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Abstract—We consider the problem of adapting very large
antenna arrays (e.g., with 1000 elements or more) for tasks such
as beamforming and nulling, motivated by emerging applications
at very high carrier frequencies in the millimeter (mm) wave
band and beyond, where the small wavelengths make it possible
to pack a very large number of antenna elements (e.g., realized
as a printed circuit array) into nodes with compact form
factors. Conventional least squares techniques, which rely on
access to baseband signals for individual array elements, do
not apply. Hence the preferred approach is to perform radio
frequency (RF) beamsteering, with a single complex baseband
signal emerging from a receive array, or going into a transmit
array. Further, we are interested in what can be achieved with
coarse-grained control of individual elements (e.g., four-phase,
or even binary phase, control). In this paper, we propose an
adaptation architecture matched to these hardware constraints.
Our approach comprises the following two steps. The first step
is compressive estimationof a sparse spatial channel using a
small number of measurements, each using a different set of
randomized weights. However, unlike the standard compressive
sensing formulation, we are interested in estimating continuous-
valued parameters such as the angles of arrivals of various paths.
The second step isquantized beamsteering,where weights for
beamforming and nulling, subject to the constraint of severe
quantization, are computed using the channel estimates from the
first step. We provide promising preliminary results illustrating
the efficacy of this approach.

I. I NTRODUCTION

We begin with the following question: how does one effec-
tively adapt a very large array (e.g., 1000 elements or more)
for tasks such as beamforming and nulling, while accounting
for natural hardware constraints? The motivating application
is communication using very high carrier frequencies in the
millimeter (mm) wave band and beyond, where the small
wavelengths make it possible to pack a very large number of
antenna elements (e.g., realized as a printed circuit array) into
nodes with compact form factors. Using a separate RF chain
for each antenna element is out of the question in such settings,
hence it is not possible to employ standard least squares style
adaptation, which requires access to the complex baseband
signal corresponding to each antenna element. Thus, we limit
ourselves to RF beamforming: at the transmitter, a single com-
plex baseband waveform is upconverted to RF and distributed
to the antenna elements, with digital control of the amplitude
and phase of each element; at the receiver, the RF signals at
different elements are combined after digitally controlling the
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Fig. 1. Architecture to adapt large steerable arrays with coarse control:
Explicit estimation of the steering direction using a few random projections,
followed by beamsteering with only four phases.

amplitude and phase at each element, and downconverted to
obtain a single complex baseband waveform.
Approach and Summary of Results: In this paper, we
propose a new approach for adapting large arrays, shown
in Figure 1, comprising the following steps. The first step
is compressive estimation,in which a small set of measure-
ments using RF beamforming with pseudorandom weights
are employed for estimation of continuous-valued parameters
characterizing a sparse spatial channel. However, rather than
employing the inherently discreteℓ1 optimization framework
of standard compressive sensing, we employ a version of
orthogonal matching pursuit to obtain coarse estimates of
the spatial frequencies, followed by sequential Newton re-
finements that provide accuracies far better than would be
possible by optimizing over a discrete grid. The second step
is quantized beamsteering,in which these explicit channel es-
timates are employed for computing weights for beamforming
and nulling, subject to the severe quantization (e.g., phase-
only control with a small number of phases). Starting with
an unquantized zero-forcing solution, we show that sequential
optimization provides effective solutions for heavily quantized
weights.

Our goal here is to provide preliminary results for canonical
problems in order to validate our overall approach, with



comprehensive system design and performance evaluation left
for future work. For example, we abstract out the cross-layer
protocols and low layer signal processing (e.g., correlation
against training sequences, compensating for carrier offsets)
required to implement compressive estimation. For quantized
beamsteering, we consider the problem of steering one beam
and a few nulls, without specifying whether the nulls corre-
spond to undesired multipath or interference. A number of
interesting theoretical issues require further investigation, as
discussed in the conclusions.
Related work: Our approach ofexplicit estimation followed
by weight computation is a stark contrast toimplicit adaptation
using classical least squares techniques. It also differs from
recent codebook-based approaches to 60 GHz RF beamform-
ing [1], [2]. The latter do not, for example, provide enough
information for interference suppression. An alternativeap-
proach for implicit adaptation, which could potentially provide
beamforming as well as interference suppression gains, is
randomized linear ascent, proposed by Widrow and McCool
more than three decades ago [3]. However, this algorithm does
not scale to large arrays (at least not for rapid initial training),
since its convergence time is proportional to thesquareof
the number of array elements. The millimeter wave channel is
quite sparse, with the number of dominant multipaths being
small compared to the large number of array elements of
interest to us (e.g., see [4], [5] for modeling of outdoor
60 GHz links). It is therefore natural to invoke ideas from
compressive sensing [6]–[9], where a signal which is sparse
with respect to a fixed basis, is reconstructed (e.g., usingℓ1

