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Abstract—We investigate the problem of localizing multiple
targets using a single set of measurements from a network of
radar sensors. Such “single snapshot imaging” provides timely
situational awareness, but can utilize neither platform motion,
as in synthetic aperture radar, nor track targets across time, as
in Kalman filtering and its variants. Associating measurements
with targets becomes a fundamental bottleneck in this setting.
In this paper, we present a computationally efficient method
to extract 2D position and velocity of multiple targets using
a linear array of FMCW radar sensors by identifying and
exploiting inherent geometric features to drastically reduce the
complexity of spatial association. The proposed framework is
robust to detection anomalies, and achieves order of magnitude
lower complexity compared to conventional methods. While our
approach is compatible with conventional FFT-based range-
Doppler processing, we show that more sophisticated techniques
for range-Doppler estimation lead to reduced data association
complexity as well as higher accuracy estimates of target positions
and velocities.

Index Terms—Sensor Networks, Aggregation, Approximation
Algorithms, Single Snapshot Localization

I. INTRODUCTION

RECENT advances in low-cost design and fabrication en-
able the potential application of high-accuracy millimeter

wave (mmWave) radar sensors to a variety of commercial
sectors, including automotive, drones and robotics [1], [2]. The
large available bandwidths enable high range resolution, while
the small wavelength enhances Doppler and microDoppler
resolution. In this paper, we explore the utility of a network
of such sensors in providing timely situational awareness for
highly dynamic environments, by considering estimation of the
kinematic state of the scene (i.e., the positions and velocities
of targets) via a single set of measurements obtained by a
network of sensors. We do not rely on tracking targets across
time, or on platform motion to synthesize larger apertures.

The specific problem we consider is that of localizing
multiple targets in a 2D scene using a linear array of radar
sensors. Figure 1 shows a scenario with two targets being
observed with a linear array of four spatially separated sensors
positioned along x-axis. Each sensor collects the relative
range and Doppler observations for the targets in the scene.
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Since these observations are not ordered a priori, each range-
Doppler measurement must first be associated with a target,
and then the measurements associated with a given target
from multiple sensors can be used to estimate its position
and velocity. Since the number of possible associations grows
exponentially in the number of sensors, it is critical to develop
efficient algorithms for spatial association. It is also important
to build in robustness to missed detections, since millimeter
waves can be easily occluded by objects in the scene.
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Fig. 1. 2D System model with a linear array of radar sensors placed on
x-coordinates, [l1, l2, l3, l4]. The kinematic states z1,z2 of two targets are
to be estimated using the unordered range and doppler observations from the
sensors.

A. Contributions

Our goal is to develop robust and computationally efficient
algorithms for single snapshot spatial data association. The
main contributions of our study are as follows:
(1) We examine the geometric relations between instantaneous
range, Doppler, and sensor locations, and show that features
obtained via those geometric relations simplify the association
problem. Specifically, we observe and exploit linear relation-
ships between functions of the range-Doppler observations for
a target across the linear array of sensors.
(2) We provide a low-complexity solution for the association
problem by introducing a new graph-search based algorithm
which prunes the set of feasible associations based on geomet-
ric relationships. In particular, our proposed algorithm consid-
ers a cost function based on the linear geometric relationships
together with the triangle inequality constraint for the range
observations at pairs of sensors and eliminates a significant
number of possible associations. In addition, our approach
accounts for detection anomalies such as missed detections
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and false alarms while reducing the complexity.
(3) We compare our proposed algorithm against conventional
algorithms in the literature and evaluate performance in terms
of localization accuracy, cardinality errors, robustness, and
complexity. Also, we show that using an enhanced accuracy
estimation algorithm (i.e., NOMP [3]) instead of conventional
FFT-based approach improves localization accuracy and re-
duces association complexity as the number of targets and
sensors increases.

B. Related Work
The majority of prior work addresses temporal data asso-

ciation, which focuses on association of new measurement
with existing target tracks. A number of techniques have been
proposed in this regard, including Random Finite Set based
sampling methods [4], fuzzy clustering [5], and convex opti-
mization [6]. These methods rely on the temporal continuity
of target state to assist in associating observations across
multiple time frames. Most of these methods are designed
for a single sensor case, and extensions to multiple sensor
settings are not well-known. In this paper, our focus is on
spatial association, where the data from multiple spatially
separated sensors needs to be associated within the same time
frame. While the problem of spatial association studied in this
paper has received relatively less attention, we provide a brief
overview of the most widely used algorithms in the literature
that can be extended for the spatial problem.

The association problem between a pair of sensors can be
optimally solved using the well-known Hungarian algorithm
[7]. However, a naive extension to multiple sensors by factor-
izing into pairwise (2D) associations over consecutive sensors
does not work well in the presence of detection anomalies
such as miss, false alarm, clutter, and close-target interactions
[8].

The multi-sensor association problem can be formulated as
the Maximum A-Posteriori (MAP) estimation of most likely
chain of observations across sensors. In order to solve this
problem, a graphical model is defined, where a node represents
sensor detection and an edge between nodes represents asso-
ciation hypothesis with a certain probability [9]. Association
between sensors is obtained by solving the Minimum Cost
Maximum Flow (MCF) problem over this graph. A variety
of methods such as Linear Programming [10], Dynamic Pro-
gramming [11], [12], and push-relabel maximum flow [9] have
been proposed to efficiently solve the MCF problem. Although
those methods solve the optimization in polynomial time,
they require specialized mechanisms such as expansion of the
observation set over successive iterations to resolve detection
anomalies. Moreover, the complexity of the MCF problem
grows quickly as O(N3 logN), where N is the number of
sensors [9]. In comparison with prior work, our approach
reduces complexity by leveraging the high accuracy of sensor
observations and their geometric properties.

Probabilistic approaches such as the gated Nearest Neighbor
(NN) [13] method sequentially associate observations across
the sensors. At each sensor, each observation is associated with
its closest match to the state predicted by the chain of obser-
vations from the past sensors. However, using only the single

most likely observation to form association is vulnerable to
clutter and anomalies in noisy scenarios. In addition, a single
association error can cause significant contamination in final
state estimate. This problem is well known in the literature on
Simultaneous Localization and Mapping (SLAM), and various
improvements such as Multiple Hypothesis Tracking [14], K-
best assignment [15], and JPDAF [13] have been proposed.
In contrast, we propose an alternative search approach based
on geometric fitting criteria which do not depend on such
probabilistic models and avoid the contamination of state.

