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Abstract—We consider the problem of adapting very large Randomized weights ]
antenna arrays (e.g., with 1000 elements or more) for taskaush .
as beamforming and nulling, motivated by emerging applicabns [ Compressive ’
at very high carrier frequencies in the millimeter (mm) wave measurements
band and beyond, where the small wavelengths make it possil
to pack a very large number of antenna elements (e.g., reakzl l
as a printed circuit array) into nodes with compact form e M
factors. Conventional least squares techniques, which relon Spatial channel
access to baseband signals for individual array elements,od estimation
not apply. Hence the preferred approach is to perform radio ~ g
frequency (RF) beamsteering, with a single complex basebdn g l <
signal emerging from a receive array, or going into a transmi Weight computation
array. Further, we are interested in what can be achieved wi Quantgize d be;:nsteering
coarse-grained control of individual elements (e.g., fouphase, L )
or even binary phase, control). In this paper, we propose an
adaptation architecture matched to these hardware constriats. Optimized weights J

Our approach comprises the following two steps. The first st
is compressive estimationf a sparse spatial channel using a
small number of measurements, each using a different set of
randomized weights. However, unlike the standard compre$ge
sensing formulation, we are interested in estimating contiuous-
valued parameters such as the angles of arrivals of variousgths. ] ) )
The second step isquantized beamsteeringyhere weights for F'g'l.l: AVCh'FeCt“rfe hto adapt 'aage steerable arays dW'th'm.Cor.‘tm“
beamforming and nulling, supject to the constr.aint of sevee E))ﬁgxgdessngzg?;eetﬂr?gs\t;iﬁ:'T)%Iy';gﬁtr'opnh;’;gq a fewmdam projections,
guantization, are computed using the channel estimates fra the

first step. We provide promising preliminary results illustrating

the efficacy of this approach.

Estimation

Beamsteering

amplitude and phase at each element, and downconverted to

I. INTRODUCTION . .
obtain a single complex baseband waveform.

We begin with the following question: how does one effecA proach and Summary of Results: In this paper, we

tively adapt a very large array (e.g., 1000 elements or more bpose a new approach for adapting large arrays, shown

for tasks such as beamforming and nulling, while accountwﬁg Figure 1, comprising the following steps. The first step

for natural hardware constraints? The motivating appboat . . N .
is compressive estimatiom which a small set of measure-

is communication using very high carrier frequencies in the ; . , _
millimeter (mm) wave band and beyond, where the Smarwents using RF beamforming with pseudorandom weights

! : are employed for estimation of continuous-valued pararaete
wavelengths make it possible to pack a very large number 2 .
. . 2 characterizing a sparse spatial channel. However, raktzar t
antenna elements (e.g., realized as a printed circuit pimay

. . employing the inherently discretg optimization framework
nodes with compact form factors. Using a separate RF chaj ploying W m P .
. o . Of standard compressive sensing, we employ a version of

for each antenna element is out of the question in such gsttin . . . .
orthogonal matching pursuit to obtain coarse estimates of

hence it is not possible to employ standard least squarks S¥e spatial frequencies, followed by sequential Newton re-

adaptation, which requires access to the complex baseb(f\nd S .

. . _finements that provide accuracies far better than would be

signal corresponding to each antenna element. Thus, we limi _ . R . )

ourselves to RF beamforming: at the transmitter, a singtvexe—coposSIbIe by optimizing over a discrete grid. The second step
1ng: ! Ao iscﬂuantized beamsteeringy which these explicit channel es-

plex baseband waveform is upconverted to RF and d|str|but[e

. . . timates are employed for computing weights for beamformin
to the antenna elements, with digital control of the amgktu ploy puting welg g

. ) and nulling, subject to the severe quantization (e.g., @has
and phase of each element; at the receiver, the RF signal ? g ) q (e.g., @

S . 4 .
. ! - . only control with a small number of phases). Starting with
different elements are combined after digitally contraglithe y . . . P ) g
an unquantized zero-forcing solution, we show that sedgalent
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comprehensive system design and performance evaluafton eering includes [14], [15]. A naive approach is to compute
for future work. For example, we abstract out the crossflayeomplex-valued weights without quantization constraiftbs
protocols and low layer signal processing (e.g., cormhati lowed by scalar quantization of each weight; however, this
against training sequences, compensating for carrieetsffs does not perform well with drastic quantization. In [14]wias
required to implement compressive estimation. For quadtizshown that sequential update of quantized weights can lzk use
beamsteering, we consider the problem of steering one betmmobtain effective interference suppression. We use amil
and a few nulls, without specifying whether the nulls corradeas here, although our goal now is a multiobjective cast{fu
spond to undesired multipath or interference. A number @bn including both beamforming and nulling. Beamforming
interesting theoretical issues require further invesiiga as patterns for large arrays with heavily quantized weighteeha
discussed in the conclusions. been explored recently in [15], but direct optimization ot
Related work: Our approach oexplicit estimation followed functions related to communication goals is not considered
by weight computation is a stark contrasiraplicit adaptation there.