optimization) from projections onto a small number of vectors
that are “incoherent” with respect to the original basis, interms
of satisfying the so-called restricted isometry property (RIP).
Roughly speaking, RIP means that the most of the energy of
the sparse signal is captured by these “compressive measure-
ments.” In our compressive estimation approach, we leverage
the first part of the compressive sensing framework, in terms
of capturing the required information using a small number of
measurements. However, standardℓ1 reconstruction does not
work well under basis mismatch [10] (e.g., for estimation of
a continuous-valued frequency using a DFT basis), hence it
is necessary to develop alternative techniques for estimating
continuous-valued parameters. Theoretical frameworks for the
latter are emerging [11], [12], but their implications for spe-
cific scenarios, and the development of effective algorithms,
requires further work. In particular, our problem of spatial
frequency estimation maps exactly to the standard frequency
estimation problem recently revisited by Duarte and Baraniuk
in a compressive setting [13]. We are, however, interested in
both one- and two-dimensional frequencies (correspondingto
linear and two-dimensional antenna arrays), and our Newton-
based technique provides more refined estimates than the grid-
based algorithm in [13]. Also, we are ultimately interestednot
just in the abstract problem of spatial frequency estimation, but
also in cross-layer designs for beamsteering which use it asa
building block.

Prior work related to our approach to quantized beam-

steering includes [14], [15]. A naive approach is to compute
complex-valued weights without quantization constraints, fol-
lowed by scalar quantization of each weight; however, this
does not perform well with drastic quantization. In [14], itwas
shown that sequential update of quantized weights can be used
to obtain effective interference suppression. We use similar
ideas here, although our goal now is a multiobjective cost func-
tion including both beamforming and nulling. Beamforming
patterns for large arrays with heavily quantized weights have
been explored recently in [15], but direct optimization of cost
functions related to communication goals is not considered
there.
Outline: The system model is described in Section II along
with an overview of our solution. Section III contains a
detailed description of our compressive estimation algorithm,
and provides numerical results showing its efficacy. Section
IV describes our approach to quantized beamsteering in detail,
and provides example numerical results that illustrate both its
effectiveness and its suboptimality. Finally, Section V contains
our conclusions.

II. SYSTEM MODEL AND OVERVIEW

Consider a uniformd spaced linear array withN elements.
Typical values of interest ared = λ/2 or d = λ/3, whereλ
denotes the carrier wavelength. For angle of arrival (AoA)θ,
the normalized array response is given by

a(ω) = (1, ejω, ej2ω , . . . , ej(n−1)ω)T /
√

N, (1)

whereω = 2πd sin θ/λ is the correspondingspatial frequency.
Thus, AoA estimation can be equivalently viewed as estima-
tion of spatial frequency. For a multipath channel withK
dominant paths, the net array response is a linear combination
of the form:

anet =

k=K
∑

k=1

gka(ωk), (2)

wheregk denotes the complex amplitude of thekth multipath
component, andωk, its spatial frequency.

Our goal is to estimate{gk, ωk} usingM measurements of
the form:

yi = wT
i anet + zi i = 1, 2, . . . , M,

where wi are the receive beamformingweights andzi is
the measurement noise. Implementation considerations with
large arrays restrict the entries ofwi to a small set: for
example, to two bits of phase precision, with entries chosen
from {±1,±j}. Concatenating the measurements, we get

y = WT anet + z, (3)

whereW = [w1 w2 . . . wM ].
We begin with the following question: given that the number

of AoAs K is much smaller than the number of antenna
elementsN , can we reduce the number of measurementsM
substantially? To gain some intuition, consider a special case
of the problem where the all the spatial frequencies are integral



multiples of 2π/N . In this case,anet can be expressed as a
linear combination of the columns of

