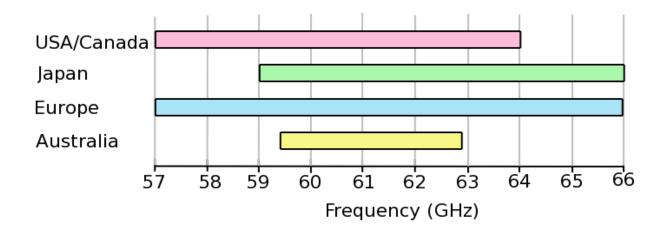


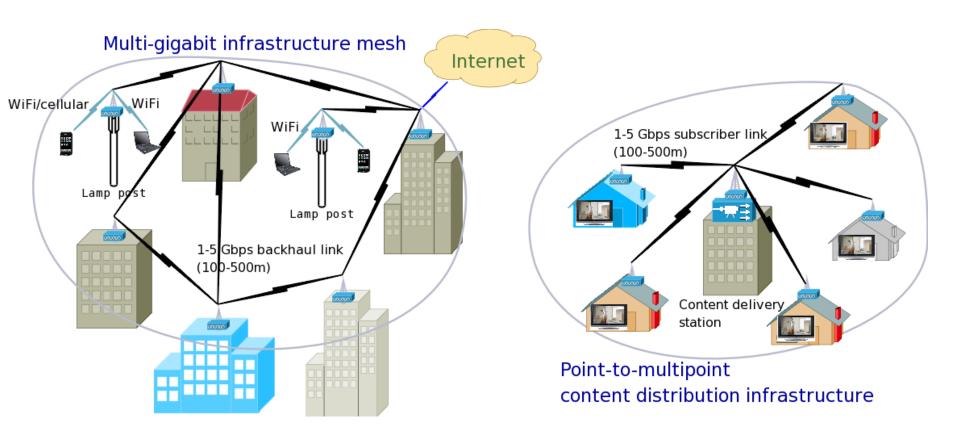
Medium Access Control for 60 GHz Outdoor Mesh Networks with Highly Directional Links

Raghu Mudumbai, Sumit Singh* and Upamanyu Madhow

University of California, Santa Barbara


IEEE INFOCOM 2009 Mini-Conference April 20th, 2009

The 60 GHz Band



- Unlicensed short range transmissions
- Small wavelength + oxygen absorption => high propagation loss

60 GHz Outdoor Mesh Networks

Path loss for mm waves

Free space path loss

$$\frac{P_r}{P_t} = \lambda^2 \frac{G_t G_r}{(4\pi r)^2} \propto \frac{1}{f^2}$$

Path loss for mm waves

Free space path loss

$$\frac{P_r}{P_t} = \lambda^2 \frac{G_t G_r}{(4\pi r)^2} \propto \frac{1}{f^2}$$

For a fixed antenna aperture size A

$$G = \frac{4\pi A}{\lambda^2} \propto f^2$$

$$= \frac{P_r}{P_t} = \frac{A_t A_r}{\lambda^2 r^2} \propto f^2$$

gain in received power with increase in frequency!

Directional communication is essential!

- RF power constraints
- Simpler PHY
- Nodes with compact form factors

Directional communication is essential!

- RF power constraints
- Simpler PHY
- Nodes with compact form factors

High directionality => new challenges in network design!

Questions in mm wave network design

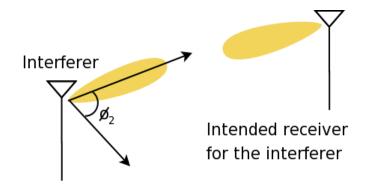
- Medium access control
 - -Can no longer rely on carrier sensing
 - No *omnidirectional* mode
 - Vastly reduced interference!

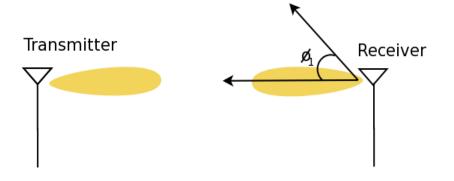
Questions in mm wave network design

- Medium access control
 - -Can no longer rely on carrier sensing
 - No *omnidirectional* mode
 - Vastly reduced interference!

High level of interference management may not be needed?