Bottom up approaches based on grid search over a set of
candidate target states have been suggested in the literature
[16]. In [17], an approach based on enumerating all possible
candidates followed by pruning and merging shows promis-
ing results. Randomized adaptive search procedures such as
random consensus sampling (RANSAC) [18], Interpretation
Tree [19], Joint Compatibility Branch and Bound [20] have
been shown to mitigate the impact of detection anomalies.
These methods utilize a suitably defined metric to check the
consistency of a set of associated observations, and employ
branch and bound type search strategies to reduce the search
complexity. Our graphical approach uses similar pruning tech-
niques to perform the graph search, but with the additional use
of geometric constraints and a geometric fitting error metric
for guiding the search.

Outline: The rest of the paper is organized as follows. In
Section II, we introduce the association problem in the single
snapshot localization setting. In Section III, our graph associ-
ation algorithm is presented. Then, the proposed algorithm is
evaluated over different system parameters in Section IV and
Section V concludes the paper.

Notation: a,a, A,A represent scalar, vector, matrix and set
respectively. We use [.] to construct vector, matrix and {.}
to construct set. ×,∪,∩ denote the cartesian product, union
and, intersection of two sets and ∅ denotes a NULL value.
n(A) represents the number of non-empty elements in set A.
◦ denotes element-wise multiplication between vectors. AT

denotes transpose of matrix A and ∧ denotes logical “and”
operator.

II. PROBLEM DESCRIPTION

A. System Model

Consider a linear array of NS radar sensors in a two-
dimensional (2D) scene with NT targets as in Figure 1.
Without loss of generality, we assume that the sensor array
is static and located along x-axis and centered at origin. The
absolute kinematic state of the targets can be obtained by using
the target location relative to this sensor array along with its
own odometer information.

The kinematic state (i.e., instantaneous position and velocity
information of all targets) of the scene is given by

Z = {zk}NT

k=1

where zk = (xk, yk, vkx, v
k
y ) is the kinematic state of target k

with an instantaneous velocity of (vkx, v
k
y ) at position (xk, yk).
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The range-Doppler of target k observed at sensor i, can be
expressed in terms of the desired kinematic state as follows,

rki =
√

(xk − li)2 + (yk)2, dki =
(xk − li)vkx + ykvky

rki
.

(1)

where li is the x-coordinate of sensor i. We denote this non-
linear mapping as (rki , d

k
i ) = Ti(zk).

B. Single Snapshot Localization

In order to extract range and Doppler information of target
k, each sensor i uses the signal (i.e., mobs

i (t)) reflected back
from the scene in monostatic mode. In this study, we focus
on localization of the scene using a single snapshot. For that
reason, the kinematic state of the scene is assumed to be
constant for a certain time interval and the scene localization is
performed based on the range and Doppler information gath-
ered during that time interval. Based on those, the Maximum
Likelihood Estimator (MLE) for the scene including all NS
sensors can be expressed as,

ẐML = argmax
Z

Ns∏
i=1

L
(
mobs
i |Ti(Z)

)
(2)

where mobs
i corresponds to the observed signal in a single

snapshot and L
(
mobs
i |Ti(Z)

)
is the conditional log likelihood

of the observed signal for scene Z .
The optimization problem in (2) is difficult in general since

the number of targets (i.e., NT ) is not known and a brute force
search for Z incurs exponential complexity in the number of
targets; that is, n(D(z))NT for a grid D(z). In addition, the
observations contain a variety of anomalies such as clutter,
missed detections, and false alarms, which further complicates
the solution.

In order to facilitate the solution of the problem in (2), the
problem is divided into two stages as follows:

1) Estimation: The Range-Doppler pairs of Mi ≤ NT non-
occluded targets are estimated from received signal mobs

i at
sensor i using efficient algorithms proposed in the literature
[21]. The estimate at sensor i for kth target can be modeled
as follows,

(rki ) = (rki )true + wRi + b̃ki , (3a)

(dki ) = (dki )true + wDi + b̄ki (3b)

where wRi ∼ N (0, σ2
ri) and wDi ∼ N (0, σ2

di
) denote indepen-

dent Gaussian distributed noises with zero mean and b̃ki and
b̄ki denote the bias errors introduced due to proximity with any
other Mi− 1 targets in the scene. The noise variance depends
on estimation accuracy at the given SNR which, in turn,
depends on target radar cross section (RCS), path loss, and
antenna directivity. For simplicity, we assume equal received
signal power across all targets in the scene.

We denote the set of estimated range-Doppler pairs at sensor

i by Θi = {
⋃Mi

k=1 θ
k
i } where θki =

[
(rji ), (d

j
i )
]T

. Index
k ∈ [1,Mi] in θki denotes the index of kth measurement with
respect to the Mi measurements for sensor i, whereas, index
j in [(rji ), (d

j
i )]

T denotes the global index of the jth target.

The different superscripts are used to highlight the fact that
the order of targets for which the range-Doppler measurements
are obtained at the sensors is unknown. Indeed, our aim in this
work is to find the correct ordering/association of the range-
Doppler measurements.

2) Association problem: The estimation of kinematic state
Z requires the association of those un-ordered range-Doppler
pairs, Θi, collected across all sensors. An association chain
is defined as the ordered set of range-Doppler observations,
A : {{θi}NS

i=1|θi ∈ Θ̃i} which is constructed from the NULL
augmented sets; that is, Θ̃i = Θi ∪ ∅. θi = ∅ corresponds
to the NULL state, which represents absence of observation
at sensor i (e.g., due to missed detection). Figure 2 shows a
graphical representation of an association problem with three
targets observed using NS = 4 sensors. Sensors 1 and 2
observe all targets M1 = M2 = 3, sensor 3 misses target
z2 and sensor 4 has a false alarm. The desired association
chain for target z1 across four sensors is shown in the shaded
region.

The spatial association problem can be formulated as the
following maximum a posteriori (MAP) estimation problem,

A∗ = argmax
A⊂Θ̃1×···×Θ̃NS

logP (A)P (Θ|A) (4)

such that Ai ∩Aj = ∅ ∀i 6= j, n(Ak) ≥ 2

where Θ =
⋃NS

i=1 Θi denotes the set of all range-Doppler ob-
servations, A = {A1,A2, · · · } denotes a subset of association
chains chosen from the set of all possible potential chains,
Θ̃1×Θ̃2×· · · Θ̃NS

. The optimal solution A∗ consists of the set
of chains which jointly maximizes overall log likelihood while
the constraints ensure that no two chains share a common
observation and each chain contains at least two observations.

