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Limiting Performance of Frequency-Hop 
Random Access 

UPAMANYU MADHOW AND MICHAEL B. PURSLEY, FELLOW, IEEE 

Abstract -The multiple-access capability of asynchronous frequency- 
hop packet radio networks is analyzed. The only interference considered 
is multiple-access interference, and perfect side information is assumed. 
Bounds are developed on the probability of error for unslotted systems 
based on the distributions of the maximum and minimum interference 
levels over the duration of a given packet, and these are employed to 
develop corresponding bounds on the throughput. Our idealized model 
enables the derivation of asymptotic results showing the convergence of 
these bounds for high traffic levels, and the asymptotic performance of 
the system is seen to be the same as that of the corresponding slotted 
system. Results are also obtained for the maximum asymptotic through- 
put. These results shows that the asymptotic sum capacity of the 
channel can be attained using Reed-Solomon coding. All these results 
are valid for either fixed or exponentially distributed packet lengths. 
Our results indicate that the performance of frequency-hop networks is 
insensitive both to the distribution of packet lengths and to whether or 
not transmissions are slotted. It also demonstrates the efficacy of 
Reed-Solomon coding in combating multiple-access interference. 

I. INTRODUCTION 

E ANALYZE the effect of multiple-access inter- W ference on the throughput of fully connected asyn- 
chronous frequency-hop (FH) packet radio networks. To 
obtain meaningful analytical results, we ignore all other 
forms of interference and assume that perfect side infor- 
mation is available to the receiver. The network popula- 
tion is infinite, and the traffic is assumed to be Poisson. 
Because the side information is perfect, the FH channel 
is an erasures-only channel, and bounded-distance era- 
sures-only decoding is used. Both our model and our 
general approach for analyzing unslotted systems are 
based on [ 113. We develop upper and lower bounds on the 
packet error probability for unslotted systems, and we 
show that these bounds converge at high traffic levels to 
the asymptotic error probability for the slotted system 
derivid in [ll].  It is also shown that the asymptotic 
maximum possible throughput of the channel using 
Reed-Solomon (RS) coding is equal to the asymptotic 
sum capacity of the channel [71. 

Before proceeding further, we clarify our terminology 
and summarize some existing results. The terms slotted 
and unslotted, as applied to a network, simply specify the 
access protocol to be slotted or unslotted Aloha, respec- 
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tively. The frequency hopping is said to be synchronous if 
the dwell intervals from different terminals are aligned at 
each receiver, and it is asynchronous if they are not. If the 
number of active terminals in a slotted network is fuced, it 
can be viewed as a fixed discrete memoryless multiple- 
access erasures-only channel, and it has been shown in [7] 
that the asymptotic sum capacity of the channel is e - '  for 
synchronous hopping and e- ' / 2  for asynchronous hop- 
ping. Using the same network model, it is shown in [8] 
that the asymptotic maximum possible throughput using 
Reed-Solomon coding is equal to the asymptotic sum 
capacity. 

In contrast with the previous work, we focus on the 
coded performance of a system that has a variable traffic 
level, and we consider both fixed- and variable-length 
packets. Since the asymptotic performance of slotted and 
unslotted networks is the same, it seems that the perfor- 
mance of FH systems in general would be insensitive to 
whether there is slotting in the network. Note, however, 
that while the use of frequency hopping removes sensitiv- 
ity to alignment at the packet level, an alignment of the 
dwell intervals (i.e., synchronous hopping) results in a 
twofold improvement in the throughput performance. Our 
results are valid for packet lengths that are exponentially 
distributed as well as for packets of fixed length, and they 
strongly suggest that the distribution of packet lengths is 
not a significant factor in the performance of an FH 
packet radio network. 

A general description of the model and the method of 
analysis is presented in Section 11. The distributions for 
the maximum and minimum interference levels are used 
to bound the error probability. The result for fixed-length 
packets derived in [Il l  is given at the end of Section 11. 
The corresponding distributions for variable-length pack- 
ets are derived in Section 111. The asymptotic results of 
Section IV have the same form for both slotted and 
unslotted systems, as well as for fixed and exponentially 
distributed packet lengths, which enables us to present 
them in a general framework. Our conclusions are given 
in Section V. 

11. MODEL AND ANALYSIS 

Consider a fully connected network with an infinite 
population of identical terminals. Each terminal can 
transmit and receive at the same time, and there is no 
queuing of packets at the terminals. Also, each terminal 
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can receive any number of packets simultaneously. As far 
as the network model is concerned, these assumptions are 
made without any loss of generality, since the network 
population is infinite. We assume a Poisson packet gener- 
ation process with an average rate of A packets per 
second. This is the net arrival rate of packets in the 
network, including retransmissions, if any. The network is 
assumed to be in steady state for the purpose of our 
analysis, and stability issues are not considered. Since our 
purpose is to evaluate the effects of multiple-access inter- 
ference and determine the maximum multiple-access ca- 
pability, thermal noise and other types of interference are 
not considered. 

The radios employ frequency hopping with one trans- 
mitted symbol per dwell interval over a band of q fre- 
quency slots. The hopping patterns are random, the hop- 
ping patterns for different ratios are independent, and 
the hopping patterns are independent of the transmitted 
data. If two or more terminals are transmitting at the 
same time, a hit is said to occur when the two different 
signals simultaneously occupy the same frequency slot. 
Consider a single symbol from one of the packets. The 
probability that the other signal occupies the same fre- 
quency slot at any time during the interval occupied by 
this symbol is called the probability of a hit and is de- 
noted by Ph. For most cases of interest, l'/, = c9-I + 
O(q-*) for a suitable choice of the constant c [6], [ l l l .  It 
is assumed that all hits are detected (perfect side informa- 
tion), and that all symbols involved in a hit are erased by 
the receiver. An (n, k) block code that can correct up to e 
erasures is employed with bounded-distance erasures-only 
decoding, so the codeword is in error when there are 
more than e erasures. 

A packet may consist of more tha'n one codeword, and 
the codeword errors may or may not be dependent, so the 
relation between the packet and codeword error probabil- 
ities may be quite complicated [ l l ] .  For much of the 
development in this paper, therefore, we restrict our 
attention to the codeword error probability. Another per- 
formance measure of interest is the normalized through- 
put, which is defined in Section IV. In deriving the results 
for the normalized throughput, it does become necessary 
to consider the relation between the packet error proba- 
bility and the codeword error probability. For the purpose 
of deriving our asymptotic results, however, it suffices to 
work with fairly loose estimates of the packet error proba- 
bility that do not require a detailed knowledge of the 
dependence of the codeword errors. 

