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Wireless Fingerprinting via DNNs
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Opportunities
Difficult to model TX nonlinearities = device signatures
Channel characteristics =2 location signatutes \
Potentially powerful supplement to software-level security
. Today
Pitfalls
DNNs cheat whenever they can /

Ex: Locking onto channel, freq offset, ID instead of device signature
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Physical Layer Device Signatures

® Goal: Distinguish between devices sending exactly the same message
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® Possible (in principle) because of hardware imperfections unique to each device

- Even from the same manufacturer
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TX impairments = Signatures

® Some common sources of transmitter impairments:

quadrature errors self-interference amplitude clipping
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® These can be used as features to fingerprint devices!

® Much prior work based on protocol-specific preprocessing

- General procedure preferable

I Brik et al (2008), Jana et al (2010)
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Hard to model = DNNSs a natural match

® Itis not easy to eyeball signals to find patterns:
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Spectra of 6 WLAN cards from 3 manufacturers (Remley et al, 2005)

® Our approach: Supervised learning
- Data is complex-valued — Use CNN with complex-valued weights

- Protocol-agnostic, so can we completely disregard domain knowledge?
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It is hard work to make sure DNNs learn what we want them to

® They appear learn the “shortest path” to achieving their objective

® For example: our prior work with ADS-B shows that they will do their
best to lock onto ID fields if they can

® (IDs are easily spoofed)

Preamble [ ICAO address ] Message: (z,y, z),v Parity

16 bits 24 bits 56 bits 24 bits

* Inference based on the entire packet = DNN focuses on ID fields
If the ID field is deleted, then message + parity used to implicitly

reconstruct the info
* Safe strategy: use preamble alone

Open issue: how to certifiably sanitize ID info from packet?
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Complex-valued CNNs

Natural fit to complex baseband wireless signals
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Choice of complex activation functions

w = ModReLU(z) w = CReLU(z)
— max(|z| — b,0) e/L£. = max(Re(z),0) + j max(Im(z),0).
m(2) Im(z)
w = jIm(z) w=z
w=10
/W = /2 w =0 w = Re(z)
wl = 2| — b

Phase distorted outside

Preserves phase
1t quadrant

Better accuracies

Figure adapted from Trabelsi et al (2018) 8
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Complex-valued 1D CNN with WiFi data

2

Complex-valued conv layer

Complex-valued conv. layer

— Kernel size: 10 —

|| — Kernel size: 200 — Stride: 1 Real-valued Real-valued  Temporal
WiFi preamble — Stridé: 100 — 100 filters dense layer dense layer average
— 3200 samples — 100 filters — 100 neurons — 100 neurons
— Sampled at 200 MHz — Shared weights ~ — Shared weights

® We use only the preamble
- Robust to spoofing of MAC ID

- In principle, preamble can be learnt in unsupervised fashion for any protocol

® C(Clean data from 19 WiFi devices (802.11ag) =» Platform for controlled

emulations to explore generalization and robustness

- 99.5% accuracy on the original clean data
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DNN: “How should I cheat now?”

How about learning the carrier freq otfset (CFO)?

Or maybe the channel?

10



( ™\ UCSANTA BARBARA

The col

» engineering
of research and innovation.

(Lack of) Robustness in Time

Carrier frequency offset (CFO) drifts across time
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- Accuracy drops from 99.5% to 4.6%
- Atavery small CFO of 20 parts per million (ppm)

Networks trained on clean data do not generalize to offset data
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(Lack of) Robustness in Space

® Wireless channel changes across locations and
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® We use LTE multipath models (Rayleigh fading) to simulate effect of

channels across days

® Same day scenario: 98%. Different days: 5.8%

® (lear indication that network locks on to channel

—
Fingerprints

12
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Generalizing in space and time

®  Want to avoid classical signal processing: equalization, CFO removal
- Implementation requires detailed understanding of protocol
® Our approach: use just enough signal modeling for data augmentation

® Robustness to CFO drift requires augmentation with random frequency

shifts

® Robustness to channel requires training data augmentation by passing

through randomly chosen channels
® New concept: test augmentation
- Augment multiple copies of a test packet