using classical least squares techniques. It also diffens f Outline: The system model is described in Section Il along
recent codebook-based approaches to 60 GHz RF beamfowith an overview of our solution. Section Il contains a
ing [1], [2]. The latter do not, for example, provide enougletailed description of our compressive estimation atgorj
information for interference suppression. An alternatae  and provides numerical results showing its efficacy. Sactio
proach for implicit adaptation, which could potentiallyopide 1V describes our approach to quantized beamsteering irl deta
beamforming as well as interference suppression gains,aisd provides example numerical results that illustraté fitst
randomized linear ascent, proposed by Widrow and McCoeffectiveness and its suboptimality. Finally, Section \itzins
more than three decades ago [3]. However, this algorithrs damur conclusions.

not scale to large arrays (at least not for rapid initialrtirag),

since its convergence time is proportional to tepuare of Il. SYSTEM MODEL AND OVERVIEW

the number of array elements. The millimeter wave channel isConsider a uniformi spaced linear array wittV' elements.
quite sparse, with the number of dominant multipaths beingpical values of interest aré = A/2 or d = \/3, where\
small compared to the large number of array elements @notes the carrier wavelength. For angle of arrival (A6A)

interest to us (e.g., see [4], [5] for modeling of outdoothe normalized array response is given by
60 GHz links). It is therefore natural to invoke ideas from

compressive sensing [6]-[9], where a signal which is sparse a(w) = (1,6, e, .. DT /YN, 1)
with respect to a fixed basis, is reconstructed (e.g., uéing
optimization) from projections onto a small number of vesto
that are “incoherent” with respect to the original basiggirms
of satisfying th_e so-called restricted isometry propeRyR). d(%minant paths, the net array response is a linear combinati
Roughly speaking, RIP means that the most of the energy Ot o torm:

the sparse signal is captured by these “compressive measure k=K

ments.” In our compressive estimation approach, we lewerag Aper = Z gra(wg), (2)
the first part of the compressive sensing framework, in terms k=1

of capturing the required information using a small numtfer Wheregk denotes the complex amplitude of théh multipath
measurements. However, standdrdreconstruction does not component, andy;, its spatial frequency

work V\_/eII under basis mismatch [10] (e.g., for es.timation Of,Our goal is to estimatégy,w,} using M measurements of

a continuous-valued frequency using a DFT basis), hencetHE form:

is necessary to develop alternative techniques for estignat

continuous-valued parameters. Theoretical frameworkghi® Yi=Wiane +2 i=12,...,M,

latter are emerging [11], [12], but their implications fques _ _ i i

cific scenarios, and the development of effective algorighmVnere w; are thereceive beamformingveights andz; is

requires further work. In particular, our problem of sphtie{he measurement.nmse. Imp!ementatlon consideratiorts wit

frequency estimation maps exactly to the standard frequerl@’9€ arrays restrict the entries of; to a small set: for

estimation problem recently revisited by Duarte and Bariani €<@MPple, to two bits of phase precision, with entries chosen

in a compressive setting [13]. We are, however, interested TOM {£1, +j}. Concatenating the measurements, we get

k_Joth one- and tvyo-dimensional frequencies (corresponiting y=WTa,., +z, ©)

linear and two-dimensional antenna arrays), and our Newton

based technique provides more refined estimates than tie gihereW = [w; wa ... wyy].