For our analysis we consider a given packet, called the 
tagged packet, which contains the codeword of interest. 
The probability of error for this codeword depends on 
N( t ), the number of interfering transmissions in the net- 
work during the interval [0, TI in which the tagged packet 
is transmitted. Consider first a slotted system. For a 
synchronous frequency hopping model, the hits are condi- 
tionally independent given the number of interfering 
packets, and c = 1 in the expression for P,l given earlier. 
For an asynchronous model, the hits are not conditionally 

independent 151, but for our purposes, we can assume 
conditional independence and use c = 2 in the expression 
for P,,. As shown in 151, this provides an upper bound on 
the actual codeword error probability, and for high traffic 
levels, the hits do become conditionally independent. The 
probability that a given symbol is hit, and hence erased, is 
p,  = 1 -(1- P,,)', if N ( t )  = j for 0 < t < T ,  and the condi- 
tional probability of codeword error is 

Let E(T}  be the mean length of the packets. For 
fixed-length packets, E{T)  = T.  For variable-length pack- 
ets, we assume T has an exponential distribution with 
parameter p, so E { T } = p - ' .  The net arrival rate of 
packets in the network is A packets per second. The 
normalized traffic level, or offered traffic, is p = AE{T), 
so p = AT for fixed-length packets, and p = A / p  for 
variable-length packets. Let f ,  be the probability mass 
function and F, the distribution function for a Poisson 
random variable with mean p. Then the probability of 
error for a slotted system is given by [ 111 

J = 0 

For unslotted systems, N(t) need not be constant over 
the duration of the tagged packet, so the average proba- 
bility of error is difficult to compute. Define N *  = 

max(N(t): t E [O, TI} and N ,  = min{N(t): t E [0, TI), 
which are the maximum and minimum interference levels 
during the transmission of the tagged packet. Let f *  and 
f *  be the probability mass functions corresponding to the 
distributions of N *  and N ,  , respectively, and let F" and 
F ,  be the corresponding distribution functions. The fol- 
lowing observations are made in [l 11: 

P ( E I N * = j )  5 P E ( ; )  I P ( E J N *  = j ) ,  

' E =  C P ( E I N * = j ) f * ( j )  = CP(EIN* = j ) f * ( j ) ,  
I J 

and 

PE" = C P E ( J ) f * ( J )  I PE C p t ( ; ) f * ( ; )  = PE". 
I J 

The distributions of N *  and N ,  are derived in [ l l ]  for 
fixed-length packets, and we have the following expres- 
sions for the corresponding probability mass functions. 

and 
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Fig. 1. Markov chain governing network state. 

In the next section, we derive the distributions of N *  and 
N ,  for variable-length packets with exponentially dis- 
tributed lengths. 

h h x x  h 

111. DISTRIBUTIONS OF N *  AND N ,  FOR 

VARIABLE-LENGTH PACKETS 

Since the arrival process for packets into the network is 
Poisson, the interarrival times are exponentially dis- 
tributed. Departures are defined to occur on completion 
of packets, so that the service time for a packet (equal to 
the packet duration) is also exponentially distributed. A 
packet is transmitted as soon as it is generated. Thus the 
entire network can be viewed as an M / M / m  queue [9], 
with arrivals occurring at a rate A and departures occur- 
ring at a rate p p ,  where p is the number of packets 
currently being transmitted. The network state is defined 
as the number of active terminals, which is equal to the 
number of packets being transmitted. This is a continu- 
ous-time Markov chain; its state diagram is shown in Fig. 
1 .  The system is assumed to be in steady state, and 
retransmissions are included in the packet generation 
process. 

It is easy to see that the steady-state distribution for the 
network state is Poisson with mean p [ l o ] .  Assume that 
the network is in steady state at t = 0-, just before the 
initiation of the tagged packet. Since the tagged packet is 
initiated at t = 0, the system state at t = 0- determines 
the number of interfering transmissions present at the 
initiation of the tagged packet. Thus the random variable 
N ( O + )  is also Poisson with mean p ,  since the network is 
assumed to be in steady state at t = 0. 

For any event E,  let P ( E l k )  denote the conditional 
probability E given that N(O+ ) = k .  We find the probabil- 
ities P ( A , l k )  and P(B, lk)  for A,  = { N *  2;) and B, = 

{ N *  I J } .  The computation of these conditional probabili- 
ties involves tracing the evolution of the tagged packet 
using an auxiliary Markov chain. This approach is based 
on the technique in [3]. In addition to the states corre- 
sponding to the number of interfering transmissions, there 
are two absorbing states [4]. One is the END state, which 
corresponds to the completion of the tagged packet. The 
other is the state A,  or B,, respectively, depending on 
which of the probabilities P ( A , )  or P(B,) we are trying to 
compute. These auxiliary Markov chains are shown in 
Figs. 2 and 3. 

For both auxiliary Markov chains, there are two possi- 
bilities for a transition from one nonabsorbing state to 
another. One is a packet arrival, and the other is the 
departure of some packet other than the tagged packet. 
Given that the (nonabsorbing) state k is the initial state, 
the (conditional) probabilities for these transitions, de- 

Fig. 2. Auxiliary Markov chain for N *  

Fig. 3. Auxiliary Markov chain for N ,  

noted, respectively, by P J A )  and f , ( D ) ,  are given by 

P 
k + 1 +  p 

=- (3.la) 
A 

( k  + 1 ) p  + A P , ( A )  = 

k 
=- (3.lb) 

kF 
( k  + l ) p +  A k + l + p .  P J D )  = 

It is worth noting that the foregoing probabilities do not 
sum to one because there is a nonzero probability of a 
transition to the absorbing state END, which corresponds 
to the departure of the tagged packet. 

The memoryless property of the exponential distribu- 
tion can be exploited to write recursive relations for 
P ( A , l k )  and P(B,lk) ,  where j is fixed and the recursion is 
on k .  Thus, if there is a transition from state k to state 
( k  + 11, the situation after the transition is exactly the 
same as if the initial state were N(Of ) = k + 1 .  A similar 
result holds if there is a transition from state k to state 
( k  - 1 ) .  This leads to the following recursive relations. 
The relations for P ( A , ( k )  assume that j 2 1 ,  but the final 
expression 
for P ( A , )  is consistent with the trivial observation that 

P(A,lO) = 4 , ( 4 P ( A , I l ) ,  k = 0, (3.2a) 

P ( A ( , )  = P ( N *  2 0) = 1 :  

P(A,lk) = & ( A ) P ( A , l k  + I ) +  P , ( D ) P ( A , l k  - I ) ,  
1 I k I j - 1 ,  (3.2b) 

P ( A , ( k ) = l ,  k 2 j ,  ( 3 . 2 ~ )  

P ( B , l k ) = l ,  k s j ,  (3.3a) 

k 2 j + l .  (3.3b) 

and 

W l k )  = M A ) P ( B , l k  + I ) +  P , ( D ) P ( B , l k  - I ) ,  
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Note that P ( A , l k ) =  P ( N *  2 j l k ) =  1 for k 2 j ,  because 
N(O+) = k implies that N* 2 N(O+ ) 2 J ,  and P ( B , ) k )  = 

P ( N ,  I j l k )  = 1 for k I j ,  because N(O+) = k implies that 
N, I M O + ) <  j .  