A =

[

a (0) a

(

2π

N

)

. . . a

(

2π(N − 1)

N

)]

, (4)

so thatanet = Ax wherex ∈ CN . Note, however, that only
K entries ofx are nonzero, since there are onlyK AoAs. The
observationsy can be written as

y = WT Ax + z. (5)

By substituting (1) in (4), we observe that the matrixA

is the Discrete Fourier Transform (DFT) matrix. Since the
DFT matrix is orthonormal, standard Compressive Sensing
theory guarantees that with (a) measurements of the form
(5), (b) the elements ofW chosen i.i.d. from a class of
distributions (including the Bernoulli distribution) and(c) the
number of measurementsM = O(K log N), x (and thus the
spatial frequencies) can be recovered with high probability.
This suggests that when the spatial frequencies come from the
DFT grid, roughlyK log N (≪ N) measurements, with the
beamforming weightsW chosen i.i.d. from{±1,±j}, suffice
to estimate them.

However, in reality, the spatial frequenciesωk are not
restricted to integer multiples of2π/N and come from a
continuum. We could ignore this fact and apply standard
CS recovery algorithms assuming that spatial frequencies are
integer multiples of2π/N . However, this limits the estimation
accuracy to the spacing between the frequencies (even when
we oversample the frequencies). We now outline our approach
for overcomeingthis problem.

First, we estimate the AoAs coarsely by quantizing the
spatial frequencies to integer multiples of2π/R (R ≥ N)
and then applying a variant of orthogonal matching pursuit to
obtain coarse estimates of{ωm}. These estimates are further
refined using Newton-style local search; this is inspired by
recent work [16] showing that Newton-based approaches are
very effective in attaining fundamental bounds on timing
estimation in a classical setting. We describe the algorithm
in detail in Section III.
Quantized Beamsteering:Each node can use the compressive
estimation algorithm outlined above on a slow time scale
to track the spatial channel to/from each of its neighbors.
It can then use these estimates to steer its beam towards a
desired communication partner, while steering nulls towards
other neighbors and undesired multipath components. Our
compressive estimation framework does not require tight am-
plitude and phase control for the array elements. Thus, an
important question is whether we can also perform tasks such
as beamforming and nulling with such coarse control of array
elements. We explore this in Section IV.

We begin with a standard zero-forcing solution, whose
phases are quantized to the available alphabet. This is then
refined by a sequential update process as in [14]. We are
unable to make any claims of optimality at this point, and
simply provide illustrative numerical results which show that
we can effectively utilize a large array with phase-only control.

III. C OMPRESSIVEESTIMATION

In this section, we describe an algorithm to estimate multi-
ple spatial frequencies using compressive measurements from
an array. We assume that the number of frequenciesK is
known. The algorithm has two stages: first, we discretize the
set of frequencies[0, 2π] and use a variant of the traditional
Orthogonal Matching Pursuit (OMP) to coarsely estimate the
K frequencies on the discrete grid. We then refine each fre-
quency sequentially using Newton’s method. For simplicityof
exposition, we first discussion estimation of a single frequency.
We then use these ideas as building blocks in developing an
algorithm to estimateK frequencies.

DefineS(ω) to beWTa(ω), ω ∈ [0, 2π]; the ith entry of
S(ω) is the DTFT ofwi evaluated atω. The measurement
model in (3) reduces to

y =

K
∑

k=1

gkS(ωk) + z. (6)

Single Frequency: When there is only one frequency, the
measurementsy are given by

y = g1S (ω1) + z, (7)

where the noisez ∼ CN(0, σ2IM ).
The estimation procedure is built on the following observa-

tion: the generalized likelihood ratio test (GLRT) estimate of
ω1, treating the unknown gaing1 as a nuisance parameter,
is the frequency at which thenormalized array response
S(ω)/||S(ω)|| correlates best with the observationsy:

ω̂1 = arg max
ω

J(ω) = arg max
ω

∣

∣SH (ω)y
∣

∣

2

‖S (ω)‖2 . (8)

The first step is to estimateω1 coarsely by picking the
maximum of the cost functionJ(ω) from amongR discrete
frequencies{0, 2π

R
, . . . , 2π(R−1)