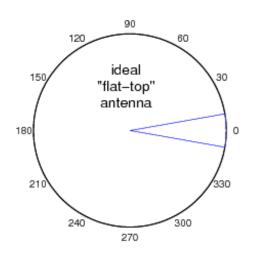
The implications of reduced interference


- Statistical analysis of interference
- Pseudo-wired abstraction
 - -Verification via a directional slotted Aloha protocol


Interference with highly directional antennas

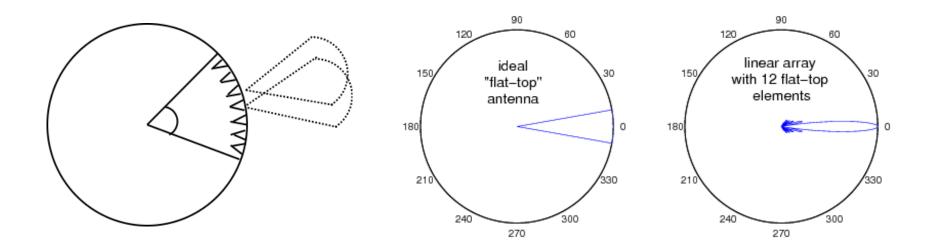
- Collision probability?
 - Dependence on beamwidth?

- Interference models?
 - Protocol model
 - Physical model



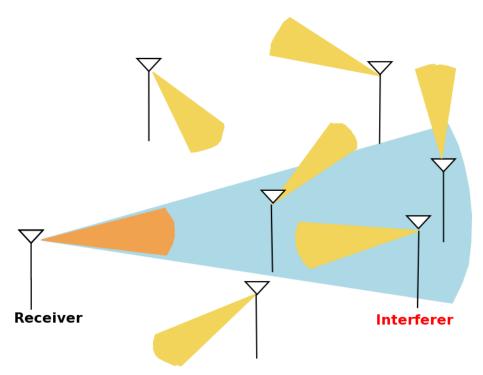
Flat top antenna idealization

- Constant gain within azimuthal angle Φ and zero outside
 - -Analytically convenient
 - -What about side-lobes?



Flat top antenna idealization

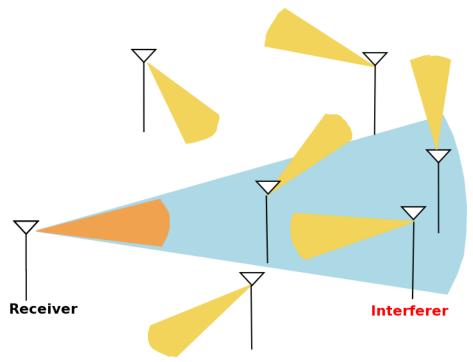
- Constant gain within azimuthal angle Φ and zero outside
 - Analytically convenient
 - -What about side-lobes?


Hybrid linear - flat top model for circular array

Interference under the protocol model

- Flat top antenna
- Interference loss iff there exists at least one interferer
 - within the interference range
 - within the receiver's bea mwidth
 - pointing in the direction of the receiver

Interference under the protocol model


- Flat top antenna
- Interference loss iff there exists at least one interferer
 - within the interference range
 - within the receiver's bea mwidth
 - pointing in the direction of the receiver

$$Pr(collision) = 1 - e^{-\lambda(SINR_{th})A_c}$$

$$A_{c} = \frac{(R_{0} \Delta \phi)^{2}}{4 \pi} e^{-\alpha (R_{i} - R_{0})}$$

 λ = density of transmitting nodes $\Delta\Phi$ = (azimuthal) beamwidth R_0 = nominal link range

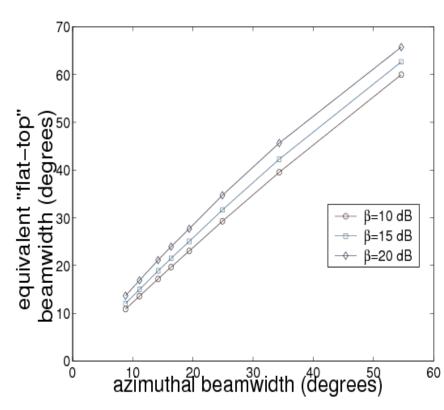
 R_i = interference range

Protocol model: general directional antennas

Arbitrary antenna patterns

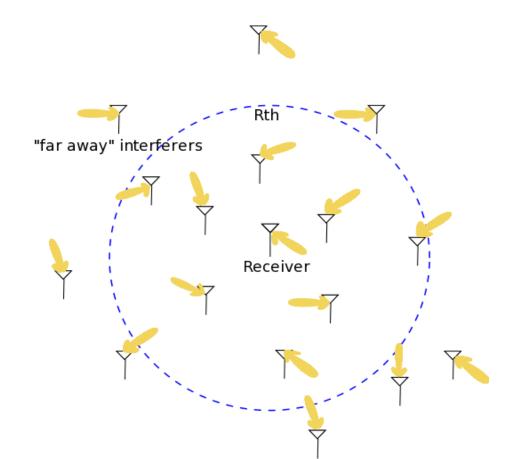
$$Pr(collision) = 1 - e^{-\lambda(SINR_{th})A_c}$$

