

Learning RF signatures with complex CNNs
Opportunities and Pitfalls

Upamanyu Madhow

ECE Department

University of California, Santa Barbara

1

Work actually done by
Metehan Cekic and Soorya Gopalakrishnan,

Funding: DARPA RFMLS, ARO, NSF

ITA 2020

Wireless Fingerprinting via DNNs

2

Opportunities
Difficult to model TX nonlinearities è device signatures

Channel characteristics è location signatures
Potentially powerful supplement to software-level security

Pitfalls
DNNs cheat whenever they can

Ex: Locking onto channel, freq offset, ID instead of device signature

Today

Physical Layer Device Signatures

•  Goal: Distinguish between devices sending exactly the same message

•  Possible (in principle) because of hardware imperfections unique to each device

-  Even from the same manufacturer

3

TX impairments à Signatures

•  Some common sources of transmitter impairments:

•  These can be used as features to fingerprint devices1

•  Much prior work based on protocol-specific preprocessing

-  General procedure preferable

4

Figure 1: Common transmitter impairments and their sources

Figure 2: Radiometric identification and PARADIS

(RF) fingerprinting because the latter has a wider meaning
and usage than our intent. The term RF fingerprinting, in
general, refers to various PHY layer classification approaches
of RF signals. We broadly classify RF features into: (i)
channel-specific ones, e.g., channel impulse response, that
characterize the wireless channel; and (ii) transmitter-specific
ones that are independent of the channel, e.g., signal encod-
ing.

Since channel-specific features uniquely identify the chan-
nel between the transmitter and the receiver, they have been
successfully adopted in robust location distinction [23, 28].
In contrast for radiometric identification, we need to ignore
such channel-specific features and focus on the transmitter-
specific ones.

We classify possible radiometric techniques based on the
fundamental di↵erences in how they treat signals as those
operating either in the waveform domain or the modulation
domain as shown in Figure 2. Waveform domain techniques
use signal samples from time and frequency domains as the
basic blocks of representation, which allows the most flex-
ibility at the cost of complexity. Our approach falls under
modulation domain techniques that represent signals at the
most basic level in terms of I/Q samples, whose interpreta-
tion depends on the underlying modulation scheme. There-
fore, signals in modulation domain are more structured and
better behaved, but require knowledge of the modulation
scheme being used.

1.2 Transmitter individuality and PARADIS
Radiometric identification is possible because of benign

hardware imperfections inherent to the analog components
of a NIC’s transmit path, which exist due to normal varia-
tions in physical properties of such components. These im-
perfections are also called impairments because they cause
the device’s emissions to di↵er from the theoretically ideal
output. Figure 1 presents a typical transmitter design and
illustrates likely causes of common impairments [1, 2, 3, 4,
29].

In a sense, despite superficial sameness of NICs, even when
constructed using the same manufacturing and packaging
processes, no two are identical. While it may be possible to
eliminate these hardware imperfections through more pre-
cise manufacturing and quality control, doing so can greatly
increase costs. Manufacturers allow such impairments in
their devices because they are benign in nature. In partic-
ular, a wireless transmitter, even with such minor impair-
ments, continue to operate well within the tolerances speci-
fied by the corresponding communication standard, such as
IEEE 802.11. This work will demonstrate that a transmit-
ter’s radiometric identity, or the unified e↵ect of its impair-
ments, can be observed in its radio transmissions and can
be used to discern between di↵erent 802.11 NICs.

The first radiometric identification systems were devel-
oped to distinguish between friendly and enemy radars dur-
ing the Vietnam War era. Since then, similar systems have
been deployed by cellular networks to prevent access from
unauthorized phones [32, 35]. However, due to the commer-
cial and military nature of such systems few implementation
details are available. Nevertheless, evidence suggests that
such system are based on radiometric identification in wave-
form domain using signal transients [25], which are minute
waveform structures that do not server a protocol function.

Use of transients for radiometric identification of 802.11
transmitters was studied by Barbeau, Hall and others [5, 17,
18]. However, using transients for identification appears to
be di�cult, as is indicated by imperfect performance of ex-
isting schemes even in modestly-sized evaluations. Instead,
we leverage understanding of the PHY layer to bypass the
challenges that hinder device identification using transients,
and attain significantly higher accuracy.