R
}. Here,R is typically chosen

at least as large as the number of antenna elementsN .
Next, we refine the coarse estimate by using Newton’s

method to optimize the cost functionJ(ω). Let us denote
the estimate ofω1 in the ith iteration of Newton’s method
by ω̂

(i)
1 . Starting off atω̂(i)

1 , an additional Newton refinement
step produces the estimateω̂

(i+1)
1 , given by

ω̂
(i+1)
1 = ω̂

(i)
1 − J ′

(

ω̂i
1

)

J ′′

(

ω̂
(i)
1

) . (9)

However, since Newton’s method only solves forJ ′(ω) = 0,
it could lead to a minimum ofJ(ω), instead of the
desired maximum, when the function is convex atω̂

(i)
1 , or

J ′′

(

ω̂
(i)
1

)

≥ 0. We therefore use (9) to refine the estimate

only whenJ(ω) is concave at̂ω(i)
1 .

When the function is convex at̂ω(i)
1 , we use the following

observation to design an alternate refinement rule: if the
GLRT estimate ω̂1 in (8) is close to the true frequency
ω1 (“reasonable” number of measurements and noise), then
y = S(ω1) + z ≈ S(ω̂1). Thus, the maximum of the cost



function J(ω̂1) ≈ ||y2||. Therefore, to get closer to the
optimum, we design a Newton step that solvesJ(ω) = ||y||2.
This gives us the update rule

ω̂
(i+1)
1 = ω̂

(i)
1 +

‖y‖2 − J
(

ω̂
(i)
1

)

J ′

(

ω̂
(i)
1

) . (10)

Multiple Frequencies: When there is more than one fre-
quency to be estimated, we use each part of the algorithm
described above recursively. However, there is one key modi-
fication: while estimating thelth frequencyωl, we project out
the contributions from the frequencies that we have already
estimated to the observationsy (and also the templateS(ω)
for the refinement stage), thereby roughly reducing it to a
single frequency problem at each stage. We briefly describe
the coarse estimation and the Newton refinement steps.

Coarse estimation:Suppose that we have estimatedl − 1
frequencieŝω1, ω̂2, . . . , ω̂l−1 coarsely. The contribution from
these frequencies to the observationsy lies in the span of the
matrix

B =
[

S (ω̂1) S (ω̂2) . . . S (ω̂l−1)
]

.

Thus, we can eliminate these contributions by operating on the
observationsy with the orthogonal projection matrixB⊥ =
I − B(BHB)−1BH to obtain the residual vector,

rl−1 = B⊥y.

We now pretend that thelth frequencyωl is the only one left in
rl−1 and estimate it exactly as in the single frequency setting:
by sampling the function

Jl(ω) =

∣

∣rH
l−1S (ω)

∣

∣

2

‖S (ω)‖2

at {0, 2π
R

, . . . , 2π(R−1)
R

}, R ≥ N and picking the maximum.
We denote this estimate bŷωl, add it to the set of estimated
frequencies and continue with the coarse estimation procedure
until we estimateK frequencies.

Newton refinement:We refine our estimates of theK fre-
quencies by applying Newton’s method to them sequentially.
The refinement process for each frequency is very similar
to the single frequency case; the only difference is that the
contributions from the other frequencies are projected out
(from bothy andS(ω)) while defining the cost function.

Suppose that at some stage of the refinement process, our
estimates of theK frequencies are given bŷω1, ω̂2, . . . , ω̂K

respectively and we want to further refine thelth frequency.
Just as before, the contributions from the otherK−1 frequen-
cies can be eliminated from the observationsy by using the
orthogonal projection matrixH⊥, which is obtained from

H =
[

S (ω̂1) . . . S (ω̂l−1) S (ω̂l+1) . . . S (ω̂K)
]

asH⊥ = I−H(HHH)−1HH . The residual is given byH⊥y

and we denote this byyl. Assuming that theK −1 frequency
estimates are reasonably good, we have,

yl ≈ glH⊥S(ωl) + z̃

This resembles the model (7) for single frequency estimation.
We can therefore use the Newton updates specified before to
refine ω̂l by replacingy with yl andS(ω) with H⊥S(ω) in
the definition of the cost function (8), (9) and (10).

One round of Newton updates consists of applying the above
refinements to each of theK frequencies, and we run multiple
such rounds.