The auxiliary Markov chain for N* was previously 
introduced in [ 161, and a formulation equivalent to (3.2) is 
given there, in a somewhat different context. However, no 
explicit analytical formula for P ( A , )  in terms of j ,  p ,  f,, 

need such a formula, as well as a corresponding expres- 
sion for P(B,). Thus it is necessary to solve (3.2) and (3.3) 
explicitly, and subsequently remove the conditioning on k .  
To this end we introduce some notational simplification. 
In particular, because j is fixed, the dependence on j is 
suppressed. 

Define x, = P ( A , l k )  and y ,  = P(B,lk) .  Both (x,) and 

and 

F , ( j )  = q , ( I ) + f , ( j )  . (3.9) 

The corresponding probability mass functions are 

and F, is given in [ 161. For our asymptotic results we do f * ( j )  = f ~ ( j )  

and 

( y , )  satisfy second-order difference equations. Using (3.1) f *  ( j )  = f , ( j )  
and (3.2), we obtain 

( k  + 1 + p ) x ,  = p x k + ,  + kx,-,, 0 I k I j - 1 .  (3.4) 
The equation for k = 0 has been put in the same form as 
the others by assuming x - ,  = 0. Thus (3.4) can be solved 
for {x , ,O  I k I j - l}, using the conditions x _  I = 0, x j  = 1. 
We also have x, = 1 for all k > j .  

For {y,, k 2 j + 1 )  we obtain from (3 .1)  and (3.3) that 

One boundary condition is y j  = 1. The other is lim, _ r  y ,  
= 0. This is proven in Appendix I by considering the 
interpretation of y ,  in terms of N,. Further, y ,  = 1 for 
all k < j .  

The sequences (x,) and ( y , )  can be solved for com- 
pletely given the foregoing information. The following 
results are derived in Appendix I: 

( k  + 1 + p l y k  = py,+ I + k y k - , ,  k 2 j + 1. (3.5) 

x,=1, k > J ,  (3.6b) 

and 

Thus, 
y k = l ,  k r j .  (3.7b) 

m m 

P ( A j ) =  P ( A , l k ) P ( N ( O + )  = k )  = x k f p ( k ) .  
k = O  k = O  

Similarly, 
m 

P ( B j )  = C ~ , f p ( k ) *  
k = O  

Now, F * ( j ) = l -  P ( N * 2 j + 1 ) = 1 - P ( A J + , ) a n d  F , ( j )  
= P ( N ,  I j )  = P ( B j ) .  

Using this, we can readily obtain expressions for the 
distribution functions of N* and N, , which are 

(3.8) 

The results for the distributions of N* and N, are 
used to derive the asymptotic results of the next section, 
where we examine the system performance for both high 
traffic levels and large code block lengths. These results 
can be expressed in a general framework encompassing 
both fixed- and variable-length packets and both slotted 
and unslotted transmission, since they have the same 
form for all the cases considered. 

IV. GENERAL RESULTS 

We will examine the behavior of the system as the 
offered traffic p and the code block length n become 
large. As p +m, the multiple-access capability of the 
system must be increased to compensate for the increase 
in traffic level; otherwise, the trivial result that PE + 1 is 
obtained. Hence the ratio p / q  is fixed to be a positive 
constant t ,  so that q = p / t .  Let lim, denote the limit as 
p -+CC with p / q  = t held constant. 

The expressions for P i ,  P i ,  and P k  are each of the 
form 

cc 

Q =  c P k ( j ) g ( i )  (4.1) 
J = 0 

where g is the appropriate probability mass function (i.e., 
g is f,, f * ,  or f, 1. Let g(x )  = 0 if x is not an integer, and 
denote the corresponding distribution function by G. 

Substituting for P J j )  in (4.1) yields 

Q = 

= n  (7) [ 1 - ( 1 - P,,)J] '( 1 - P/,)](n- ' )g(  j )  . 
j = O r = e + I  

An expansion of [ 1 - ( 1  - PI, )'I' gives 

Q = 5 2 (7) (I)( - I ) ' (  1 -  P / 7 ) ' ( ' r p ' + / )  s C j ) .  
j = 0 1 = e + 1  / = o  
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Now, interchanging the order of summations, we have transmission [ll].  Denote this limiting value by P, .  Then 

P, = limp: = limp: = limp,' 
Q = 2 (1) (;)( - 1)'  5 ( 1  - P/ l ) ' ( ' l - l+ ' )  dJ). P I' I' 

i = e + l  I = O  J = 0 

= (7 ) ( I -  e - c f ) l ( e - c t ) n - l .  (4.5) 
1 = e + l  

(4.2) 

In the foregoing g depends on p In  (4.2) Only the 
innermost summation depends on p. Thus we need to 
consider only the limit of this summation as p --)CO. 

Define p = (1  - ph)n-'+', where the dependence on i 

Ph = cq-' + O ( q - 2 ) .  Since p / q  = t ,  we have PIl = ctp- '  

proof: Assume, for the moment, that (4.4) is true. 

P,  = l i m e  = 2 ( 1) 
From (4.2), we have 

I .  
(;)( - l ) 'e -c t (n- l+ ' )  

and I is suppressed for notational convenience. Now, P 1 = e + l  / = o  

+ O ( p P 2 ) .  Note that Pb + 0 as p +CO,  so that p + 1 
(from (4.3)) as p -+W. Also, pP/l = ct + O ( p - ' ) ,  so that 

= (1 ) ( e - c t ) t I - l ( l -  e-")' 
r = e + l  

pPh -+ct as p + w .  Hence p(1-p)- ct(n - i + f )  as since 
p +CO, since 

/ 
p( 1 - p )  = p [  1 - ( 1  - P / l ) t , - l + q  (;)( - 1)'( e - c t )  = (1 - e - c y .  

I = 0 

= pPJ n - i + I )  [ 1 + O( P,,)] . 
Thus, in evaluating the limits of the innermost summa- 
tion, we take p +CO, p + 1, with 

c t (n  - i + I) 
p=1-  + o ( p ) ,  p + w .  (4.3) 

P 

The proof of the following lemma is given in Appen- 

Lemma 1: l imp+= G ( a p )  = 1 for a > 1 and 

We note for future use that this implies that 
g(lap1) = 0, where 1x1 denotes the integer part of 

the real number x. 
In these results, g can be f,, f*, or f, and the packets 

can be of either fixed or variable length. In fact, all the 
results in this section are this general. So, roughly speak- 
ing, Lemma 1 tells us that, for large values of the offered 
traffic p ,  the interference level over the duration of a 
packet is approximately equal to p for both slotted and 
unslotted systems. It is seen in the following that this is 
the key to proving that the asymptotic performance of 
these systems is the same in terms of both probability of 
error and normalized throughput. 

dix 11. 

limp ~~ G ( a p )  = 0 for 0 I a < 1. 

