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Abstract—We present mmSnap, a collaborative RF sensing
framework using multiple radar nodes, and demonstrate its feasi-
bility and efficacy using commercially available mmWave MIMO
radars. Collaborative fusion requires network calibration, or
estimates of the relative poses (positions and orientations) of the
sensors. We experimentally validate a self-calibration algorithm
developed in our prior work, which estimates relative poses in
closed form by least squares matching of target tracks within the
common field of view (FoV). We then develop and demonstrate a
Bayesian framework for one-shot fusion of measurements from
multiple calibrated nodes, which yields instantaneous estimates of
position and velocity vectors that match smoothed estimates from
multi-frame tracking. Our experiments, conducted outdoors with
two radar nodes tracking a moving human target, validate the
core assumptions required to develop a broader set of capabilities
for networked sensing with opportunistically deployed nodes.

Index Terms—mmWave radar retwork, self-calibration, radar
fusion

I. INTRODUCTION

The integration of low-cost millimeter-wave (mmWave)
MIMO radar in the 60 and 77 GHz bands with a communica-
tion infrastructure (e.g., cellular or WiFi) enables the creation
of collaborative RF sensing networks, as illustrated in Figure 1.
This approach can overcome the coverage limitations of indi-
vidual radar nodes, which face line of sight (LoS) obstructions
and limited field of view (FoV). When radar nodes with
overlapping FoVs collaborate, they can significantly enhance
the quality of inference by fusing their measurements. For
instance, a single mmWave radar node can provide a precise
estimate of Doppler (radial velocity), which is the projection
of a moving target’s velocity along the LoS. However, it
cannot instantaneously estimate the target’s full vector ve-
locity. By combining Doppler measurements from two radar
nodes, the vector velocity can be estimated instantaneously, ex-
cept in degenerate configurations. Similarly, individual nodes
can make accurate position estimates by combining high-
resolution range data (due to the large bandwidth available)
with angle measurements, though the latter is limited by
the aperture size of the radar. Collaborative sensing allows
multiple nodes to combine their range estimates, enhancing the
resolution of position estimates. Such fine-grained fusion relies
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Fig. 1: A collaborative networked RF sensing infrastructure.

on precise network calibration, requiring accurate estimates
of the nodes’ relative positions and orientations (poses). In
opportunistically deployed networks, where such information
is typically unavailable, calibration becomes a major challenge
but remains essential for effective collaborative sensing.
Contributions: We introduce mmSnap, a framework for self-
calibration and Bayesian one-shot fusion in a radar network,
designed to deliver instantaneous (“snap”) position and ve-
locity through fusion in a millimeter-wave (mmWave) radar
network. Self-calibration is based on an optimal algorithm
for joint tracking and pose estimation introduced in our prior
work [1], in which closed form estimates for the relative poses
for any two nodes tracking a target in their shared FoV are
obtained by least squares alignment of the estimated tracks.
Then, assuming a calibrated network, we develop a Bayesian
framework for estimating instantaneous target position and
velocity based on measurements from collaborating nodes. We
present preliminary experimental results using COTS 77 GHz
mmWave radar nodes in an outdoor setting, validating that
the self-calibration algorithm from [1] yields accurate pose
estimates from human target tracks, and that post-calibration,
our Bayesian one-shot fusion method produces instantaneous
estimates close to smoothed multi-frame tracking outputs.
While these initial experiments are limited to two radar nodes
and a single moving target, they establish the feasibility of
core building blocks for collaborative RF sensing at scale.
Related work: The use of distributed radar for estimating
vector velocity has been explored in several studies [2]–[5]:
[2] assesses single-shot ego-velocity for vehicles, while [3]
uses a linear least-squares method for velocity estimation
amidst Doppler ambiguities. In [4], Doppler and angular data
from two radars are fused, and [5] proposes a maximum



Fig. 2: The end-to-end mmSnap pipeline.