Results: We begin by simulating the problem of estimating
K = 2 spatial frequencies with anN = 32 element array,
with the elements spacedλ/2 apart. We find thatM = 12
measurements typically suffice to estimate the two AoAs.
Figure 2 shows that, in the absence of measurement noise,
the proposed Newton refinements improve the estimates of
the spatial frequencies to any desired accuracy. Figure 3 isa
scatterplot of the estimation errors before and after refinement
in the presence of measurement noise over 1000 trials. We see
that the errors after refinement are considerably smaller (most
of them lie well below the line with slope 1 shown in blue).
For this scenario, the algorithm succeeds in 96% of the trials
(failures are due to gross errors in the coarse estimation stage)
and the Newton refinements improve the median estimation
error from0.4015◦ to 0.1376◦.
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Fig. 2. 10 log10 (Average AoA error) is plotted as a function of refinement
rounds. We takeM = 12 noiseless measurements from aN = 32 element
λ/2 spaced array whenK = 2 beams impinge the antenna array. A coarse
estimate of the frequencies is made using a4N = 128 grid.

To illustrate that we need significantly fewer measurements
than the number of elementsN as the array gets larger, we
consider the problem of estimatingK = 2 spatial frequen-
cies(one at12dB and another at9dB) from a linear array
of N = 1024 elements spacedλ/2 apart. We find that
M = 24 measurements (only2.3% of the number of elements)
suffice to estimate the two AoAs, with the refinement process
improving the median error from9.6◦× 10−3 to 2.7◦× 10−3.

We are currently investigating extensions of the proposed
algorithm to two dimensional arrays. Preliminary simulations
are encouraging: we find thatM = 24 measurements once
again suffice to estimate 2 AoAs (12dB and9dB above noise
level) from anN = 1024(32×32) element array. Details will
be reported in later publications.
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Fig. 3. Comparison of AoA estimation errors in the presence of noise before
and after refinements of the spatial frequencies.M = 12 measurements made
from aN = 32 elementλ/2 spaced array whenK = 2 beams, one at12dB
and another at9dB fall on the array.4N = 128 grid points used to arrive at
the coarse estimates. The blue dashed line is the slope one line.

IV. QUANTIZED BEAMSTEERING

The AoA estimates from Section III give us the directions
in which we need to steer transmissions and place nulls (to
combat multipath or avoid interference). However, hardware
design imposes severe constraints: we would like to steer
beams by only changing the antenna phases that are heavily
quantized (say, to two bits of precision). We now explain how
we can do this effectively.

Consider a two dimensional square array consisting ofN
(typically 32× 32 = 1024) elements. The separation between
the elements along either side isd. Denoting the transmit
gain and phase at the(m, n)th element bygmn and βmn

respectively, the received power at an azimuthφ and elevation
θ is given by

P =

∣

∣

∣

∣

∣

∑

m,n

gmnejβmn exp (j (mωx + nωy))

∣

∣

∣

∣

∣

2

, (11)

whereωx = (2πd/λ) sin θ cosφ andωy = (2πd/λ) sin θ cosφ
are the spatial frequencies associated with the elevation and
azimuth. For convenience, we denote the combined spatial
frequencies(ωx, ωy) by ω and the power atω by P (ω).

Our goals are twofold: (a) The received power in the direc-
tion of intended receiverP (ω0) must be as high as possible.
(b) The interference caused inQ other directions (these may
represent other users or undesired multipath components),
given by P (ωi), i = 1, . . . , Q, must be as small as possible.
We try to achieve these goals simultaneously by maximizing
the signal-to-nullratio γ, given by

γ =
P (ω0)

∑Q

i=1 P (ωi)
. (12)

We abstract the hardware constraints as follows: (a) The
gains gmn are fixed once and for all to a two dimensional
Chebyshev window (in order to control undesired sidelobes).
(b) The phase shiftsβmn which we use to steer the transmis-
sion can only take one of the four values{±1,±j}.