When the targets are well-separated, the bias terms in (3a)
and (3b) vanish and the likelihood for the individual targets
becomes independent across multiple targets. In this case, the
log likelihood in (4) simplifies to

logP (A)P (Θ|A) =
∑
A∈A

logP (A) + logP (Θ|A)

where P (Θ|A) =
∏NS

i=1 P (Θi|A) is the probability of de-
tecting the range-Doppler pairs which can be modeled by a
Bernoulli distribution,

P (Θi|A) =

{
α , if target missed at sensor i ,Ai = ∅
1− α , else

where α denotes the probability of detection errors in (5) and
is set to nominal value α = 0.05 [9]. This model accounts
for the occurrence of both miss and false alarms across the
sensors in the likelihood, which is given by

P (Θ|A) = αNS−n(A)(1− α)n(A) .

Also, P (A) is the likelihood of chain modeled using the
perceived range-Doppler pairs, (r̂i, d̂i) = Ti (ẑ) for a target
state ẑk predicted by the chain (see Section III-B2). By
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ignoring the constant terms which preserve the MAP solution,
we define the normalized negative log likelihood as follows,

L(A) =
∑
θi∈A

(
(r̂i − ri)2

σ2
r

+
(d̂i − di)2

σ2
d

)
+ n(A) log

α

1− α
(5)

where θi = [ri, di]
T is the observation from ith sensor in

association chain A and σ2
r and σ2

d are the nominal variance
terms for range and Doppler, respectively (see Appendix A
for details). The first term in (5) denotes the squared error
between the estimated and observed range-Doppler pairs in
the chain while the second term penalizes the selection of
smaller chains which prevents formation of duplicate chains
for the same target. Hence, the association problem is reduced
to the following constrained minimization problem:

A∗ = argmin
A⊂Θ̃1×···×Θ̃NS

∑
A∈A

L(A) (6)

such that Ai ∩Aj = ∅ ∀i 6= j, n(A) ≥ 2

The joint minimization problem over all potential association
chains in (6) is difficult in general. For that reason, we
use an iterative approach where the most likely chains of
observations are identified and removed from observation set
Θ sequentially,

argmin
A∈Θ̃1×···×Θ̃NS

L(A) such that n(A) ≥ 2 . (7)

Without any prior knowledge of association between the
nodes, the number of potential chains Θ1×Θ2×· · ·ΘNS

still
grows exponentially. However, the formulation in (7) enables
the utilization of various network optimization methods to
identify the most likely chain. Once the associated chains
of range-Doppler observations are found across sensors, the
kinematic state of the scene can be easily obtained by solving
the inverse kinematic problem [x̂, ŷ, v̂x, v̂y] = T−1(A) using
Gauss-Newton algorithm [21].

III. GRAPHICAL ASSOCIATION

In order to solve the association problem in (7), we for-
mulate the spatial association problem using graphical models
and present our low-complexity graphical search method to
obtain association chains efficiently via geometric relations.

A. Graph Generation

To begin with, we define a target-based graph to perform
data association with following elements:
• Node θki represents the kth range-Doppler pair at sensor
i. Nodes for a given sensor are arranged along a single
column of the graph as shown in Figure 2.

• Edge eklij = [θki ,θ
l
j ] denotes the linkage between pairs of

observation across sensor i and sensor j, which can cor-
respond to a feasible target zklij referred to as “candidate”
location.

• Chain Aj is represented by the sequence of two or more
nodes spanning distinct sensors, which is associated to a
single target, ẑj .

Geometric Constraint: A significant portion of the edges
can be easily discarded in the graph generation phase by
using the following geometric constraint on target’s range (for
noiseless case),

CG(eij) : (ri − rj < lij) ∧ (ri + rj > lij) (8)

where lij = |li − lj | represents the separation between sensor
i and sensor j.

Graph G = (V,E) is initialized with vertices for all range-
Doppler pairs V = {Θi}NS

i=1 and edges E between any two
consecutive nodes that satisfy condition CG(ek,li−1,i),∀k ∈
[1,Mi−1],∀l ∈ [1,Mi] for all i ∈ {2, . . . , NS} given in (8).

B. Spatial Association using Geometric Features

In this subsection, we describe the solution of the associ-
ation problem presented in (7) using graph G by exploiting
geometric relations between range, Doppler, and sensor ge-
ometry. For clarity of exposition, we focus on the association
procedure of a single target z = [x, y, vx, vy] and, therefore,
drop the superscript k for the sake of simplicity.

1) Geometric Relations: The range of target observed at
ith sensor is given by

ri =
√

(x− li)2 + (y)2 . (9)

The Doppler component is the rate of change of range and it
is given by,

di = ṙi =
(x− li)vx + yvy

ri
ridi = (x− li)(vx) + yvy . (10)

For a linear array of sensors, the range and Doppler measure-
ments for a target satisfy the following relations based on (9)
and (10):

r2
i = r2

j − 2x(li − lj) + (l2i − l2j ) (11a)

ridi = rjdj − (vx)(li − lj) (11b)

Fig. 2. Target-based observation graph for a scene with 3 targets and 4
sensors. Sensors 1, 2 observe all 3 targets in different orders. Sensor 3 misses
the observation of target state z2 while sensor 4 contains a false observation.
Desired association chain, A is shown by the shaded set of nodes.
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where ri (rj) and di (dj) are the range and Doppler estimated
at the ith (jth) sensor, respectively. li (lj) is the x-coordinate
of ith (jth) sensor. (9) and (10) indicate that for the noiseless
setting, the range-Doppler products and range squared are
linear with respect to target’s velocity and position at x-
coordinate, respectively. Therefore, the correct associations
can be identified by fitting the observations to those geometric
relations.

2) State Prediction and Fitting Error: The presence of
noise in (ri, di) causes high error in these geometric relations
due to the quadratic dependence. An estimate of target state
parameters x̂, v̂x can be obtained by minimizing that error
between observed and predicted range and Doppler values. Let
q1 = [ridi|(ri, di) ∈ A] and l = [li|θi ∈ A] denote the vector
of range-Doppler products using observations in chain A and
the vector of corresponding sensor x-coordinates, respectively.
Predicted fit q̂1 can be expressed using the geometric relation
in (11b) as follows:

q̂1 = −vxl+ κ11 = Hs1

where H = [l,1], s1 = [−vx κ1]
T , and κ1 is a constant.

Then, the least squares estimate for ŝ1 is obtained as

ŝ1 = argmin
s1

‖q1 −Hs1‖2 (12)

= (HTH)−1HTq1 .

Therefore, the least squares estimate is obtained as v̂x =
uTq1 where u = −H(HTH)−1e1 and e1 = [1, 0]T .

Similarly, let q2 =
[
r2
i |(ri, di) ∈ A

]
denote the vector of

range squared observations in chain A, predicted fit q̂2 can be
expressed using the geometric relation in (11a) as follows:

q̂2 − l ◦ l = −2xl+ κ21 = Hs2

where s2 = [−2x κ2]
T and κ2 is a constant. The least squares

estimate of x̂ is obtained as

ŝ2 = argmin
s2

‖q2 − l ◦ l−Hs2‖2 (13)

= (HTH)−1HT (q2 − l ◦ l) .