likelihood method, for velocity estimation which is prone to
struggle in noisy conditions. Unlike our framework, which
includes self-calibration and Bayesian fusion, these studies
assume known radar poses relative to a global frame, which
may be unrealistic. Further, the maximum likelihood tech-
niques that they employ struggle in the presence of geometric
degeneracy. A more general problem of scene estimation and
point cloud based environmental mapping with multiple radars
is considered in [6], with Doppler information utilized for
registration across radars. Our approach is computationally
much simpler because it focuses on self-calibration and one-
shot fusion for point target models, demonstrating the effi-
cacy of approximating extended human targets as detection-
cluster centroids for both tasks. Finally, recent efforts in self-
calibration using a target in the common FoV include brute
force optimization for 3D pose estimation using a corner
reflector target in [7], and singular value decomposition (SVD)
for 2D pose estimation using human targets in [8]. Our self-
calibration approach is similar to the latter, but we utilize
the complex number framework in our prior work [1], which
yields relative poses in closed form.

To the best of our knowledge, this is the first work to
experimentally demonstrate a framework for self-calibration
and Bayesian one-shot fusion in radar networks geared toward
urban outdoor settings. While our approach is applicable to
general moving objects, we validate the framework through
controlled experiments with human motion. Results across var-
ied radar configurations show that our approach is well-suited
to collaborative sensing with opportunistic node deployment,
where significant variation in the relative poses of nodes with
overlapping FoVs is expected.

The remainder of this paper is structured as follows:
Section II presents the full mmSnap system model and
self-calibration algorithm; Section III details the Bayesian
framework for one-shot fusion. Experimental results for self-
calibration and fusion in a two-radar network are provided in
each of these sections. Section IV offers concluding remarks
and outlines future directions.

II. MMSNAP SYSTEM MODEL

A possible realization of the end-to-end mmSnap pipeline
is illustrated in Figure 2. Each radar node carries out conven-
tional point cloud detection individually. Depending on the
available computation, it may also perform target tracking on
its own, as shown in Figure 2, or this functionality could be
migrated to the fusion center. Each node shares its detection

Parameter Value

Carrier Frequency (fc) 76 GHz
ADC Sampling Rate 10 MHz
Number of Transmitters 3
Number of Receivers 4
Bandwidth 4.24 GHz
Chirp Slope 83 MHz/µs
Frame Duration 150 ms
Number of Chirps per Frame 60
Chirp Ramp Time 60 µs
Range Resolution 3.54 cm
Doppler Resolution 0.183 m/s
Max Unambiguous Range 18.07 m

TABLE I: Radar Parameters for mmSnap Experiments

and tracking (if performed at the node) results with the fusion
center. Track matching for common targets is used for self-
calibration. One-shot fusion of detected points is used to
provide low-latency estimates of target position/velocity, while
also serving as inputs to a centralized tracker. The nodes are
coarsely time-synchronized at the level of a radar frame.

Our experiments employ 77GHz AWR2243 MIMO radar
boards from Texas Instruments, with each board outputting
raw ADC data in radar cube format. The chirp parameters used
in the experiments, and the corresponding range and radial
velocity resolutions, are detailed in Table I. The radar boards
are equipped with three transmit and four receive antennas,
resulting in 12 virtual antennas with an inter-antenna spacing
of d = λ/2. However, the virtual array size for azimuth angle
estimation (which is what we focus on) is 8, corresponding to
a spatial frequency resolution of 2π/8 = π/4. While the mm-
Snap architecture in Fig. 2 assumes real-time communication
with a fusion center, our experiments use offline processing of
data collected from multiple sensors.