In particular, we introduce an approach, called PARADIS,
which stands for Passive RAdiometric Device Identification
System. PARADIS quantifies radiometric identity of a trans-
mitter on per-frame basis by comparing an observed signal
to the ideal in the modulation domain. Radiometric iden-
tity of a frame in PARADIS is defined to be a real vector,

Brik et al (2008)

1 Brik et al (2008), Jana et al (2010)

Hard to model è DNNs a natural match

•  It is not easy to eyeball signals to find patterns:

•  Our approach: Supervised learning

-  Data is complex-valued → Use CNN with complex-valued weights

-  Protocol-agnostic, so can we completely disregard domain knowledge? 5

Appendix

Figure 5

Figure 6

488

Spectra of 6 WLAN cards from 3 manufacturers (Remley et al, 2005)

Magnitude
(dBm)

Frequency

It is hard work to make sure DNNs learn what we want them to

•  They appear learn the “shortest path” to achieving their objective

•  For example: our prior work with ADS-B shows that they will do their
best to lock onto ID fields if they can

•  (IDs are easily spoofed)

•  Inference based on the entire packet è DNN focuses on ID fields

•  If the ID field is deleted, then message + parity used to implicitly
reconstruct the info

•  Safe strategy: use preamble alone

•  Open issue: how to certifiably sanitize ID info from packet?

6

Complex-valued CNNs

Natural fit to complex baseband wireless signals

7

Choice of complex activation functions

8

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

Figure adapted from Trabelsi et al (2018)

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

w = 0

b−b

w = z

|w| = |z|− b

Re(z)

Im(z)

(a) w = ModReLU(z)

w = 0

w = j Im(z)

w = Re(z)

w = z

Re(z)

Im(z)

(b) w = CReLU(z)

Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0,π/2] (the first quadrant). Figure adapted from [15].

music and vision tasks [15, 16]. Here we employ the frame-
work of [15] which performs complex backpropagation by
using partial derivatives of the cost with respect to the real
and imaginary parts of each parameter. We make use of 1D
complex convolutional layers with the following choices of
activation functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z|− b, 0) ej z .

• CReLU - Unlike ModReLU this function does not pre-
serve phase, with separate ReLUs applied on the real and
imaginary parts of the input. The phase of the output is
therefore limited to [0,π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance
We provide results for an external database for two different

wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband air
traffic control signals. We start by using only the preamble for
fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Evolution of training accuracy over epochs

ModReLU

CReLU

Fig. 3: Evolution of training accuracy over epochs for Mod-
ReLU and CReLU architectures (ADS-B, 100 devices). Mod-
ReLU provides a small (5%) gain in train and test accuracies
over CReLU, with similar convergence behavior.

neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and ℓ2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B
protocol, we obtain 81.66% accuracy with 100 devices (using
400 samples per device for training and testing), with the
confusion matrix shown in Fig. 4. Fig. 3 compares the conver-
gence of ModReLU and CReLU architectures. Both activation
functions have similar convergence time, with ModReLU
resulting in slightly higher accuracy for both the training and
test sets.

Fig. 5 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-
characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200

0 20 40 60 80
Predicted Class

0

20

40

60

80

T
ru

e
C
la

ss

0

20

40

60

80

100

Fig. 4: Confusion matrix for ADS-B (100 devices).

Preserves phase
Better accuracies

Phase distorted outside
1st quadrant

Complex-valued 1D CNN with WiFi data

9

•  We use only the preamble

-  Robust to spoofing of MAC ID

-  In principle, preamble can be learnt in unsupervised fashion for any protocol

•  Clean data from 19 WiFi devices (802.11ag) è Platform for controlled
emulations to explore generalization and robustness

-  99.5% accuracy on the original clean data

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Generalization for Robust Wireless Fingerprinting

WiFi preamble
 − 3200 samples
 − Sampled at 200 MHz

Complex-valued conv. layer
 − Kernel size: 200
 − Stride: 100
 − 100 filters

Complex-valued conv layer
 − Kernel size: 10
 − Stride: 1
 − 100 filters

Real-valued
 dense layer
 − 100 neurons
 − Shared weights

Real-valued
 dense layer
 − 100 neurons
 − Shared weights

Temporal
 average

|·|2

Figure 2. Complex-valued 1D CNN architecture for WiFi signals.

Table 1. Performance when only the test data is offset, with CFOs
in the range from -20 to 20 ppm. Augmenting training data with
uniformly distributed CFOs helps confer robustness.

Type of data
augmentation

CFO in test set

None Bernoulli Uniform

None 99.50 4.63 13.58
Bernoulli 3.32 99.32 13.53
Uniform 96.21 90.79 95.37

menting the size of the training set by 5x in each scenario.

We find that this strategy can significantly help in learning
robust fingerprints, but the type of augmentation matters:
in particular, it is insufficient to augment with worst-case
offsets alone. When we train with Bernoulli offsets, the
network becomes robust to Bernoulli test offsets (99.3%),
but fails to generalize to any offset smaller than 20 ppm,
including an offset of zero (3.3% accuracy). In contrast,
when we augment data with uniformly chosen offsets, we
obtain resilience (> 90%) to all test set offsets in the desired
range.