For a slotted network [ll], 
m 

lim P / f , ( j )  = e - c t ( n - r + o  

p j = o  

Using (4.3) and Lemma 1, we will prove the more general 
result 

CC. 

This gives the expression for the limit in all the cases 
considered. It remains to prove (4.4). Let a < 1 < b. 

2; [ h p l  

J = 0 Lupl+ I 
C P ' g ( j )  2 C P ' g ( j )  2 phKJ[G(bp)  - G ( a p ) l ,  

(4.6) 

where we have used the fact that 0 s p I 1 .  Similarly, 
r 

C P's( j )  5 G ( w )  + P a p P 1 [ G ( b )  - G(ap)l  
J = 0 

+ (1  - G (  b p ) ) .  (4.7) 
From (4.3), limp p = 1 and limp pp = . From 
Lemma 1 ,  G(ap)  + 0 and G(bp) -+ 1. Taking limits in 
(4.6) and (4.71, therefore, we obtain 

m 

e - hct( n P I  + / )  - < lim p ~ g ( j )  e - a c t O l - ~ + ' )  

f' J - 0 

where a < 1 and b > 1 are arbitrary. Letting a + 1 from 
below, and b + 1 from above, we obtain the desired result 

0 

It is seen from (4.5) that the effective symbol erasure 
probability for high traffic levels is (1  - which has 
an interesting interpretation. Even for unslotted systems, 
it is a good approximation to assume that the interference 
level remains constant over the duration of a single sym- 
bol. However, the interference level at any given time is 
governed by a Poisson distribution with mean p. The 
average symbol erasure probability is thus given by 

(4.4). This completes the proof of Theorem 1 .  

cc 

(4.4) E =  c [ 1 - ( 1 - P / J J ] f J ~ ) .  
lim P l g ( j )  = e - c t ( n - l + / )  

P J = o  
J = 0 

The first of our main asymptotic results can now be stated 
as follows. 

However, PJl = c4-I + O ( q - 2 ) =  ctp-' + O ( P - ~ ) ,  which 
yields limo ~~ E = 1 - e-" . Hence the average symbol era- 

Theorem 1: For unslotted transmission of either fixed- 
or variable-length packets, the upper and lower bounds 
on the probability of error converge, as the normalized 
traffic level increases, to the same value as for the slotted 

sure probability is the effective erasure probability for 
high traffic levels. This is consistent with our earlier 
interpretation that the interference level is approximately 
constant at p over the duration of a packet. 
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TABLE I 
PERFVRMANCE OF SLOTTED AND UNSLVTTED SYSTEMS FOR 

FINITE O F F E R E D  TRAFFIC; '  

Fixed-length packets Variable-length packets 

~ 

150 7.70E-3 3.05E-3 1.51E-2 4.03E-3 1.37E-2 
300 6.88E-3 3.56E-3 1.16E-2 4.25E-3 1.07E-2 
450 6.61E-3 3.87E-3 1.03E-2 4.43E-3 9.578-3 
600 6.47E - 3 4.08E - 3 9.58E - 3 4.57E- 3 8.97E - 3 

~ 

" t  = p / q  = 0.3, asymptotic value P I  = 6.08E -3 .  

Since the asymptotic results are the main focus of this 
paper, we will restrict ourselves to the following general 
observations about the numerical results for finite values 
of the offered traffic p. For a (32,12) RS code, the 
convergence of the bounds on PE to the asymptotic value 
P I  (see Theorem 1) is rather slow, for both fixed- and 
variable-length packets. For a given p, the percentage 
error from P I  decreases with the parameter t. For t in 
the 0.1-0.5 range, the bounds are within an order of 
magnitude of P I  for p > 150, so that P I  is a good mea- 
sure of the performance of the system for reasonably 
large values of the offered traffic. The error probability 
PE" for the slotted system converges faster to P I  and lies 
between the bounds for the unslotted system. In all the 
cases considered the lower bound PE" is, for a given p ,  
closer to both P I  and PE" than the upper bound PE". 
Some typical results for both slotted and unslotted sys- 
tems are shown in Table I. For unslotted systems with 
p = 600, the upper and lower bounds (for both fixed- and 
variable-length packets) differ by approximately a factor 
of two and therefore yield a fairly good estimate of the 
system performance. We also conjecture that the perfor- 
mance of the slotted system is a good approximation for 
that of the unslotted system for large p. 

In the following the block codes used are ( n , k )  
Reed-Solomon codes [2], which have the property that 
e = n -  k .  The code rate is r = k / n .  We examine the 
system performance as n + m  with r fixed, and we denote 
the corresponding limit by limn. We will use a result from 
[8] which is rephrased in the following. 

Fact I: For r, p E [0,1], and n a positive integer, 

r < l - p  

iy : r > l - p .  
lim 5 ( ; ) p ' ( l - p ) " - ' =  0.5,  r = l - p  

Although the proof is not provided in [8], the result can 
be shown easily by using standard tools such as the 
Chebyshev inequality and the central limit theorem. 

For a Reed-Solomon code, it follows from (4.5) and 
Fact 1 that the limit P I ,  is 

r = n ( l - r ) + l  

In fact, P I ,  = 0.5 for r = e-'', but this is of no conse- 
quence for the results of interest. 

The same result is obtained if we interchange the order 
of the limits involved in evaluating PI,. To show this, 

consider the expressions for P;, PF, and P k ,  and let 
n + m  with k / n  = r kept fixed. 

From (2.1 ), we have 

with p, = 1 - (1-  PI,)'. Using Fact 1 ,  we easily see that 

r < ( 1  - PIl)' 

r = (1  - PIl)' (4.9) 

r > ( 1 - P I l ) ' .  

We have 0 I PE( j )  I 1 for all j ,  so that 0 I P E ( j ) g ( j )  I 
g ( j )  for all j .  Also, Z;=(,g(j)= 1 <CO, and g is indepen- 
dent of the code used. Hence the dominated convergence 
theorem [15] guarantees that 

3j 

l imQ= g ( j ) l i m P E ( j ) .  
j = o  n 

Using (4.9), we have 

I imQ=OSg(  In r ) + I - - . (  In r ) .  
In(1- Ph) In(1- Ph) 

(4.10) 

Thus the value of the limit need not be the same for all 
the cases under consideration. However, if we now let 
p -+m with p / q  = t ,  the result is, in all cases, identical. 
This is shown in the following. Substituting for q in the 
expression for PI,, we obtain Ph = ctp- I  + O ( p - , ) ,  which 
implies 

In ( 1 - p I I )  = In (1 - ctp- I  + U (  p - , ) )  = ctp- I + O( p - 2 ) .  

