particle Filter + Geometric

Figure 14. The output trajectories for the experiment using acoustic sensors.

MIB310, which generated the acoustic signal using its on- and reusable tracking architectures.
boardbeeper The target is then moved through the network The promising results obtained here and in [12], as well as
in a path (shown as the dotted trajectory in Fig. 14). the success of the large-scale deployment in [1], motivate a
We first performed some experiments with a stationary more intense investigation of tracking architectures based on
target to determine the detection characteristics of the motes’the binary proximity model. In order to focus on fundamen-
tone-detector. The readings from the motes turned out totals, we have considered a single path in our simulations and
be highly non-ideal. Not only did the motes make frequent experiments. An in-depth understanding, and accompany-
detection errors, but the probability of detecting a target was ing algorithms, for multiple targets is therefore an important
not a monotonic function of the distance from the sensor, astopic for future investigation. We would also like to develop
shown in Fig. 13. While this detection behavior is difficult minimal modifications of the basic tracking architecture to
to model, it also means that this experiment is a good test forincorporate additional information (e.g., velocity, distance)
the robustness of our tracking algorithms. if available. The particle filtering framework appears to be
The results of our experiment are shown in Fig. 14. The a promising means for achieving this. In addition to exten-
detection readings we collection from these experiments sions and implementation optimization of this framework,
showed a lot of non-ideal behavior. The most extreme be- an interesting question is whether it is possible to embed Oc-
ing that one of the sensors, shown as double circle in thecam’s razor criteria in the particle filtering algorithm, rather
figure, failed to detect the targentirely, even though the  than using geometric post-processing to obtain economical
target comes very close to it. path descriptions.
On the whole, however, even in presence of such extreme
failures, the results are very encouraging. All three algo-
rithms were able to give a reasonable estimate of the tar- Acknowledgment
get track. Figure 14(a) shows the reference outputior We are grateful to the authors of [12] for giving us access
CAMTRACK, assuming ideal sensing—that is, assuming the their target tracking code.
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