2.2. "Different Day" Scenario

We now emulate collecting training data on one day and
testing on another: we insert different “physical” offsets for
each device, randomly chosen in the range (−40, 40) ppm,
but fix the offset for all packets from a particular device.
Oscillator drift across days is realized via different random
seeds for training and test offsets. This setting makes it
particularly easy for the network to focus on the CFO as
a fingerprint, resulting in artificially high training accura-
cies (94.2%), but poor test set performance (9.7%) due to
frequency drift.

Table 2 reports on the efficacy of various CFO augmenta-
tion strategies, capable of increasing test accuracy to 87.1%.
For training data, we find that the best augmentation tech-

nique is to use a different augmentation offset for each
packet in a class, but the same set of offsets across classes,
which discourages the network from learning the CFO as
a means of distinguishing between classes. We term this
an “orthogonal” strategy: we are trying to train in a direc-
tion “orthogonal” to the tendency to lock onto the “physi-
cal” CFO as a signature.

A novel finding is that data augmentation for testing leads
to significant performance gains when we add up log-
likelihoods (logits) across augmented versions of each test
packet. The best result is obtained when we insert a dif-
ferent randomly chosen CFO for each of a 100 copies of
each test data packet, and then sum up logits across the
augmented data before applying softmax.

3. Multipath Fading Channels
The wireless channel is another important source of distri-
bution shift in training and test data. Since multipath com-
ponents in the channel depend on propagation geometry, a
network that locks on to the channel will fail to general-
ize to test data collected on a different day or location. If
the training data does not span a sufficiently diverse set of
geometries, it could contain channels that are highly corre-

Table 2. Performance in the “different day” CFO setting, with
CFOs in the range from -40 to 40 ppm. “Random” training aug-
mentation uses a different offset for each packet, while the “or-
thogonal” type uses the same set of offsets across classes.

Training
augmentation

Test time augmentation

None 5 20 100

None – 9.68 7.84 8.74 8.47
Random 5 74.21 71.84 74.21 77.37

20 72.79 75.84 78.05 80.05
Orthogonal 5 69.58 75.11 81.05 83.63

20 82.37 82.32 86.21 87.11

DNN: “How should I cheat now?”

How about learning the carrier freq offset (CFO)?

Or maybe the channel?

10

(Lack of) Robustness in Time

•  Carrier frequency offset (CFO) drifts across time

•  Networks trained on clean data do not generalize to offset data

-  Accuracy drops from 99.5% to 4.6%

-  At a very small CFO of 20 parts per million (ppm)

11

(Lack of) Robustness in Space

•  Wireless channel changes across locations and days

•  We use LTE multipath models (Rayleigh fading) to simulate effect of
channels across days

•  Same day scenario: 98%. Different days: 5.8%

•  Clear indication that network locks on to channel

12

Generalizing in space and time

•  Want to avoid classical signal processing: equalization, CFO removal

-  Implementation requires detailed understanding of protocol

•  Our approach: use just enough signal modeling for data augmentation

•  Robustness to CFO drift requires augmentation with random frequency
shifts

•  Robustness to channel requires training data augmentation by passing
through randomly chosen channels

•  New concept: test augmentation

-  Augment multiple copies of a test packet

-  Add up outputs across augmented copies

13

Effect of CFO augmentation

•  Augmentation with only worst-case offsets is not sufficient

-  Network becomes robust to worst-case, but not to any other offset

•  Uniformly chosen CFO augmentation works well

-  90+% accuracy in all scenarios

14

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Generalization for Robust Wireless Fingerprinting

WiFi preamble
 − 3200 samples
 − Sampled at 200 MHz

Complex-valued conv. layer
 − Kernel size: 200
 − Stride: 100
 − 100 filters

Complex-valued conv layer
 − Kernel size: 10
 − Stride: 1
 − 100 filters

Real-valued
 dense layer
 − 100 neurons
 − Shared weights

Real-valued
 dense layer
 − 100 neurons
 − Shared weights

Temporal
 average

|·|2

Figure 2. Complex-valued 1D CNN architecture for WiFi signals.

Table 1. Performance when only the test data is offset, with CFOs
in the range from -20 to 20 ppm. Augmenting training data with
uniformly distributed CFOs helps confer robustness.

Type of data
augmentation

CFO in test set

None Bernoulli Uniform

None 99.50 4.63 13.58
Bernoulli 3.32 99.32 13.53
Uniform 96.21 90.79 95.37

menting the size of the training set by 5x in each scenario.