It follows that 

In r a p  - - 
In r 

- - 
ln(1-  P h )  c t p - l + O ( p - 2 )  1 + 0 ( p - 1 )  

where 
I n ( l / r )  In ( I / r )  

a=-- -- 
ct h e "  . 

Thus a > 1 for r < e-'', and a < 1 for r > Ccr. An appli- 
cation of Lemma 1 to (4.10) yields 

r < e-"' 
P n  r > e-"', 

which is exactly the same result as in (4.8). Hence, using 
the Reed-Solomon coded FH system under considera- 
tion, r" = ePC' is the highest rate at which we can commu- 
nicate under high traffic levels while achieving arbitrarily 
small error probabilities. This result holds for both fixed- 
and variable-length packets. 

Let us now define another performance measure, the 
normalized throughput. We have to be careful here, since 
our analysis considers codeword error probabilities rather 
than packet error probabilities. If a packet contains more 
than one codeword, it is said to be divided into frames, 

lim l i m e  = ( y ;  
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with one codeword per frame [ l l ] .  The throughput is rate of packets in the network, since 
defined as the expected number of successful frames per 
frame interval, for both fixed- and variable-length pack- 
ets. This is multiplied by the rate of the code and divided 
by the number of frequency slots to yield the normalized 
throughput. As before, the network is assumed to be in 
steady state. 

Assume, for simplicity, that each frame is of unit length. 
Thus the length T of a packet is equal to the number of 
frames it contains. This highlights a problem with the 
exponential distribution as a model for packet lengths, 
since, with probability one, the packet length is not an 
integer. However, we persist with this model for variable- 
length packets for analytical tractability. A packet is said 
to be successful if all the codewords it contains are 
decoded correctly, and the probability of success for a 
packet is denoted by Ps. The probability that a given 
codeword is decoded correctly is denoted by Pc., where 
Pc = 1 - PE. The completion of a packet transmission is 
said to be a departure. Let X ( t )  be the number of 
successful departures in the interval [ O , t l .  Let Y ( t )  be the 
throughput due to these packets; that is, 

I =  I 

where T, is the length of the ith successful departure. 
Since the system is in steady state, Y ( t )  has stationary 

E{ Y (  t ) )  = P (  1 departure in [ O , t ] ) s  + o( t )  

= Ate-"s + u( t ) ,  

as t - 0, so that, from (4.12), 

v = A S .  (4.13) 
This formula holds for both fixed- and variable-length 
packets. As before, we are interested in asymptotic results 
for large traffic levels and large code block lengths. We 
already have asymptotic results for the codeword error 
probability PL.  For fixed-length packets with a single 
codeword in each packet, we have s = Pc, which yields 
the formula 

rA rA 

4 4 
S = - P ,  = - ( l - P L ) .  (4.14) 

In this special case it is easy to see that the asymptotic 
results for Pt give rise to corresponding results for the 
normalized throughput S. Another point to note in this 
case is that the normalized throughput can also be ob- 
tained by computing the throughput per slot. If a slot 
contains j packets, each packet sees ( j - 1 )  interfering 
packets, so that, removing the conditioning on the num- 
ber of packets, we have 

cc 

s = ( r / d  Z j f p ( j ) p c ( j - l )  (4.15) 
/ = I  

which we may readily reduce to (4.14) by using the as- 
sumption of Poisson traffic. Specifically, we use jfp( j )  = 

pf,( j - 11, and note that Pc- = E7=,Jp( j>P,( j) .  For unslot- 

increments, so that 

E{ Y (  t + s ) )  = E{ Y (  t ) }  + E{ Y (  s)) , t 2 0, s 2 0. 

The Only measurable to this equation is Li3i 
E[o,ool' The 

ted systems a slotwise computation of throughput along 
the lines of (4.15) clearly is impossible, because the num- "9 " o, for Some 

ber of packets being transmitted need not remain con- 
stant over any given interval of time. From (4.11) and 

throughput can then be defined as 

s = w / q  (4.11) 
(4.13), we have S = r A s / q  as our definition of normalized 
throughput, which generalizes the expression in (4.14). 
The reason that (4.14) does not apply directly is that, in 
general, a packet may consist of more than one codeword. 

where we have normalized with respect to both time and 
bandwidth. 

To compute v, we use 
I 

Thus, as we shall see in the following, it is necessary to be 
more careful in deriving results for the normalized (4.12) 

E{ Y (  t ) }  
v =  lim -. 

r - 1 1  t 

The arrival process in the network is Poisson with rate A .  
The network can be viewed as an M / D / w  queue for 
fixed-length packets and as an M / M / m  queue for vari- 
able-length packets. In either case, in steady state, the 
departure process is also Poisson with the same rate A .  
The contribution to E{Y( t )}  due to more than one depar- 
ture occurring in the interval [ O , t ]  is therefore bounded 
by 

cc ( W k  
kE{ T )  T e - "  = A t (  1 - e-")E{  T )  = o( t ) ,  

k = 2  

t - 0  
For computing v using (4.121, therefore, it suffices to 
consider the event in which there is only one departure in 
[0, t]. This corresponds to computing the throughput s 
due to a typical packet and multiplying it by the arrival 

throughput from the results already obtained for the 
codeword error probability. 

For fixed-length packets it is assumed that every packet 
contains m codewords, where m is a positive integer. 
Thus the offered traffic is 

p =  AT= Am. (4.16) 
We will use lim, to denote limits as p -w with m fixed 
and q = p / t .  For variable-length packets, the packet 
lengths are exponentially distributed with mean l / p ,  
which is also equal to the average number of codewords 
in a packet. The offered traffic is 

p = A E { T )  = A / P  (4.17) 
and limp denotes limits as p-cc with l /p  fixed and 
q = p / t .  As before, lim,l denotes limits as II with the 
rate fixed at r .  We then have the following asymptotic 
result . 
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Theorem 2: For unslotted transmission of either fixed- 
length or variable-length packets, the normalized 
throughput S converges, for large offered traffic and large 
code blocklengths, as follows: 

r < e-" lim limS = lim limS = 
P n  n p  

Proofi For fixed-length packets the probability of 
success Ps for a typical packet is bounded from above by 
the probability of correct decoding Pc for a typical code- 
word; that is, Ps _< Pc. A packet is unsuccessful when at 
least one of its codewords is decoded incorrectly, and the 
probability of this event can be bounded from above using 
a union bound as follows: 1 - P,* 5 m(1- Pc). This yields 
upper and lower bounds on Ps in terms of Pc. We have 
s = mP,, so that, from (4.13) and (4.16), we have v = pP,. 
Thus the normalized throughput is given by S = r p P , / q .  
The bounds on P.r lead to corresponding bounds on S, 
with upper bound Su = r p P c / q  and lower bound S L  = 

r p [ l -  m(1- P , ) ] / q .  We know that, for large p and n,  if 
r <e-"', then P c + l .  In this case both Su and SL con- 
verge to the same limit, namely rt. Hence this is also the 
limiting value of S. If r > e-", then Pc + O .  Here we 
have Su+ 0, and S L  + rt(1- m) I 0. Since S 2 0, this 
implies that S + 0. This proves Theorem 2 for fixed-length 
packets. 