based algorithm in [13]. Also, we are ultimately interested We begin with the following question: given that the number

just in the abstract problem of spatial frequency estinmatimt of AoAs K is much smaller than the number of antenna

also in cross-layer designs for beamsteering which useat aslementsN, can we reduce the number of measuremetits

building block. substantially? To gain some intuition, consider a spe@akc
Prior work related to our approach to quantized bearofthe problem where the all the spatial frequencies argiate

wherew = 2wdsin 6/ is the correspondingpatial frequency
Thus, AoA estimation can be equivalently viewed as estima-
tion of spatial frequency. For a multipath channel with



multiples of 27 /N. In this casea,.; can be expressed as a IIl. COMPRESSIVEESTIMATION

linear combination of the columns of In this section, we describe an algorithm to estimate multi-
A=la(0)a 2m a 2m(N —1) (4 ple spatial frequencies using compressive measurememts fr
N) N ’ an array. We assume that the number of frequenéiess

known. The algorithm has two stages: first, we discretize the
set of frequencie§), 2| and use a variant of the traditional
Orthogonal Matching Pursuit (OMP) to coarsely estimate the
K frequencies on the discrete grid. We then refine each fre-
vy = WTAx + 7. (5) duency sequentially using Newton’s method. For simplioity
exposition, we first discussion estimation of a single fitny.

By substituting (1) in (4), we observe that the matAx e then use these ideas as building blocks in developing an
is the Discrete Fourier Transform (DFT) matrix. Since thgigorithm to estimatek” frequencies.

DFT matrix is orthonormal, standard Compressive Sensingpefine S(w) to be W7a(w), w € [0, 27]; the ith entry of

theory guarantees that with (a) measurements of the fogy,) is the DTFT ofw; evaluated ato. The measurement

(5), (b) the elements oW chosen i.i.d. from a class of model in (3) reduces to

distributions (including the Bernoulli distribution) arfd) the K

number of measuremenid = O(K log N), x (and thus the -~

spatial frequencies) can be recovered with high probgbilit Y= ngs(wk) Tz ()

This suggests that when the spatial frequencies come frem th h=t )

DFT grid, roughly K log N (< N) measurements, with the Single Frequency:W_hen there is only one frequency, the

beamforming weight3V chosen i.i.d. from{£1,+;}, suffice Measurementg are given by

to estimate them. _ _ v =S (w1) + 2, @)
However, in reality, the spatial frequencies, are not

restricted to integer multiples ofr/N and come from a where the noise ~ C'N(0,0%I).

continuum. We could ignore this fact and apply standard The estimation procedure is built on the following observa-

CS recovery algorithms assuming that spatial frequencgies &on: the generalized likelihood ratio test (GLRT) estimalf

integer multiples o7 /N. However, this limits the estimation w1, treating the unknown gaig; as a nuisance parameter,

accuracy to the spacing between the frequencies (even witerthe frequency at which th@ormalized array response

we oversample the frequencies). We now outline our approagtw)/||S(w)|| correlates best with the observatiops

so thata,., = Ax wherex € C". Note, however, that only
K entries ofx are nonzero, since there are of{yAoAs. The
observationgy can be written as

for overcomeingthis problem. SH 2
First, we estimate the AoAs coarsely by quantizing the & = argmax J(w) = argmaX’ (w)yJ )
spatial frequencies to integer multiples /R (R > N) w w IS (w)]]

and then applying a variant of orthogonal matching pursuitt e first step is to estimate; coarsely by picking the

obtain coarse estimates é&,,}. These estimates are further,aximum of the cost functiodf (w) from amongR discrete

refined using Newton-style local search; this is inspired ; 27 27 (R—1) . .

recent work [16] showing that Newton-based approaches Hequencie(. i~ ) Here s ypically chosen

ML ng Pproacnes &ffieast as large as the number of antenna elemeénts

very effective in attaining fundamental bounds on timing Neoxt we refine the coarse estimate by using Newton's

_estimat_io_n in a_classical setting. We describe the algorith,othod to optimize the cost functiofi(w). Let us denote

in detail in Section Il _the estimate ofv; in the ith iteration of Newton's method

Quantized BeamsteeringEach node can use the compresswﬁy wgz‘) Starting off at@y) an additional Newton refinement

estimation algorithm outlined above on a slow time scal ' G

to track the spatial channel to/from each of its neighbor??.ep produces the est|ma1é ) glveh by

It can then use these estimates to steer its beam towards a CGHD) - (d) J (d)i)

desired communication partner, while steering nulls talwar “1 Bt g (&(i))'
1

other neighbors and undesired multipath components. Our

compressive estimation framework does not require tight amowever, since Newton’s method only solves Bw) = 0,
plitude and phase control for the array elements. Thus, @ncould lead to a minimum of J(w), instead of the
important question is whether we can also perform tasks sugbsired maximum. when the function is convexdﬁif) or

as beamforming and nul[lng with §uch coarse control of array, (@Y)) > 0. We therefore use (9) to refine the estimate
elements. We explore this in Section IV. )