We find that this strategy can significantly help in learning
robust fingerprints, but the type of augmentation matters:
in particular, it is insufficient to augment with worst-case
offsets alone. When we train with Bernoulli offsets, the
network becomes robust to Bernoulli test offsets (99.3%),
but fails to generalize to any offset smaller than 20 ppm,
including an offset of zero (3.3% accuracy). In contrast,
when we augment data with uniformly chosen offsets, we
obtain resilience (> 90%) to all test set offsets in the desired
range.

2.2. "Different Day" Scenario

We now emulate collecting training data on one day and
testing on another: we insert different “physical” offsets for
each device, randomly chosen in the range (−40, 40) ppm,
but fix the offset for all packets from a particular device.
Oscillator drift across days is realized via different random
seeds for training and test offsets. This setting makes it
particularly easy for the network to focus on the CFO as
a fingerprint, resulting in artificially high training accura-
cies (94.2%), but poor test set performance (9.7%) due to
frequency drift.

Table 2 reports on the efficacy of various CFO augmenta-
tion strategies, capable of increasing test accuracy to 87.1%.
For training data, we find that the best augmentation tech-

nique is to use a different augmentation offset for each
packet in a class, but the same set of offsets across classes,
which discourages the network from learning the CFO as
a means of distinguishing between classes. We term this
an “orthogonal” strategy: we are trying to train in a direc-
tion “orthogonal” to the tendency to lock onto the “physi-
cal” CFO as a signature.

A novel finding is that data augmentation for testing leads
to significant performance gains when we add up log-
likelihoods (logits) across augmented versions of each test
packet. The best result is obtained when we insert a dif-
ferent randomly chosen CFO for each of a 100 copies of
each test data packet, and then sum up logits across the
augmented data before applying softmax.

3. Multipath Fading Channels
The wireless channel is another important source of distri-
bution shift in training and test data. Since multipath com-
ponents in the channel depend on propagation geometry, a
network that locks on to the channel will fail to general-
ize to test data collected on a different day or location. If
the training data does not span a sufficiently diverse set of
geometries, it could contain channels that are highly corre-

Table 2. Performance in the “different day” CFO setting, with
CFOs in the range from -40 to 40 ppm. “Random” training aug-
mentation uses a different offset for each packet, while the “or-
thogonal” type uses the same set of offsets across classes.

Training
augmentation

Test time augmentation

None 5 20 100

None – 9.68 7.84 8.74 8.47
Random 5 74.21 71.84 74.21 77.37

20 72.79 75.84 78.05 80.05
Orthogonal 5 69.58 75.11 81.05 83.63

20 82.37 82.32 86.21 87.11

•  We emulate collecting training data on one day, testing on another

-  Different CFO for each device, same CFO across packets in a device

•  Test accuracy drops to 9.7%, training acc 94.2% → Network locks on to CFO

•  “Orthogonal” training augmentation works well

-  Different CFO for each packet from a device, same sets of CFOs across devices

•  Test time augmentation helps significantly

“Different day” CFO setting

15

Effect of channel augmentation

•  “Orthogonal” training augmentation works well again

-  Different channel for each packet from a device, same sets of channels across devices

-  47.8% accuracy in “train one day, test one day”

•  Can boost to 71.8% if we are allowed access to data collected over 2 days:

-  Augmentation + varied training data = increase in overall channel diversity

16

Can’t we just compensate for confounding factors?

•  Only if they are simple enough: works for CFO, does not work for channel

-  BUT compensation requires more detailed knowledge of protocol

17

CFO: compensation better Channel: augmentation better

Compensation & augmentation can be judiciously combined

18
(Combining GLRT and Bayesian approaches to nuisance parameters)

The importance of augmentation

19

Training augmentation is essential
(baseline model does not generalize even

 with 20 “days” of data)

Test augmentation yields substantial gains
(need > 2 to improve over baseline)

Takeaways

•  Application of DNNs to device fingerprinting has many pitfalls

-  May lock onto effects unique to training data (CFO, channel)

-  May use variable or easily spoofed characteristics (ID, CFO, channel)

•  Need a significant level of signal modeling

-  Avoiding easily spoofed components of data

-  Model-driven augmentation for robustness to space-time variations

•  Augmentation is helpful for both learning and inference

-  Soft combining for augmented test data improves performance

•  Many open issues

-  Deeper understanding of model-driven augmentation and soft combining

-  Fundamental limits of robust fingerprinting

20

General Observations

•  DNNs are powerful feature extractors and function approximators, but
blind application is a recipe for trouble

-  Controlled experiments in well-modeled settings a promising approach to
general insights?

-  Understanding DNNs via communications applications?

•  Domain expertise and modeling is invaluable for ensuring that the DNNs
do what we actually want

-  Augmentation is a “Bayesian” strategy for exploiting domain expertise within
a general-purpose optimization framework

21