For variable-length packets, the throughput due to a 
typical packet is given by 

.a 

s = /o r P S l s p e e p 7 d r  

where PSI,  denotes the conditional probability of success 
for a packet of length r.  Using (4.111, (4.131, and (4.171, 
the following expression is obtained for the normalized 
throughput: 

n .CC 

We can bound PSI,  using Pel,, the conditional probability 
of correct decoding for a codeword contained in a packet 
of length r .  For r _< 1 we assume that the (conditional) 
probability of success for the packet is equal to the 
(conditional) probability of correct decoding for a single 
codeword. For r 2 1 we proceed as we did for fixed-length 
packets to develop bounds on PSI, .  Thus we have PSI,  = 
PCI, ,  r I 1, and 1 - r(1- Pel,) I PSI ,  I PclT,  r 2 1. This 
yields upper and lower bounds S u  and S L  on S as 
follows: 

Su = r -  1 p r P c l , p e ~ p i d r  (4.18) P "  

9 0 
and 

P "  

9 1  
+ r - 1  p r [ l - r ( l -  P c , T ) ] p e - p T d r  (4.19) 

To prove our asymptotic result, we need the following 
strengthened form of Lemma 1: 

lim F*( u p l r )  = lirn F ,  ( a p l r )  = 
a > l  

P + S  P + m  

(4.20) 

We prove this for the conditional distribution of N * .  The 
result for N ,  follows in a similar fashion. The maximum 
interference level over the duration of a packet clearly is 
stochastically increasing with the packet length r ;  that is, 
for any real x ,  F * ( x ~ T )  is nonincreasing in r.  Also, 

F*(  up17 = 0) = F (  u p ) ,  (4.21) 

since the interference level at the beginning of a packet 
has a Poisson distribution with mean p. Removing the 
conditioning on the packet length, we have 

F*(  u p )  = lmF*( aplr)pe-'" 'dt.  (4.22) 

We know from Lemma 1 that limp+,m F * ( a p )  = 

l imp+= H a p ) .  The monotonicity of F*(xIr )  in r ,  to- 
gether with (4.21) and (4.22) now yield the desired result 
(4.20). 

Given (4.20), we can show, as in our earlier asymptotic 
results, that 

0 

r < e-" =(;; r >  e-". 
lim lim Pc,, = lirn lirn PcI, 

P n  n p  

This can now be used to evaluate the limiting value of the 
normalized throughput. The integrands in the expressions 
(4.18) and (4.19) for Su and S L  are dominated by inte- 
grable functions of r that are independent of p and n,  
since PcI, I 1, and 11 - r(1- Pc17)J I 1 + r. The dominated 
convergence theorem [15] can now be applied to conclude 
that, for r < e - c r ,  

lim limSU= lirn l imSU= r t imprpe -"d r  = rt. 

Similarly, limp limn S L  = limn limp S L  = rt. For r > CC', 
we have limp limn S u  = limn limp Su = 0, and 

P n  " P  

l iml imSL= l i m l i m S L = r t  p r [ l - r ] p e e p T d r < O .  

Because S 2 0, the foregoing imply the desired result for 
the limiting value of S .  This concludes the proof of 
Theorem 2. 0 

Let the limiting value of S in Theorem 2 be denoted by 

~n n P  Am 

S'(r, t ) ,  and let S* = supr,' STr, t) .  Then 

/ c ,  S* = maxte-" = e - '  
f 2 0 

Note that S* is attained using codes with rates approach- 
ing e - '  (since t = l / c  is the maximizing argument in 
these equations). For slotted systems with static traffic 
conditions, it is shown in [8] that the asymptotic optimal 
code rate is a good approximation for finite block lengths 



330 IEEE TRANSAC'TIONS O N  INFOKMATION T H E O R Y ,  Vol . .  36, NO. 2, MAKC'If 1990 

as well. We believe that this holds for the kinds of systems 
considered here, but will not pursue this matter further in 
this paper. 

For random hopping using memoryless frequency-hop 
patterns, we have c = 2 [6], [ l l] .  In this case S* = e- ' /2,  
which is the normalized asymptotic sum capacity of the 
channel [7]. Note that this is also the capacity of an 
unslotted Aloha channel. Moreover, if it is assumed that 
the dwell intervals are aligned, then c = 1, so that S* = 

e - ' ,  the capacity of a slotted Aloha channel. However, if 
the frequency hopping is asynchronous, it does not make 
any difference whether slotted or unslotted transmissions 
are employed: the maximum throughput is e - ' / 2  in ei- 
ther case. 

We must note that it is not entirely correct to have 
evaluated the limp and limn sequentially, as we have 
done. Actually, as the code block length increases, so 
should the packet lengths, if the number of codewords 
per packet (or its expected value, in the case of variable- 
length packets) is to remain constant. Our attempt to 
frame the problem so as to take this into account has led 
to analytical intractability. For instance, for fixed-length 
packets, we could try to relate p and n more realistically 
as follows. Consider each packet to have length T and 
correspond to a single codeword of block length n .  We 
assume a constant symbol rate of r,  symbols per second 
over the channel, so that T = n / r , y .  We fix A,  the packet 
arrival rate in the network, and let p = AT as before. 

manner in which p and n approach infinity. This restricts 
the statements we can make about the achievability of 
throughputs that are arbitrarily close to the asymptotic 
maximum possible throughput and also does not account 
for the fact that p and n often cannot go to infinity 
independently, as discussed at the end of Section IV. 

In conclusion, we note that the technique of analysis 
used here can be applied to incorporate the effects of 
thermal noise, fading, and imperfect side information [6], 
[13]. Finite population models with queuing at the termi- 
nals can also be analyzed using the idea of maximum and 
minimum interference levels [9]. 

APPENDIX I 

We supply the details of the derivation of the distributions of 
N *  and N ,  for variable-length packets in this appendix. The 
notation used here is the same as in Section 111. 