We begin with a standard zero-forcing solution, whosenly when.J(w) is concave ato\”. ‘
phases are quantized to the available alphabet. This is thefwhen the function is convex aﬁz), we use the following
refined by a sequential update process as in [14]. We afeservation to design an alternate refinement rule: if the
unable to make any claims of optimality at this point, anGLRT estimatew; in (8) is close to the true frequency
simply provide illustrative numerical results which shdwat w; (“reasonable” number of measurements and noise), then
we can effectively utilize a large array with phase-onlytton y = S(w;) + z &~ S(&1). Thus, the maximum of the cost

9)



function J(@1) ~ |[|y?||. Therefore, to get closer to theThis resembles the model (7) for single frequency estimatio
optimum, we design a Newton step that solvés) = ||y||?>. We can therefore use the Newton updates specified before to

This gives us the update rule refine &; by replacingy with y; and S(w) with H-S(w) in
2 (50 the definition of the cost function (8), (9) and (10).
@YH) _ @gi) + Iyl — (wl ) ' (10 One round of Newton updates consists of applying the above
T (@gz)) refinements to each of th€ frequencies, and we run multiple

such rounds.

Multiple Frequencies: When there is more than one fre'Results: We begin by simulating the problem of estimating

guen(_:yb/ t(;) bbe eshmateql, \INeHuse eachhpart_of the kalgont%n_ 2 spatial frequencies with aiv = 32 element array,
escribed above recursively. However, there is one key Mogji, the elements spacely/2 apart. We find that\l — 12

fication: while estimating théth frequency.;, we project out easurements typically suffice to estimate the two AoAs.

the_ contributions from thg frequencies that we have alrea Ygure 2 shows that, in the absence of measurement noise,
estimated _to the observatiogs(and also the templ:_:\tS(c_u) the proposed Newton refinements improve the estimates of
fc_)r the refinement stage), thereby roughly redl_Jcmg It to_ﬂe spatial frequencies to any desired accuracy. Figurea3 is
single frequen_cy p_roblem at each stage. _We briefly descri (?atterplot of the estimation errors before and after referd
the coarse es_t|ma_t|on and the Newton reflneme_nt SEePS. i the presence of measurement noise over 1000 trials. We see
CO"”S?‘ eAstlrr]atlonSlAJppose that we have es_ﬂmgtbd 1 that the errors after refinement are considerably smalles{m
frequencieso,, ws, ..., w1 coarsely. The contribution from o yo 1y jie well below the line with slope 1 shown in blue).
theS(_e frequencies to the observatigniies in the span of the For this scenario, the algorithm succeeds in 96% of thestrial
matrix (failures are due to gross errors in the coarse estimatamept
B=[S(@) S(@) ... S(w-1)]. and the Newton refinements improve the median estimation

- I _ error from0.4015° to 0.1376°.
Thus, we can eliminate these contributions by operatinden t

observationsy with the orthogonal projection matrig+ =
I - B(B”B)~1B* to obtain the residual vector, of ‘ ‘ ‘ o Coarse estimate |

—Refined estimate

r_1 = Bly.

We now pretend that thi¢gh frequencyw; is the only one left in
r;_; and estimate it exactly as in the single frequency setting:
by sampling the function

Mean absolute error in
AoA estimate in degrees(dB scale)

H 2
12,8 (@)
Ji(w) = ‘ ! 2|
1S (@)
at{0,%7,..., M{”}, R > N and picking the maximum. ol
We denote this estimate hy;, add it to the set of estimated ° : * Newton herations 0 .

frequencies and continue with the coarse estimation proeed

until we eStlmateK frequenqes' . Fig. 2. 10log; (Average AoA erroy is plotted as a function of refinement
Newton refinementwe refine our estimates of th& fre-  rounds. We takeVs = 12 noiseless measurements from\a= 32 element

quencies by applying Newton’s method to them sequentiallym spaced array whek = 2 beams impinge the antenna array. A coarse

The refinement process for each frequency is very similgfimate of the frequencies is made usingé = 128 grid.

to the single frequency case; the only difference is that the

contributions from the other frequencies are projected outyy jjystrate that we need significantly fewer measurements
(from bothy andS(w)) while defining the cost function. 3 the number of elements as the array gets larger, we
Suppose that at some stage of the refinement process, Qiitsider the problem of estimating = 2 spatial frequen-

estimates of thel” frequencies are given by, ws, ...,k cjes(one at12dB and another apdB) from a linear array
respectively and we want to further refine thk frequency. ot v — 1024 elements spaced /2 apart. We find that