A. Signal Processing Pipeline

As illustrated in Fig. 3, the local radar signal processing at
each node is standard. The raw ADC data is transformed from
its original radar cube format into Range-Doppler-Angle point
clouds for each frame by applying Fast Fourier Transforms
(FFTs) along the corresponding dimensions. To focus on
moving targets, static clutter removal is performed, followed
by a two-dimensional Ordered-Statistics Constant False Alarm
Rate (2D OS-CFAR) detection applied across frames for
further refinement. In the tracking stage, DBSCAN clustering
extracts point cloud centroids, which are then processed by
an Extended Kalman Filter (EKF) for continuous tracking.
For human targets within 10 m, the point cloud shows sig-
nificant Doppler variation due to limb movements. We design
a DBSCAN variant to extract a cluster center representing
torso position and motion, allowing the self-calibration and
one-shot fusion algorithms, based on point target models, to
remain simple and effective.



Fig. 3: mmSnap Signal Processing Chain from Raw ADC data to Target Tracks.

(a) (b)

(c)

Fig. 4: Illustration of the experimental setups used to evaluate
the mmSnap pipeline, labeled A through C. The green regions
demarcate the area within which the target moves, following
two different trajectories: either a straight line or random
motion.

Fig. 5: Measurement model for a single moving target seen
by a radar with respect to a global frame of reference

We consider a two-radar outdoor network tracking a single
moving target, following either a straight line or a random
trajectory. Three two-node configurations (A-C in Fig.4), dif-
fering in the relative orientation of the arrays in the nodes, are
investigated. The array broadside for each node is indicated
by an arrow, and the shaded region represents the area within
which the target moves.

B. Measurement Model

We begin by introducing the basic measurement model for
a radar node Si, where i∈ 1, . . . , N in an N -node network,

tracking a single moving target, as illustrated in Fig. 5. As
shown in Fig. 5, the positions of radar node Si and the target
with respect to a global reference frame are denoted by 2D
vectors pi = (xi, yi)

T and p = (x, y)T , respectively, and the
target velocity is denoted by ṗ = (vx, vy)

T . The target range
is given by

ri = ∥p− pi∥ =
√
(x− xi)2 + (y − yi)2 (1)

The radial velocity measured via Doppler is obtained by
projecting the target velocity vector onto the unit vector
pointing from the radar node to the target:

vi =

〈
ṗ,

p− pi

∥p− pi∥

〉
=

vx (x− xi) + vy (y − yi)

ri
(2)

where ⟨a,b⟩ = aTb denotes the inner product of vectors a
and b. For a λ/2-spaced virtual array, the spatial frequency
of the target is given by

ωi = π sin θ =
π⟨p− pi, µ̂i⟩

ri
=

π((x− xi) cosϕi + (y − yi) sinϕi)

ri
(3)

where µ̂i = (cosϕi, sinϕi)
T denote the unit vector along

the radar array. In order to apply the preceding measurement
model across radar nodes, we need a global frame of reference,
which is established via self-calibration, as described next.

C. Self Calibration

Self-calibration is accomplished by matching the “local”
tracks seen by different nodes for a target in their common
FoV. We evaluate pairwise self-calibration in our 2-node
experiments, but as noted in [1], these can be stitched together
for network-wide calibration. Expressing 2D coordinates as
complex numbers, denote by zi[k] = ui[k] + jvi[k], i = 1, 2,
the target’s position in the kth radar frame as estimated in
node Si’s coordinate system. Letting S1 serve as the global
reference without loss of generality, the optimal estimate
for the relative (complex-valued) position p21 and relative
orientation ϕ21 ∈ [0, 2π) of S2 with respect to S1 is obtained
by least squares minimization of the track matching error:

J(p, ϕ) =

K∑
k=1

∣∣z1[k]− p− ejϕz2[k]
∣∣2 (4)

The solution is obtained in closed form as [1]:

ϕ̂21 = − ẑH1 ẑ2

p̂21 = z1 − ejϕ̂21z2

(5)

where zi is the track centroid, ẑi is the centered track from
Si’s perspective, defined as ẑi = (zi[1]−zi, . . . , zi[K]−zi)