For a given j ,  it is required to solve (3.4) and (3.5) subject to 
x- I = 0, x, = 1, y ,  = 1, and lim, _ z  y ,  = 0. The proof of the last 
boundary condition is as follows. Recall that yk = P ( N ,  I j l k )  
and N ,  = min{N(t),t E [O,T]). According to our conditioning, 
N(0' ) = k .  Let { N - ( t ) ,  t E [O, TI )  be the pure death process 
representing the number of the k original packets that have not 
ended by the time t .  Clearly, N - ( t )  I N ( t )  for ali f ,  so that 

P min N ( t )  I i l k )  I P (  min N _ ( t )  I j l k ) .  
(0 5 , s  T O s t s T  

However, min,,s,s,N-(t)= N - ( T ) ,  since N - ( t )  is nonin- 
creasing. Thus 

Then p = A n / r , ,  and we can let n + m  and p + m  in a 
physically meaningful way. Of course, we also let p / q  = t ,  
and keep t fixed as p +m. The asymptotic analysis that 

yk = P (  N ,  I j ( k )  I P (  N -  ( T )  I j l k ) .  

Since the departure process for packets is Poisson, 
(A . l )  

must be carried out in this case seems to be difficult 
because of the coupling of these variables. We leave it, 
therefore, as an open problem. 

( p t ) k - '  P( N -  ( t )  = i l k )  = -----e-@', 0 I i I k ,  
( k - i ) !  

so that 

V. CONCLUSION 

The asymptotic performance of slotted and unslotted 
systems is seen to be identical for high traffic levels. 
Although our model is idealized, this does indicate that 
frequency hopping reduces the effect of fluctuations in 
the multiple-access interference due to a lack of slotting 
in the network. Our results also indicate that the perfor- 
mance of frequency-hop multiple-access is relatively in- 
sensitive to the distribution of packet lengths, since all 
our asymptotic results hold for both fixed and exponen- 
tially distributed packet lengths. We have also shown that 
the asymptotic sum capacity of the FH channel can be 
attained using Reed-Solomon coding. Two qualifications 
must be made regarding this result, however. Although 
the asymptotic efficacy of Reed-Solomon codes has been 
demonstrated both by our results and by earlier work [8], 
it must be noted that the size of the alphabet for the code 
symbols increases as the block length increases. This must 
be kept in mind in interpreting these asymptotic results as 
an argument in favor of using Reed-Solomon codes in 
practical systems. Secondly, our results for large block 
lengths and high traffic levels are not independent of the 

X J  

P(  N -  ( T )  I j l k )  = \ P (  N -  ( t )  = i lk )pe- '* 'd t  

1 
= - ( 2 ' + '  - 1) + 0 as k + W .  2kfl 

Using (A.11, it follows that limk _ z  yk = 0 for each j ,  which is 
the required result. 

Next consider (3.4) over the range 0 I k I i ,  for i I j - 1. By 
summing each side of these ( i  + 1) equations, it is found that the 
terms telescope to yield 

( i  + l ) x ,  + px,,  = 0 I i I j -  1. 
For further telescoping, the ( i  + 1)th equation is multiplied by sf, 
and the equations from i = 0 to i = k are added. For telescoping 
to occur, we must have ( i  + 113, = ps,- I. Choosing so = 1 results 
in 

P' 

( i + I ) ! '  
s, = ___ O s i s j - 1 .  
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Thus, on adding the equations using the foregoing choice of 
multipliers, we obtain 

k 

S o X o + p X o  C S ; = S k P X k + l ,  O S k S j - 1 ,  
i = o  

so that, using (A.2), 

Replacing ( k  + 1 )  by k and using the notation established in 
Section 111, we obtain f p ( k ) x k  = F'(k)xO, 1s k I j .  However, 
xJ = 1 ,  so that x0 = f,,( j ) / F  ( '), which yields (3.6a). 

Now consider (3.5). Adding the first ( i  - j )  equations, from 
k = j + 1 to k = i, it is seen that here, too, the terms telescope to 
yield 

4 

( i + l ) y ,  + P Y , + ~  = P Y , + ,  + ( j +  l ) ~ , ,  i 2 j +  1. 

Substituting y, = 1 ,  

( ~ + l ) y , + ~ y , + l = ~ y , + l + j + ~ ~  i 2 j  

where the additional equation for i = j is a trivial equality. As 
before, further telescoping is achieved by multiplying the equa- 
tions by different weights and adding. Let rl be the weight for 
the ( i  - j +  0th  equation. For telescoping to occur, we need 
( i  + l ) r l  = pr, - for i 2 j + 1. Taking rJ = 1, we have 

Thus, adding the ( k  - j + 1) weighted equations from i = j to 
i = k yields 

k 2 j .  

Substituting from (A.31, and putting yJ = 1, 

Replacing ( k  + 1 )  by k ,  and using our familiar notation, 

(A.4) 

Now let k +m to obtain (using the boundary condition that 
yk -3 01, 

so that p - ' ( j + l ) - ~ , + ~  = f p ( j ) / [ l - F P ( j ) ] .  Substituting this in 
(A.4) produces 

which simplifies to (3.7a). 
This completes the solution to the second difference equa- 

tion. From these results the distributions of N *  and N ,  can be 
derived by removing the conditioning, as outlined in Section 111. 

APPENDIX I 1  

We now prove Lemma I ,  which is the key result used in 
deriving the asymptotic results of Section IV. The earlier nota- 
tion is preserved, except that we drop the subscripts on &, 
and F,,. 

Consider a 2 0, a # 1, and let X be a Poisson random vari- 
able with mean p.  Then it is a standard result that E { X )  = p 
and a* = var(X) = E { ( X  - E { X ) ) * )  = p.  From the Chebyshev 
inequality, 

P [ I X - p l > K f i ]  < l / K 2 .  

For a > 1 ,  

1- F ( a p )  = P [ X -  p > ( a  - l ) p ]  I P [ I X -  pi > ( a  - l ) p ]  

1 
- <- - 0  as p + m .  

( a  - 

Thus limp+= F ( a p )  = 1 for a > 1 .  Proceeding in similar fashion 
for 0 I a < 1 ,  we obtain 

This proves Lemma 1 for F .  In what follows it is proven for F* 
and F,, both for fixed- and variable-length packets. We will 
need the following facts. 

Fact B.1: For any a 2 0, define h ( a )  = a In(a)+ 1 - a. Then 
h ( a )  > 0 if and only if a # 1, and 

f(l.Pl> sexP( -  Ph(a)[1+41)11> P + W ,  

that is, if a # 1 ,  then f(Lap1) -3 0 exponentially as p --$ W. 

Fact B.2: limP,,C;=of2(j)=0. 
Fact B.3: limp+% C y = ( , f ( j ) F ( j ) =  limP+,C~=of(j)[l- F ( j ) ]  

Fact B.l is proven first. We note that h is convex and 
nonnegative over its domain of definition and has a unique 
global minimum at a = 1 .  Since h ( l )  = 0, we have h ( a )  > 0 for 
a 2 0, a # 1 .  Now, 

= 1/2. 