Hence, we obtain x̂ = uT (q2 − l ◦ l)/2.
The remaining state parameters (i.e., ŷ and v̂y) are obtained

using the geometric relations in (9) and (10) as

ŷ =

√
1

n (A)

∑
θi∈A

(r2
i − (x̂− li)2) ,

v̂y =
1

n(A)

∑
θi∈A

ridi − (x̂− li)v̂x
ŷ

.

The normalized geometric fitting error of a chain A can be
computed using these estimates as follows:

F (A) =
‖q1 − q̂1‖2

η1
+
‖q2 − q̂2‖2

η2
(14)

=

∥∥(I −H(HTH)−1HT
)
q1

∥∥2

η1

+

∥∥(I −HT (HTH)−1H
)

(q2 − l ◦ l)
∥∥2

η2

(15)

where η1 and η2 are normalization constants that are set based
on CRB (see Appendix C for details) and (15) is obtained
by substituting the predicted fits into (14). It is important to
note that the error in (15) is additive over the observations
in chain A. Therefore, the extension of the chain cannot
reduce the fitting error. In other words, F (A) is monotonically
non-decreasing over the length of chain A. For that reason,
the fitting error provides a simple measure of the geometric
consistency of a chain, which can be used to traverse the graph
and extract the chains efficiently.

3) Geometric Association: We now present a graph search
procedure which obtains the associated chains by minimizing
geometric fitting error F (A) in (15) and negative log likeli-
hood L(A) in (5). We apply the geometric relations by adding
constraints on the desired chain, A to the optimization problem
in (7) as follows,

min
A∈Θ̃1×···×Θ̃NS

L(A)

such that n(A) ≥ γ, (16a)

F (A) < τ
n(A)
f (16b)

The constraint in (16a) restricts the number of missed obser-
vations to be less than NS − γ and the constraint in (16b)
only allows chains with good geometric fit to be selected. In
order to provide a solution for the optimization problem in
(16), we perform Depth First Search (DFS) over the graph
generated in Section III-A to extract the chains, where those
additional constraints help in reducing the search complexity.
Our complete Spatial Association using Geometry Algorithm
(SAGA) is outlined in Algorithm 1. Here is a brief description:

1) We start the graph search by setting γ = NS so that
only chains that include observations from all sensors
are extracted. For that reason, we consider a graph
having edges between consecutive sensors only. This
helps to reduce the chains encountered during initial
DFS procedure (see Appendix E for details).

2) The DFS is guided by geometric fitting error F (A).
After each node is visited, the fitting error of candidate
chain is calculated and the chain is ignored if it has a
fitting error higher than predefined threshold τNS

f . Since
the fitting error is non-decreasing over the length of the
chain, most of the candidate chains are eliminated before
reaching at the end of the graph, which reduces the com-
plexity further. Details of DFS are shown in Appendix D.
At the termination of the DFS, the corresponding chain
of nodes is added to solution A† if it satisfies all the
constraints in (16) and the negative log-likelihood of the
association chain is below a predefined threshold (i.e.,
L(A) < τ

n(A)
l ). The nodes belonging to the selected

chains are removed from the graph together with their
corresponding edges to keep subsequent chains disjoint.

3) In order to deal with missed detection cases at sensors,
the minimum chain length constraint (i.e.,γ) is relaxed in
steps upto robustness level ρ. Due to that relaxation, the
graph includes not only the edges between consecutive
sensors but also the edges among the nodes that skip
over h consecutive sensors. Those edges are called Skip-
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h edges where h = NS−γ. Then, the DFS procedure is
repeated for different minimum chain length constraints.
Consequently, in this procedure, NULL states are taken
into account and the generated chain does not include
any observation from a sensor that misses the corre-
sponding target by skipping over the observations of that
sensor via Skip-h edges. In addition, the DFS procedure
implicitly accounts for NULL state in the beginning and
end of a chain by starting searching from different nodes
in consideration of minimum chain length constraint.

4) The thresholds (i.e., τf and τl) for the geometric fitting
error and the likelihood depend on length of the chain
n(A) and their initial value is set based on CFAR
criteria (see Appendix C for details). Using a tight initial
threshold τf for F (A) restricts the number of branches
to be explored at each node to a smaller set. This reduces
the initial complexity of DFS while allowing only a
subset of association chains A† ⊂ A∗ to be found. The
thresholds are later relaxed by a factor of β > 1 to allow
the observations contaminated with noise to be selected.
The relaxation is stopped when no further chains with
length n(A) ≥ NS − ρ exist in the graph.

Algorithm 1 Spatial Association using Geometric Assistance
Input: Graph G, Robustness level ρ

1: INITIALIZE Chains A† = ∅, τ = [τf , τl]init
2: repeat
3: REMOVE all Skip edges
4: for h = 0 to ρ do
5: Set minimum chain length: γ = NS − h
6: ADD SKIP-h EDGES TO GRAPH G

7: for v ∈ V do
8: DFS from node v: A← GA-DFS(v, γ, τ )
9: if Valid Chain, A is found then

10: A† ← A

11: Remove chain from graph V = V− {A}
12: end if
13: end for
14: end for
15: Relax thresholds: τ ← βτ
16: until Chains with length n(A) ≥ NS − ρ exists in G

Output: Selected chains A†

Robustness: During chain length relaxation, a Skip edge is
added between the observations across sensor i and sensor q
if

1) Observations θi and θq satisfy the geometric constraint
CG(eiq) in (8), and,

2) The target state predicted by θi and θq differs by a
predefined threshold τz from the ones predicted by using
all observations on the paths that connect θi and θq .

CS(eiq) :
∥∥ẑAp

− ẑiq
∥∥ > τz ,∀Ap : {θi,θq} ∈ Ap

(17)

where Ap is in the form of Ap = {θi,θj , · · · ,θq} with
θi and θq at the edges of the path, τz is set based on
CRB (see Appendix B), ẑiq indicates the predicted target

state based on θi and θq , and ẑAp
shows the predicted

target state using the observations in Ap.
Enforcing the condition in (17) avoids the formation of
multiple chains corresponding to the same target and avoids
unnecessary increase in the number of edges. The number of
skip connections introduced in the graph is controlled by the
robustness level; that is, 0 ≤ ρ ≤ (NS − 2), which sets the
maximum number of missed detections that can be tolerated
across the sensor array. In this way, addition of such edges
provides a flexible mechanism to provide robustness against
missed detection in the sensors while keeping search space in
control.