Jgst as before,_ th_e contributions from the c_)t!ffeqL 1 frgquen— M = 24 measurements (onB.3% of the number of elements)
cies can be eliminated from the observatign®y using the g rice to estimate the two AoAs, with the refinement process
orthogonal projection matrig{*, which is obtained from improving the median error fro.6° x 103 t0 2.7° x 103,
H=[S(@) ... S(@-1) S(@41) ... S(@k) ] We are currently investigating extensions of the proposed
asHL — 1 — H(HHH)~HH. The residual is given b y algorithm to two dimensional arrays. Preliminary simuas

and we denote this by;. Assuming that theé< — 1 frequency are encouraging. we find thall/ = 24 measurements once
: again suffice to estimate 2 A0A32dB and9dB above noise
estimates are reasonably good, we have,

level) from anN = 1024(32 x 32) element array. Details will
yi~ gH S(w) + 2 be reported in later publications.



Before describing our approach, we introduce some nota-
tion. We separate the terms in (11) into the phases that we con
trol and the rest that are fixed. Lé¢tbe a vectorized version of
the phaseé’’~] anda(w) be the corresponding vectorized
version of the steering matrijg,,,, exp (—j (mwy + nwy))].

I . | Then the power?(w) = |a(w)H1/J|2. We also denote th&h
A ] entry of ¢ by ¥[l].

e ' - ' The basic idea behind our algorithm is as follows: given a
feasible solution for the phaseés we can improve it with low-
R ‘ ‘ complexity until we settle at a local optimum. To see thigeno
Mean absolute ertor eigrceoeasrzse por that ¢[I] takes only one of four valueg+1, +;}. Therefore,

given the phases at the other elements, we can easily find

a3 © _ ¢ oA estimati o omoise bef which of these choices fog[l] maximizesy: hold the other
1g. o. omparison of AOA estimation errors in the presenaeotse berore - . )
and after refinements of the spatial frequencigs= 12 measurements made phases fixed, try out each of the four phases II’\lﬁh@OSItIOI’I
from a N = 32 element)\/2 spaced array wheik' = 2 beams, one at2dB  Of 7, use (12) to compute for each of these candidates and
and another a9dB fall on the array4/N = 128 grid points used to arrive at piCk the maximum. Let us denote the maximizing phase by
the coarse estimates. The blue dashed line is the sloperane li « . ] ] « p

a* € {£1,+5}. If ¥]l] is different froma*, we can improve
the solution by simply replacing[l] with «*. By repeating
this procedure for different choices &f we can improvey,

IV. QUANTIZED BEAMSTEERING . o . .
without ever lowering it, until we settle at a local optimum.

The AoA estimates from Section Ill give us the direction§,e refer to the phases at the end of this procedure as the
in which we need to steer transmissions and place nulls g@quentially optimized phases.

combat multipath or avoid interference). However, har@war gince the powers are computed at specific frequencies in
design imposes severe constraints: we would like 10 st§gb) the solution thus obtained could be sensitive to therer
beams by only changing the antenna phases that are heayjl¥stimating these frequencies from Section I11. To rediie

quantized (say, to two bits of precision). We now explain howssitivity, we replace the metricwith a modified versior,

we can do this effectively. o where the powers are computed in a small band around each
Consider a two dimensional square array consistingvof frequencyw;,i = 0,1, ...,Q:

(typically 32 x 32 = 1024) elements. The separation between

the elements along either side & Denoting the transmit 5= J P(wo — h)dh .
gain and phase at thén,n)th element byg,,, and 5., ZZQ:1 [ P(w; — h)dh
respectively, the received power at an azimgitand elevation
0 is given by

Mean absolute error in refined AoA
estimate in degrees
-

The width of the band (the region of integration) is dictated
by the estimation error in Section lll.
2 Initialization: The only thing that we need to specify now is
P= ngneﬂﬂmn exp (j (mw, +nwy))| ,  (11) a starting point that is both feasible and “reasonably gqed”
that we do not settle at a bad local optimum). We compute
) ) the starting point by relaxing the constraints on the estrie
wherew, = (2md/A) sin 6 cos ¢ andw, = (2nd/N)sinfcosd o allowing them to take any value whatsoever. We can

are the spatial frequencies associated with the elevation %how cast our problem as a standard zero-forcing problem of

a2|muth..For convenience, we denote the combined S‘p"’“éﬂloosing weights to null out transmissiongrdirections per-
frequencieqw,,w,) by w and the power ab by P(w).