- Parameter A_c
 - depends on the antenna directivity pattern
 - dimensions of an area

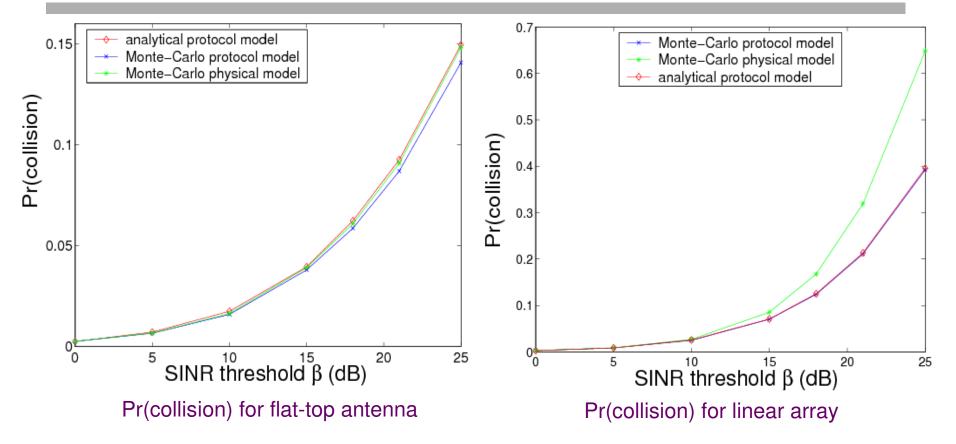

Protocol model: general directional antennas

Arbitrary antenna patterns

$$Pr(collision) = 1 - e^{-\lambda(SINR_{th})A_c}$$


- Parameter A_c
 - depends on the antenna directivity pattern
 - dimensions of an area
- Comparison with the flat top model
 - => equivalent *flat top* beamwidth

Physical model



- A hybrid approach
 - far-away interferers: Markov upper bound
 - -within a bounded region: Monte-Carlo simulations

Physical model

- Sidelobes matter!
- For small SINR_{th} or smaller beamwidths
 - Usually one dominant interferer
 - Protocol model acceptable approximation

Pseudo-wired abstraction

- Transmissions unlikely to interfere
- Half-duplex constraint

Pseudo-wired abstraction with directional slotted ALOHA

Simulation model

- 25 and 50 node random topologies
- Sectorized antenna model

Pseudo-wired abstraction with directional slotted ALOHA

Simulation model

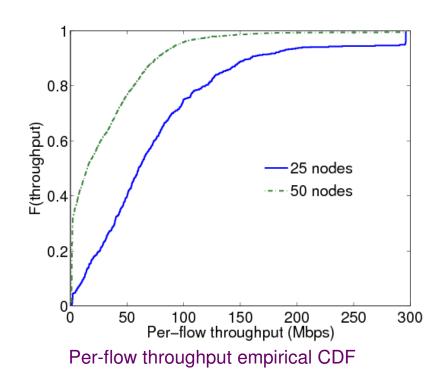
- 25 and 50 node random topologies
- Sectorized antenna model

Packet loss profile

	25 nodes	50 nodes
Interference	2.20%	5.60%
Failed coordination	35.70%	47.20%

Packet losses from failed coordination are an order of magnitude higher!

Pseudo-wired abstraction with directional slotted ALOHA



Simulation model

- 25 and 50 node random topologies
- Sectorized antenna model

Packet loss profile

	25 nodes	50 nodes
Interference	2.20%	5.60%
Failed coordination	35.70%	47.20%

Packet losses from failed coordination are an order of magnitude higher!

Conclusions

- •Are highly directional mm wave links like wires?
 - A qualified yes
- Pseudo wired abstraction for MAC design

- Ongoing efforts
 - It pays to drastically rethink MAC!
 - Effect of building reflections and blockage

Thank you

Sumit Singh University of California, Santa Barbara sumit@ece.ucsb.edu