Complexity: The non-decreasing property of F (A) is used
to discard unlikely chains in the early stages of DFS. This
allows for rapid extraction of associations without requiring
search over all possible chains in the graph. The minimum
track length threshold, γ, is reset to its maximum value
after each relaxation. Therefore, the skip edges in the graph
can be removed at the end of the inner loop to reduce
search complexity further. Therefore, our approach exploits the
geometric structure of observations across multiple sensors to
reduce search complexity.

C. Spatial Association using Edge-based State Likelihoods

Before evaluating the performance of our main algorithm,
we describe an iterative search method, which relies on the fact
that an approximate kinematic state estimate can be derived by
using two connected observations in a graph. In other words, a
state estimate can be obtained for each edge in a graph, which
is a part of the association chain A. Therefore, the search space
for the association problem in (7) can be reduced to the set of
edges.

The likelihood of a candidate ze corresponding to an edge
e ∈ E can be computed as,

L(ze) =

NS∑
i=1

[
min
θ∈Θi

(
(r′i − ri)2

σ2
r

+
(d′i − di)2

σ2
d

)]
(18)

where [r′i, d
′
i] = Ti(ze) is the perceived range and Doppler at

sensor i for target state ze. Then, the most likely candidate
can be selected by evaluating (18) over all edges and choosing
the one that achieves the minimum negative log likelihood;
that is, z∗ = ze∗ for e∗ = argmine∈E L(ze). Then, the
observations associated with z∗ can be identified via the
following neighborhood constraint:

N(z∗) =

NS⋃
i=1

{(ri, di)|(ri − r∗i ) ≤ δr ∧ (di − d∗i ) ≤ δd}

where [r∗i , d
∗
i ] = Ti(z

∗) are the perceived range-Doppler at
sensor i and δr and δd are the range and Doppler resolution
parameters defined in Appendix A. The algorithm carrying out
this Spatial Association using Edge-based State Likelihoods
(SAESL) procedure is presented in Algorithm 2.

Since all edges in the graph are checked while selecting the
candidates, this approach exhibits higher complexity than our
proposed algorithm. Moreover, evaluation of state likelihood
L(ze) in (18) is more expensive than evaluation of chain
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Algorithm 2 SAESL Algorithm
1: INITIALIZE GRAPH WITH OBSERVATIONS Θ: G = (V,E)
2: AUGMENT GRAPH with skip edges
3: for h = 0 to ρ do
4: ADD SKIP-h EDGES TO GRAPH G

5: end for
6: INITIALIZE Z = ∅
7: while E 6= ∅ do
8: FIND MOST LIKELY CANDIDATE, Z← z∗

from edge z∗ = argmine∈E L(ze)
9: REMOVE ALL VERTICES EXPLAINED BY z∗,

V← V−N(z∗)
10: UPDATE EDGES E

11: end while
12: RETURN Selected candidates Z

likelihood L(A) in (5) as it involves a minimization over all
other observations. In Section IV, we use this algorithm as a
benchmark against our proposed algorithm.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed spatial association algorithm, SAGA against the SAESL
algorithm through various performance metrics. We consider a
linear array of NS FMCW radar sensors each of which collects
range and Doppler observations from the scene. The FMCW
radar system parameters are set based on the ones that are used
in typical low cost automotive systems at mm-Wave frequen-
cies [22]: bandwidth B = 0.5 GHz, carrier frequency fc = 60
GHz, chirp duration 78µs, Nch = 64 chirps, and sampling rate
fs = 0.82 MHz. This provides range and Doppler resolutions
of δr = 0.3 and δd = 0.5m/s, respectively, and maximum
range and Doppler of 19.2m and ±16m/s, respectively, suit-
able for short range situational awareness applications. In the
simulations, a single snapshot of the scene is considered with
multiple targets having equal received SNR at all sensors. The
kinematic states of targets are randomly selected based on uni-
form distributions x ∼ U(−8m, 8m), y ∼ U(2m, 12m), vx ∼
U(−10m/s, 10m/s), vy ∼ U(−10m/s, 10m/s).

It is important to note that when range and Doppler separa-
tion between two targets gets small, the estimation algorithm
either provides a merged estimate or results in detection
anomalies such as miss and false alarm. In order to differ-
entiate the scenes with such estimation errors due to range-
Doppler proximity, we consider two different scenarios with
two different scenes. The well-separated scene is generated
by enforcing a minimum separation between the range and
Doppler of the targets at all sensors. The adverse scene does
not have such constraints and contains additional missed detec-
tion anomalies by randomly removing measurements from the
sensors with probability Pmiss. Unless stated otherwise, the
nominal values of system parameters are presented in Table I.

A. Localization Accuracy

In this subsection, we analyze the localization accuracy
of kinematic state estimates obtained using associated sensor

TABLE I
SIMULATION PARAMETERS

Number of targets NT = 20
Number of radar sensors NS = 6

SNR −10 dB
Sensor Array Width LW = 4 m
Simulated misses Pmiss = 0.05
Robustness Level ρ = 4

Max error threshold d̄ = 0.16 m

observations. This depends on the accuracy of underlying
range-Doppler estimates. The position and velocity estimation
errors for state estimates Ẑ are computed as follows:

Dp(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Z true

dp(z, ẑ)2

Dv(Ẑ) =
1

n(Ẑ)

∑
ẑ∈Ẑ

min
z∈Z true

dv(z, ẑ)2

where dp(z, z′) =
√

(x− x′)2 + (y − y′)2 and dv(z, z
′) =√

(vx − v′x)2 + (vy − v′y)2 are the errors in position and
velocity, respectively. The CRBs for Range-Doppler and
Position-Velocity estimates are evaluated in Appendix A and
Appendix B, respectively. Figure 3 shows the Root Mean
Square Error (RMSE) in range-Doppler estimated at sensor
level for different number of targets in a well-separated case.
We observe that range-Doppler RMSE at individual sensors
achieves CRB at a SNR= −15 dB threshold. The RMSE for
position-velocity estimates obtained from sensor observations
also achieve their CRB at the same SNR threshold. This shows
that association using SAGA does not introduce any additional
errors to the localization process when SNR is above this
threshold. However, the RMSE increases sharply below the
SNR threshold due to the difficulty in associating noisy range-
Doppler pairs. Therefore, we use nominal SNR = −10 dB
in our simulations to perform further analysis.