: ) __fectly, whil imizing th in the intended directi
Our goals are twofold: (a) The received power in the dire coty, Whi'e maximizing the power in the intended direetio

Specificall Ive:
tion of intended receiveP(wy) must be as high as possible. pectiically, we solve

m,n

(b) The interference caused (@ other directions (these may maximize |a(wo) |
represent other users or undesired multipath components), gypject to ]| = 1
given by P(w;),7 = 1,...,Q, must be as small as possible. NH. .
We try to achieve these goals simultaneously by maximizing a(wi) =0 vie{l2,...qd}
the signal-to-nullratio -, given by We then quantize these phases to the closest among
{+£1, +i}, thus giving us a feasible solution to the problem
P(wo) .
Y= 2 plo) (12) that is also reasonably good. We term these phases thdynaive
2t Plwi) guantized phases and use them to initialize our sequential

We abstract the hardware constraints as follows: (a) Tletimization procedure.
gains g,,,, are fixed once and for all to a two dimensionaResults: We steer the transmission towards a receiver while
Chebyshev window (in order to control undesired sidelobesjmultaneously placing nulls iy = 2 directions, using a 32
(b) The phase shiftg,,,,, which we use to steer the transmisx 32 element array. Figure 4(a) plots histograms~yobb-
sion can only take one of the four valugs1, +;}. tained with the naively quantized phases and the seqllgntia



optimized phases. We see thais tightly clustered around its REFERENCES
mean \{_alue ob8 dB for the sequentially optimized phases.(j} j wang, z. Lan, C. woo Pyo, T. Baykas, C. sean Sum, M. Rahma
The naively quantized phases have a lowern the average J. Gao, R. Funada, F. Kojima, H. Harada, and S. Kato, “Beane-cod
(48 dB) and also exhibit greater variance. book based beamformlng_ protocol for myltl-gbps millimeteve wpan

. . . . - systems,"Selected Areas in Communications, IEEE Journalha. 27,
. F|gurg 4(b) plot§ the gains prO\_/lded by sequgnnal optimiza o g pp. 1390 1399, october 2009.
tion against the signal-to-null ratio obtained with thaved§ [2] S. Lin, K. Ng, H. Wong, K. Luk, S. Wong, and A. Poon, “A 60ghz

i ; digitally controlled rf beamforming array in 65nm cmos witf-chip

quantlzeq phases.. We see that the Improvements are 'afge antennas,” inRadio Frequency Integrated Circuits Symposium (RFIC),
when_na|_ve quantization does poorly and dec_rease as Nalve 2011 |EEE june 2011, pp. 1 —4.
guantization become better. Thus, the sequential opttioiza [3] B. Widrow and J. McCool, “A comparison of adaptive alghrhs based
procedure gives us the Iargest gains exactly when we need " the methods of steepest descent and random seawtehnas and

them.
[4
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(a) Histogram of~ optimized(red)(b) Improvements provided by se-
and naively quantized(blue) phaseguential optimization plotted against
the naive signal to null ratio

(8]

9
Fig. 4. Results for quantized beamsteering witB2ax 32 element array (o]
with the elements placed/2 apart. We placel = 2 nulls while steering [10]
transmissions towards a receiver.

[11]
V. CONCLUSIONS

The preliminary results in this paper show the feasibilitg}zl
of our approach to compressive adaptation of large arrays
with drastically simplified hardware control: the archttee [13]
can be realized using RF beamsteering with coarse-grained
control of the phases of the array elements. The proposed
approach of explicit estimation and weight computatiofieds [14]
fundamentally from implicit adaptation using classicahde
squares, which is incompatible with RF beamforming, as
well as from codebook-based techniques, which enable €odis]
beamforming but not nulling.

An important topic for future work is the design of cross-
layer protocols and signal processing for compressive -ad&f!
tation in specific settings of interest, such as for packetiz
60 GHz backhaul mesh networks [17]. At a fundamental
level, it is important to develop a theoretical understagdi [17]
of the limits of compressive estimation of continuous-ealu
parameters, as well as algorithms for attaining these dimit
This problem has received far less attention than the “eistr
compressive sensing problem. Similarly, we would like to
develop a theoretical understanding of the limits of quaati
beamsteering, as well as improved algorithms for computing
optimal or near-optimal solutions at reasonable compjexit
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