= Add up outputs across augmented copies

13
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Effect of CFO augmentation

® Augmentation with only worst-case offsets is not sufficient
- Network becomes robust to worst-case, but not to any other offset
® Uniformly chosen CFO augmentation works well

= 90+% accuracy in all scenarios

Type of data CFO 1n test set
augmentation None Bernoulli  Uniform
None 99.50 4.63 13.58
Bernoulli 3.32 99.32 13.53
Uniform 96.21 90.79 95.37

14
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“Different day” CFO setting

® We emulate collecting training data on one day, testing on another
- Different CFO for each device, same CFO across packets in a device

® Test accuracy drops to 9.7%, training acc 94.2% — Network locks on to CFO

Training Test time augmentation
augmentation None 5 20 100
None — 9.68 7.84 8.74 8.47

Random 5 74.21 71.84 74.21 77.37
20 72.79 75.84 78.05 80.05
Orthogonal 5 69.58 75.11 81.05 83.63
20 82.37 82.32 86.21 87.11

®  “Orthogonal” training augmentation works well
- Ditferent CFO for each packet from a device, same sets of CFOs across devices

® Test time augmentation helps significantly 15
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Effect of channel augmentation

“Orthogonal” training augmentation works well again

- Different channel for each packet from a device, same sets of channels across devices

- 47.8% accuracy in “train one dayv, test one day’’
y Y y

Can boost to 71.8% if we are allowed access to data collected over 2 days:

Training Test time augmentation
augmentation None 1 5 20 100
None — 574 6774 726 721 @ 7.26

Random 5 39.58 39.79 54.05 59.84 62.68
20 54.05 52.84 63.21 67.68 6847
Orthogonal 5 41.16 42.16 52.89 56.68 58.68
20 56.16 54.74 66.47 71.00 71.84

- Augmentation + varied training data = increase in overall channel diversity

16
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Can’t we just compensate for confounding factors?

® Only if they are simple enough: works for CFO, does not work for channel

- BUT compensation requires more detailed knowledge of protocol

Impact of Channel Variations
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CFO: compensation better Channel: augmentation better

17
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Compensation & augmentation can be judiciously combined

100 Impact of CFO and channel variations

—&— Augmentation - 10x Ch, 1x CFO
—&— Augmentation - 10x Ch, 10x CFO

80 —&— Augmentation - 10x Ch, Compensation CFO
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(Combining GLRT and Bayesian approaches to nuisance parameters)
18
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The importance of augmentation

100
- 20 days 100
80
60 -
40
——&— 10 days
20 - 60 —$- 20 days
=== No test aug.
=== No test aug.
1 2 3 4+ 5 s 7 & 9§ 1w 1 2 3 4 5 & 7 8 9 10
Number of training augmentations Number of test augmentations
Training augmentation is essential Test augmentation yields substantial gains
(baseline model does not generalize even (need > 2 to improve over baseline)

with 20 “days” of data)

19



(™ UCSANTA BARBARA
» engineering

The convergence of research and innovation.

Takeaways

® Application of DNNs to device fingerprinting has many pitfalls
- May lock onto effects unique to training data (CFO, channel)
- May use variable or easily spoofed characteristics (ID, CFO, channel)
® Need a significant level of signal modeling
- Avoiding easily spoofed components of data
- Model-driven augmentation for robustness to space-time variations
® Augmentation is helpful for both learning and inference
- Soft combining for augmented test data improves performance
® Many open issues
- Deeper understanding of model-driven augmentation and soft combining

- Fundamental limits of robust fingerprinting

20
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General Observations

® DNNs are powerful feature extractors and function approximators, but

blind application is a recipe for trouble

- Controlled experiments in well-modeled settings a promising approach to

general insights?
- Understanding DNNs via communications applications?

® Domain expertise and modeling is invaluable for ensuring that the DNNs

do what we actually want

- Augmentation is a “Bayesian” strategy for exploiting domain expertise within

a general-purpose optimization framework

21