Cardinality Error and OSPA: For multiple targets, the
number of valid targets identified by the system is also
an important performance metric. An estimated target ẑ is
classified to be valid only if it lies within a region “close”
to the true targets, minz∈Z true ‖ẑ − z‖ < d̄ where d̄ sets the
maximum error threshold. The cardinality error is defined
as the difference between actual number of targets and the
number of estimated target; that is, NT −Ne = |Z true| − |Ẑ|.
That error is caused due to the detection anomalies in the
estimation algorithm at sensor level as well as during the
association stage. In such cases, the localization accuracy by
itself does not capture the true performance of the system.
Therefore, we use the optimal subpattern assignment (OSPA)
metric [23], which combines the localization and cardinality
error into a single performance metric and is given by

OSPA(Ẑ) =

√√√√ 1

n(Ẑ)

(
m∑
i=1

min
(
dc(ẑi), d̄

)2
+ |Ne −NT |d̄2

)

where m is the number of valid targets, Ne − NT is the
cardinality error and, dc(ẑi) is the localization error computed
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Fig. 3. Range-Dopper estimation accuracy and Position-Velocity estimation
accuracy versus SNR. The position-velocity RMSE converges to the CRB
bound as SNR increases and the SNR at which this convergence occurs is
called as SNR threshold. The SNR threshold provides an indicator for the
localization performance when multiple targets, NT > 1 are present.

relative to closest true target given as

dc(ẑi) = min
z∈Z true

dp(z, ẑi)
2 + dv(z, ẑi)

2 .

Figure 4 shows the OSPA error along with the localization
and cardinality errors with increasing scene density in the
well-separated case. Both localization error and cardinality
error start to increase as the scene gets denser. The SAGA and
SAESL schemes have comparable localization error for each
target that is validated, but SAGA underestimates the number
of targets (i.e., Ne < NT ) while SAESL overestimates it (i.e.,
Ne > NT ). Since the localization error is computed only
over the reduced set of valid targets, we compute the OSPA
metric which effectively combines both quantities. The OSPA
metric is dominated by localization error when the scene is
sparse and cardinality errors when the scene is dense. We
observe that SAGA has slightly worse overall performance
compared to SAESL as the number of targets increases at low
SNR = −15dB. This is because the geometric fit that SAGA
relies on is impaired at lower SNR. As we increase SNR to
−10dB, the geometric fit and hence performance of SAGA
improves, reducing the performance difference with SAESL.
Moreover, SAGA obtains the association with significantly
lower complexity than SAESL, as discussed in the next section.

B. Complexity Reduction

In this section, we analyze the computational savings
achieved by the proposed SAGA algorithm and provide com-
parison against traditional approaches. Figure 5 shows that the
geometric pruning criteria in (8) reduce the number of edges
in the graph by an order of magnitude as NT increases. Also,
the worst case complexity of SAGA can be expressed in terms
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Fig. 4. Overall localization accuracy versus number of targets at SNR =
−15,−10 dB. The solid and dotted lines represent the performances of SAGA
and SAESL association algorithms, respectively.

of the number of association chains visited over the graph.
We observe that the number of chains visited is lower than the
number of total pruned edges in the graph and lies close to the
lower bound NSNT . This shows the effectiveness of geometric
features in solving the association problem with significantly
lower complexity than the worst-case NNS

T complexity.
In order to effectively compare the performance, we now

consider adverse scenes in which the sensor observations
contain detection anomalies. When the miss probability is low,
SAGA rapidly extracts all chains. As the number of missed
detections increases, the robust scheme automatically increases
the number of iterations by allowing relaxation of constraints
in DFS graph search. In contrast, SAESL always requires a
large number of iterations.

SAGA provides robustness to missed detections by se-
lectively adding skip edges to the graph. This mechanism
reduces the OSPA error in adverse scenarios at the expense of
increased computational complexity. The level of robustness
can be tuned using a parameter ρ which is set based on the
adversity of the scene. Figure 5 also shows the estimation
performance for different robustness levels with increasing
scene adversity (i.e., increasing miss detections). OSPA error
reduces with higher robustness levels. However, low robust-
ness level (e.g., ρ = 1) is sufficient to obtain good performance
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is denoted by dotted line. (Bottom) OSPA versus Pmiss with different
robustness levels ρ

at typical miss detection probability Pmiss < 0.05. Similarly,
a higher robustness level helps to reduce the cardinality errors
when the scene contains higher number of targets. The highest
robustness level is ρ = 4, which corresponds to the minimum
chain length constraint in (16a) with n(A) ≥ 2.

Runtime Comparison: We now compare the computational
complexity of our approach against SAESL. Computing the
number of operations that occur during association is difficult,
since the number of chains visited depends on a variety of
factors such as the fitting error thresholds and minimum chain
length. However, given the same sensor estimates for the sim-
ulated scenes, we compare the relative complexities of SAGA
against other methods in Figure 6 in terms of total number
of Floating Point operations (FLOPS) and the total runtime.
We observe that SAGA exhibits an order of magnitude lower
complexity compared to the SAESL algorithm. Moreover, this
improvement increases as the number of targets increases,
which highlights the advantage of our approach. In addition,
as we increase the robustness level (e.g., from ρ = 0 to ρ = 4),
the relative increase in complexity for the proposed SAGA
algorithm is far less than for the SAESL approach.

We also compare the complexity against traditional methods
such as gated Nearest neighbor filter (NN) and Minimum
cost flow (MCF). The NN association scheme [13] builds
the association chain by starting with a local kinematic state
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Fig. 6. Association complexity versus the number of targets averaged over
100 trials using nominal parameters with robustness levels ρ = 0 and ρ = 4.
Total number of FLOPS is denoted by blue line while the runtime is in red.
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Fig. 7. Number of evaluations of Likelihood L(A) with increasing number
of targets. SAGA has the lowest complexity across all scene densities while
the complexities NN and MCF lie between those of SAGA and SAESL.

estimate from a pair of sensor observations and sequentially
adding the nearest measurement from other sensors to update
this state. The MCF association scheme [9] identifies the most
likely set of chain by solving the minimum cost maximum
flows over the graph. The cost of each edge is set based on
its relative likelihood similar to our SAESL method. We use
an optimized implementation [24] of MCF for comparison
purposes.

In order to compare the complexity of those algorithms,
we count the number of times that the primary objective
function (i.e., the likelihood cost in (7)) is computed during
the graph search procedure. Figure 7 compares the complexity
across algorithms as a function of the number of targets.
The proposed SAGA algorithm requires the lowest number of
likelihood evaluations–significantly lower than for the naive
SAESL iterative search method. This shows our algorithm
can effectively predict the correct chain using the geometric
fitting criteria. The MCF and NN algorithms have similar
complexities, lying between those of SAGA and SAESL.