By Stirling's formula, n!  2 n"e-", n = 0,1,2,. . . , so that 

Taking logarithms and dividing by p,  we obtain 

Because the limit (as p + m) of the upper bound is a ln(a-')+ 
U - 1 = - M a ) ,  we see that p - '  Inf(1apJ) I - h ( a ) +  o(1) for 
large p, which yields the desired result. 

To prove Fact B.2, we express the quantities of interest in 
terms of the zeroth-order modified Bessel function of the first 
kind [ l ]  and use the asymptotic properties of the latter: 

X p2J 

J = 0 J = o i ! j !  
f 2 (  j )  = & * P  - = e-2 pZo ( 2p) -30 as p + m .  

For the proof of Fact B.3, note that 
X cc z 

C f ( j ) F ( j )  + C f ( i ) [ l -  F ( j ) l =  C f ( 1 )  = 1 .  (B.2) 
J ~ 0 J = 0 J = 0 



IEEE TRANSACTIONS ON INFORMATION T I I E O R Y .  VOL.. 36, NO. 2, MARCH 1990 332 

Also, 

2 f ( i ) F ( j )  = 5 f ( i )  i f ( k )  = f f ( k )  f f ( i )  
J = 0 j = O  k = O  k = O  j = k  

= f f (k ) [ l -  F ( k ) l +  f f 2 ( k ) .  
k = 0 k = 0 

Taking limits as p -+m on both sides, we get the desired result 
by using Fact B.2 and (B.2). 

We now prove Lemma 1 for fixed-length packets. From [ 111, 

Fact B.3 implies that 
CE 

2 f ( k ) F ( k ) + l  as p + m ,  
k = 0 

and using (B.l), we have 
Lapl 

2 f (k)F(k) r2F([ap l ) -+O as p + m .  

For a = 0, we have P ( N *  2 0 )  = 1 trivially. The foregoing results 
can be stated together as follows: 

k = 0 

j > k + l  

where k, I are independent and identically Poisson distributed 
(i.i.d. Poisson) with mean p. Removing the conditioning from 
this expression, k + l  k + l  - I  

the distribution of N , .  From [1 11, 

P(N*6jx.I)-j( J ) (  k ) ' oi j rmin(k ' l )  

where k,l are i.i.d. Poisson with mean p,  as before. Removing 

j 2 min (k,  1 )  1, 
k = J + l  I = O  k = j + l  

k + l  k + l  
+ i f (k ) f ( l ) (  ) (  ) - I  the conditioning, 

k = O l = ] - k  

/ = ] + I  k = j + l  

k = j + l  k = j + l  

+ 2  f: E f ( k ) f ( l ) +  f: f2(1). (B.4) 
I = O k = l + l  I = 0 

k = 0 I = I  - k Rewriting the first term, we have 

k = O  

Consider j = [up] ,  a f 1, a > 0, and note that 
m z 

f 2 ( k ) <  C f * ( k ) + O  as p - t m  
k = j + l  k = 0 

by Fact B.2, and that using Fact B.l, 
Lapl 

f (1ap l )  C F(k )  I ( l ap l+  l ) f ( l ap l )  
k = 0 

- <(Lapl+l)e-p""x'+U""+~ as p + m ,  

This takes care of the second and third terms in (B.3). For the 
first term, we use the bound 

X a 

2 c f ( k ) F ( k )  I 2 c f ( k )  = 2[1- F( lapl)I ,  
k = Lap]+ I k = Lapl+ I 

and use (B.1) to conclude that, for a > 1, 

I -F([ap])+O as p - + m  

For 0 < a < 1, 
Lapl 

2 f f ( k ) F ( k ) = 2  E f (k lF(k1-2  C f (k )F(k ) .  
k = Lapl+ I k = 0 k = 0 

I = j + l  k = j + l  

x m  m 

=f ( i )  C C f ( k + l + j ) = f ( j )  ( n - l ) f ( n + i )  

= f ( i )  C ( n - j - l ) f ( n )  

= f ( i )  C n f ( n ) - ( i + l ) f ( i )  C f(n). 

I = I  k = l  n = 2  
m 

n = j + 2  
a m 

n = J + 2  n = j + 2  

Put j = [ u p ] ,  a # 1, a 2 0, in the foregoing. By Fact B.l, 
X 

f( L a p ] )  nf( n )  I e - p h ( a x l  + " ( I ) )  p + O  as p + w ,  

n = l a p 1 + 2  

and 

( lap1 + l ) f ( l a P l )  t f(n) 
n = Lapl+2 

< (1 up 1 + 1) e -p'l('M1 + N I ) )  + 0 as p + 00. - 

Thus the first term in (B.4) tends to zero as p +m. We also 
have, by Fact B.2, that 

L0pI m 

f 2 ( I )  I f 2 ( r )  -+O as p - m ,  
I = 0 I = 0 

which takes care of the third term in (B.4). The second term in 
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(B.4) can be rewritten as 2E}0=4/f(I)[l- F(I ) ] .  For a > 1 ,  

Lapl CD 

I = O  I = 0 
2 c f(” F(I)1= 2 c f ( N 1 -  F(I)1 

-2 5 f ( N l - F ( [ ) l .  
I = Lapl+ I 

By Fact B.3, 
r 

2 f ( I ) [ l -  F(I)] - 1 as p + m ,  
l = O  

and using (B.11, 

2 5 f W [ l - W ) l  
I =  lapl+ 1 

m 

- < 2  f (1)=2[1-~( [ap] ) ]+O as p - m ,  
I = Lapl+ I 

so that 2E\5pdf(l)[l- F(I ) ]  -+ 1 as p -+m. For a < 1, 

2 C f ( 1 ) [ 1 - ~ ( 1 ) ] 1 2  C f ( I ) = 2 ~ ( L a p j ) + 0  as p-+m,  

using (B.O. Combining these results, we have 

lap1 Lapl 

I = O  I = O  

This completes the proof of Lemma 1 for fixed-length packets. 
For variable-length packets, we have from (3.8) that 

The magnitude of the second term is bounded according to 

For j = [up] ,  a 2 0, and a # 1, we have that the foregoing is 
overbounded by e -ph(aX1+’ ( ’ ) )p ( [ap l+  l ) - ’ ( [ a p ] +  1 + 2 p ) ,  which 
goes to zero as p +m using Fact B.l. Hence, using (B.11, 

In an entirely similar fashion, it can be shown that the second 
term here tends to zero as p -+m, so that 

lim F ,  ( u p )  = lim F ( a p )  = 
P +a? P -= 

O 1 a < l  
a > l .  

This completes the proof of Lemma 1 for variable-length pack- 
ets. 
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