Before describing our approach, we introduce some nota-
tion. We separate the terms in (11) into the phases that we con-
trol and the rest that are fixed. Letψ be a vectorized version of
the phases[ejβmn ] anda(ω) be the corresponding vectorized
version of the steering matrix[gmn exp (−j (mωx + nωy))].
Then the powerP (ω) =

∣

∣a(ω)Hψ
∣

∣

2
. We also denote thelth

entry ofψ by ψ[l].
The basic idea behind our algorithm is as follows: given a

feasible solution for the phasesψ, we can improve it with low-
complexity until we settle at a local optimum. To see this, note
thatψ[l] takes only one of four values{±1,±j}. Therefore,
given the phases at the other elements, we can easily find
which of these choices forψ[l] maximizesγ: hold the other
phases fixed, try out each of the four phases in thelth position
of ψ, use (12) to computeγ for each of these candidates and
pick the maximum. Let us denote the maximizing phase by
α∗ ∈ {±1,±j}. If ψ[l] is different fromα∗, we can improve
the solution by simply replacingψ[l] with α∗. By repeating
this procedure for different choices ofl, we can improveγ,
without ever lowering it, until we settle at a local optimum.
We refer to the phases at the end of this procedure as the
sequentially optimized phases.

Since the powers are computed at specific frequencies in
(12), the solution thus obtained could be sensitive to the errors
in estimating these frequencies from Section III. To reducethis
sensitivity, we replace the metricγ with a modified versioñγ,
where the powers are computed in a small band around each
frequencyωi, i = 0, 1, . . . , Q:

γ̃ =

∫

P (ω0 − h)dh
∑Q

i=1

∫

P (ωi − h)dh
.

The width of the band (the region of integration) is dictated
by the estimation error in Section III.

Initialization: The only thing that we need to specify now is
a starting point that is both feasible and “reasonably good”(so
that we do not settle at a bad local optimum). We compute
the starting point by relaxing the constraints on the entries
of ψ, allowing them to take any value whatsoever. We can
now cast our problem as a standard zero-forcing problem of
choosing weights to null out transmissions inQ directions per-
fectly, while maximizing the power in the intended direction.
Specifically, we solve:

maximize |a(ω0)Hψ|
subject to ‖ψ‖ = 1

a(ωi)
Hψ = 0 ∀i ∈ {1, 2, . . .Q}

We then quantize these phases to the closest among
{±1,±i}, thus giving us a feasible solution to the problem
that is also reasonably good. We term these phases the naı̈vely
quantized phases and use them to initialize our sequential
optimization procedure.
Results: We steer the transmission towards a receiver while
simultaneously placing nulls inQ = 2 directions, using a 32
× 32 element array. Figure 4(a) plots histograms ofγ ob-
tained with the naı̈vely quantized phases and the sequentially



optimized phases. We see thatγ is tightly clustered around its
mean value of58 dB for the sequentially optimized phases.
The naı̈vely quantized phases have a lowerγ on the average
(48 dB) and also exhibit greater variance.

Figure 4(b) plots the gains provided by sequential optimiza-
tion against the signal-to-null ratio obtained with the na¨ıvely
quantized phases. We see that the improvements are large
when naive quantization does poorly and decrease as naive
quantization become better. Thus, the sequential optimization
procedure gives us the largest gains exactly when we need
them.
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Fig. 4. Results for quantized beamsteering with a32 × 32 element array
with the elements placedλ/2 apart. We placeQ = 2 nulls while steering
transmissions towards a receiver.

V. CONCLUSIONS

The preliminary results in this paper show the feasibility
of our approach to compressive adaptation of large arrays
with drastically simplified hardware control: the architecture
can be realized using RF beamsteering with coarse-grained
control of the phases of the array elements. The proposed
approach of explicit estimation and weight computation differs
fundamentally from implicit adaptation using classical least
squares, which is incompatible with RF beamforming, as
well as from codebook-based techniques, which enable coarse
beamforming but not nulling.

An important topic for future work is the design of cross-
layer protocols and signal processing for compressive adap-
tation in specific settings of interest, such as for packetized
60 GHz backhaul mesh networks [17]. At a fundamental
level, it is important to develop a theoretical understanding
of the limits of compressive estimation of continuous-valued
parameters, as well as algorithms for attaining these limits.
This problem has received far less attention than the “discrete”
compressive sensing problem. Similarly, we would like to
develop a theoretical understanding of the limits of quantized
beamsteering, as well as improved algorithms for computing
optimal or near-optimal solutions at reasonable complexity.
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