Figure 8 shows the overall runtime of the algorithms as
the scene density increases. We observe that SAGA is faster
than the other methods by an order of magnitude. Since, the
FLOPS count is not available for these other methods, we only
compare the overall runtime, which follows a similar trend and
provides a reasonable estimate of algorithmic complexity.
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C. Benefit of Super-Resolution

Our algorithm extracts the geometric relationships between
range-Doppler measurements based on the sensor array ge-
ometry and builds association chains by adding likely obser-
vations at new sensors to existing chains. In this section, we
investigate the role of enhanced accuracy of range and Doppler
estimates obtained using the NOMP [3] super-resolution al-
gorithm in spatial association compared to coarse estimates
obtained using DFT. Figure 9 compares the localization and
cardinality errors. We see that the localization accuracy using
NOMP estimates achieves the CRB when the number of tar-
gets is moderate, whereas DFT has higher RMSE as expected.
However, the RMSE of NOMP deviates away from CRB as
the number of targets increases and approaches the accuracy
of DFT-based estimates for dense scenes.

It is important to note that our association algorithm works
even with the coarse DFT-based estimates. However, NOMP
provides an accuracy boost at the input of the association
algorithm, which enables identification of more targets and
results in lower cardinality errors compared to DFT.

The increased accuracy of NOMP estimates also results in
smaller association time relative to DFT, due to the reduction
in geometric fitting errors. This reduction in association time
comes, of course, at the expense of additional computation
during range-Doppler estimation. Figure 10 compares the
runtime of the estimation and association stages with different
number of sensors for NT = 20 targets. We observe that the
association time with NOMP estimates is 10 times lower than
the one with DFT estimates, while the estimation overhead is
about 2 − 3 times higher. Figure 10 shows that the compu-
tational complexity of association starts dominating that of
estimation as the number of targets and sensors increases.
Thus, the overall complexity reduction due to NOMP-based
estimation, relative to DFT-based estimation, becomes more
pronounced with a denser scene and a larger number of
sensors.

D. Array Geometry

In this subsection, we analyze the localization performance
of linear sensor arrays from the perspective of data association.
We consider the adverse scene with Pmiss = 0.2 to emphasize
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4 6 8 10 12 14 16

Num Sensors

10−1

100

101

102

103

R
u
n
ti

m
e

(s
)

Estimation, NOMP

Estimation, DFT

Association, NOMP

Association, DFT

Fig. 10. Runtime comparison of association (solid) & estimation (dotted)
stages versus number of sensors.

our findings. The array width and the number of sensors affect
both localization accuracy and association complexity.

Increasing the array width generates more spatial diversity
in range-Doppler measurements across sensors. This helps to
reduce the OSPA error for a given number of sensors. On the
other hand, larger distance among the sensors weakens the
pruning criteria for the graph edges used in (8), resulting in
a denser graph with a higher number of potential associations
between sensors. Therefore, the overall localization perfor-
mance improves with wider arrays at the expense of slightly
more association complexity. The available sensor width is an
important design constraint in practical applications (e.g., the
length of the side profile of a vehicle). We therefore analyze
the effect of the number of sensors, keeping the array width
fixed to LW = 4 m.

We find that increasing the number of sensors improves
association performance as well as association complexity.
Figure 11 shows OSPA versus number of sensors for SAESL
and SAGA. While the OSPA for SAESL association decreases
monotonically with the number of sensors, we observe that
the OSPA for SAGA with robustness level ρ achieves minimum
OSPA with NS = ρ+3 sensors, and increases for NS > ρ+3.
This is due to missed observations preventing the formation of
chains with minimum length constraint NS − ρ. For an array
with NS sensors and a robustness level of ρ, the expected
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number of missed targets can be expressed as

E[miss] =

min (NS−2,ρ+1)∑
k=1

(
NS
k

)
P kmiss(1− Pmiss)NS−k .

Figure 12 shows that the number of missed targets observed
using our approach closely matches this expected value for
various values of ρ and NS .

Thus, as we increase the number of sensors, while we
improve localization accuracy, we must increase the robustness
level used in the SAGA algorithm (setting it to ρ = Ns − 3)
in order to avoid increase in cardinality errors. While this
does result in increased computational complexity, it is still
significantly lower than that of the SAESL algorithm. We leave
as an open issue the design of more sophisticated methods for
selection of a subset of sensors during the association stage to
reduce the complexity further.

V. CONCLUSION

We have shown that simple constraints relating range-
Doppler observations to sensor geometry can be exploited
to significantly reduce the complexity of spatial association.
Our system-level simulations demonstrate that the proposed
framework for spatial association based on these geomet-
ric constraints is robust to noisy observations and detection
anomalies, and that it scales well with the number of sen-
sors and targets. Our approach is compatible with standard
FFT-based range-Doppler processing, but enhanced accuracy
estimation at each sensor (i.e., super-resolution of range and
Doppler) significantly improves both localization accuracy
and association complexity. The geometric constraints used to
simplify the association problem rely on a linear placement of
the sensor array, which is reasonable, for example, when the
sensors are placed along the side, front or back of a vehicle. An
interesting open question is whether such geometric concepts
can be extended to simplify association for more general
sensor array configurations. Additional important topics for
future investigation include extending these ideas to more
complex target models (e.g., for extended targets, and targets
causing both specular and diffuse reflection), and combining
them with complementary strategies utilizing platform and/or
target motion across multiple snapshots.
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APPENDIX A
CRB FOR RANGE AND DOPPLER

The Cramér Rao Bound provides an estimation theoretic
lower bound on the sample covariance of range-Doppler
estimates; that is, Cov(θi) ≥ I(θi)

−1 where I(θi) is Fisher
Information Matrix (FIM) given by,

I(θi) = E
[(
∇θiL(mobs

i |θi)
) (
∇θiL(mobs

i |θi)
)H]

where L(mobs
i |θi) is the log likelihood of the observed signal

for a given target range-Doppler θi. For an FMCW radar, this
expression simplifies to [21],

I(θi) = κ

(
A2

σ2

)[
1/δ2

r 0
0 1/δ2

d

]
(19)

where κ is a constant, and δr and δd are the Rayleigh range
and Doppler resolutions, respectively. A

2

σ2 in (19) is the SNR of
the received signal, mobs

i (t) with mobs
i (t) = AejφFMCW (t) +

w(t) at sensor i, where w(t) ∼ N (0, σ2). We set the nominal
variance of range-Doppler estimates based on the value of
CRB at SNR = −20 dB; that is, σri = δrσ

κA and σdi = δdσ
κA .

APPENDIX B
CRB FOR POSITION AND VELOCITY

Using the range-Doppler model in Section 3, we evaluate
the single target CRB for kinematic parameters z̄ using the log
likelihood of range-Doppler observations A = {θi}NS

i=1 given
kinematic state z̄, which is

L
(
{θi|z̄}NS

i=1

)
=

NS∑
i=1

(
(r̄i − ri)2

σ2
ri

+
(d̄i − di)2

σ2
di

)
where θi = (ri, di) is the observed range-Doppler pair for
sensor i, (r̄i, d̄i) = Ti(z̄) is true range-Doppler pair for given
target state z̄ and σ2

ri and σ2
di

are, respectively, the range
and Doppler CRBs obtained in (19). The FIM for z̄ can be
evaluated as

I(z̄) = E
[
∇zL

(
{θi|z̄}NS

i=1

)]
.

The CRB obtained from inverse FIM is used to find position
and velocity CRB as follows,

CRBp = I(z̄)−1
(1,1) + I(z̄)−1

(2,2) ,

CRBv = I(z̄)−1
(3,3) + I(z̄)−1

(4,4) .
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The CRB of velocity is a function of both range and Doppler
variances whereas the CRB of position only depends on the
variance of range. We use the nominal range and Doppler
CRB values to set the minimum separation distance threshold,
τz = 10

√
CRBp + CRBv between targets. This threshold is

also used to check similarity between chains in the association
algorithm.

APPENDIX C
ASSOCIATION CONSTRAINT RELAXATION

The choice of initial stopping thresholds τnf and τnl and
scaling factor β for subsequent relaxations in SAGA algorithm
governs the total complexity of association algorithm. In order
to initialize the association algorithm, we set tight thresholds
for L(A) and F(A). Assuming the range-Doppler observations
have small error (i.e., wRi � ri, w

D
i � di in (3)), the expected

negative log likelihood in (5) can be approximated as

L(A) ≈
∑
θi∈A

(
(wRi )2

σ2
r

+
(wDi )2

σ2
d

)
.

Since wRi ∼ N (0, σ2
r) and wDi ∼ N (0, σ2

d) are standard
Normal distributed random variables, L(Ak) has chi-squared
distribution, χ2

2n(A) with 2n(A) degrees of freedom. Then, the
expected fitting error in (14) can be approximated as

F (A) =
∑
θi∈A

(
(r̂id̂i)− (ridi)

)2

η1
+

(
(r̂i)

2 − (ri)
2
)2

η2

≈
∑
θi∈A

(
riw

D
i + diw

R
i

)2
η1

+

(
2riw

R
i

)2
η2

(20)

where (r̂i and d̂i) denote the perceived range-Doppler pair at
sensor i for predicted state z and θi = (ri, di) denotes the
observed range-Doppler pair at sensor i. The normalization
factors η1, η2 are set to the variance of numerator terms which
is,

(η1)i = Var[riwDi + diw
R
i ] ≈ σ2

rid
2
i + r2

i σ
2
di + σ2

riσ
2
di

(η2)i = Var[2riwRi ] ≈ 4r2
i σ

2
ri .

Using those values to normalize (20) results in F(Ak) ∼
χ2

2n(A) being chi-squared distributed with 2n(A) degrees of
freedom. Hence, the thresholds for the association algorithm
are determined as follows,

τ
n(A)
f : Pr(F (A) > τ

n(A)
f ) = PFA

τ
n(A)
l : Pr(L(A) > τ

n(A)
l ) = PFA

where PFA is the nominal false alarm rate set to PFA = 0.01.
Note that while the normalization factors η1, η2 depend on

ri, di, we set this based on the maximum range, Doppler
values to get a conservative initial value. This does not cause a
problem since the sucessive relaxation procedure loosens that
threshold so that chains with high fitting error can be extracted.

The relaxation factor, β should be set appropriately. Choos-
ing a high value causes faster convergence but might lead to
false chains being identified. On the other hand, a low value
delays the extraction of loose chains. In the simulations, we
find that β = 2 performs well.

APPENDIX D
DEPTH FIRST SEARCH

A depth first search algorithm is outlined in Algorithm 3. At
each node, the DFS procedure traverses through all branches
which have geometric fitting error below the maximum error
threshold τNS

f . On reaching the end of the graph, we select the
chain if it satisfies the likelihood, fitting error, and minimum
chain length constraints. In addition, we check for possible
chain termination at each node after going through all its
branches. This step implicitly accounts for the NULL state
at the end of a chain.

Algorithm 3 Geometry Assisted Depth First Search
1: procedure GA-DFS(v,A, γ, τ )
2: Get list of children of v that geometrically fit,

B(v) =
{
vj : F([A, vj ]) < τNS

f

}
3: if B(v) 6= ∅ then
4: Sort B(v) using geometric fitting error, F ([A, vj ])
5: for vj ∈ B(v) do
6: BRANCH out a new chain Aj : A← vj
7: Ao ←GA-DFS(vj ,Aj , γ, τ )
8: Exit loop if valid chain Ao is found.
9: end for

10: end if
11: CHECK IF CHAIN CAN BE TERMINATED AT v
12: if n(A) ≥ γ,L(A) < τ

n(A)
l , F (A) < τ

n(A)
f then

13: SELECT Ao ← A,
14: end if
15: Output: Ao

16: end procedure

APPENDIX E
MINIMUM AMBIGUITY ASSOCIATION

Lemma 1. In the ideal detection scenario (i.e., no miss or
false alarms), the number of candidate locations generated
between a pair of sensors is minimum for consecutive sensors.

Proof. Recall that candidate locations are generated when
range perceived at a pair of sensors satisfy conditions in (8).
For a candidate, zpqij generated by incorrectly associated obser-
vations, θpi ,θ

q
j , across consecutive sensors i, j, the following

relations hold,

rpi − r
q
j < lij , rpi + rqj > lij . (21)

Now consider q̄th observation at sensor k adjacent to sensor
j which corresponds to same target as θqj , the following hold,

rqj − r
q̄
k < ljk (using (8))

rqj + ljk > rq̄k (ljk ≥ 0, Triangle inequality)

Using these along with (21) we obtain,

rpi − r
q̄
k < lik, rpi + rq̄k > lik

Hence any candidate produced between consecutive sensors
i, j also generates a candidate between sensors i, k by skipping
over intermediate sensor j. Hence,

n(Θi)∑
p=1

n(Θi+1)∑
q=1

n(zpqi,i+1) ≤
n(Θi)∑
p=1

n(Θk)∑
q=1

n(zpqi,k)
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Therefore, the number of candidates generated between a pair
of sensors is minimum for consecutive sensors.

Association complexity is due to the presence of unwanted
candidate targets which need to be discarded based on their
likelihood. When a target is observed at all sensors, it is
sufficient to associate observations along consecutive sensors.
Lemma 1 states that the association of observations along
consecutive sensors generates the lowest number of phan-
toms during graph search. Hence, the number of potential
ambiguities is minimized when the graph search procedure
is conducted across consecutive sensors first.
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