T ,



A B C

RMSE (m)
Straight Trajectory 0.5664 0.5657 0.1783
Random Trajectory 0.7076 0.6331 0.4426

TABLE II: Trajectory RMSE values for different self-
calibration scenarios
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Fig. 6: Overlaid tracks after self-calibration for radar node
configurations B and C, with random and straight target
trajectories, respectively.

and xH = (x∗)T denotes the conjugate transpose of a vector
x. The minimum cost achieved by this solution is given by

Jmin(2, 1) = ||ẑ1||2 + ||ẑ2||2 − 2
∣∣ẑH1 ẑ2

∣∣ (6)

The trajectory root-mean-square error (RMSE) after self-
calibration is given by

RMSE =
√
Jmin/K (7)

The rationale for self-calibration is the difficulty of estimating
the ground truth for relative poses in large-scale opportunistic
deployments. Consequently, the track fitting RMSE serves as
a useful, albeit indirect, quantitative indicator of calibration
accuracy.

For experimental validation of self-calibration, we collect
90s sequences of a single moving human target within the
overlapping FoV of the two radars. For radar frame duration of
150 ms, each sequence yields a trajectory of length K = 600
frames for self-calibration. We show in Table II the RMSE as
computed using (7) for different node configurations (Fig. 4)
and trajectories (straight line and random). While low RMSE
indicates good track alignment and hence acceptable accuracy
in relative poses, it is not a direct measure of pose accuracy,
since it also depends on node configuration and the nature
of the trajectory. For instance, straight-line trajectories yield
lower RMSE across configurations, yet pose estimates remain
comparable to those from random trajectories. In setup B,
the estimates are (3.93m, 3.90m, 274.9◦) for the straight
and (4.08m, 3.80m, 271.5◦) for the random trajectory, which
are comparable to the ground truth of (4m, 4m, 270◦). In
Fig. 6, we visually demonstrate the self-calibration algorithm
by overlaying the track seen by S1 and that seen by S2, after

transforming the latter to S1’s frame based on its estimated
relative pose. Since the tracking by each radar is imperfect,
the overlay is also noisy. However, averaging across multiple
frames yields accurate estimates of the relative pose.

III. ONE-SHOT FUSION

We now extend the measurement model from Section II-B
to a multi-radar setting, derive the Bayesian one-shot fu-
sion framework, and present experimental comparisons with
smoothed multi-frame estimates.

A. Bayesian Framework

Consider N radars Si, i = 1, ..., N tracking a common
target moving in their overlapping FoV. We assume that the
network is calibrated (i.e., relative poses are known), and
without loss of generality, set node S1 as our reference, so
that p1 = (0, 0)T , ϕ1 = 0◦. The range (ri), radial velocity
(vi) and spatial frequency (ωi) estimates for Si, i = 1, ..., N ,
are then given by (1)-(3). The corresponding measurements
are modeled as conditional Gaussian as follows

Ri ∼ N (ri, σ
2
R)

Ωi ∼ N (ωi, σ
2
Ω)

Vi ∼ N (vi, σ
2
V )

,∀i∈{1, 2, ..., N} (8)

where σ2
R, σ2

Ω, and σ2
V are the measurement noise variances in

range, spatial frequency, and radial velocity, respectively. The
target state θ is taken to be the instantaneous position and
velocity with respect to the global frame, θ = (x, y, vx, vy)

T .
For one-shot fusion, we estimate the state based on the
observation vector Y corresponding to the actual range, radial
Doppler and spatial frequency measurements of the target by
the N radars

Y = (R1, R2, ..., RN ,Ω1,Ω2, ...,ΩN , V1, V2, ..., VN )T

Assuming that the measurement noises in (8) are independent
across sensors and across modalities, we model Y is condi-
tionally Gaussian given the state θ.

The maximum likelihood (ML) estimate of θ,

θ̂ML = arg maxθ p(Y | θ) (9)

is given by minimizing the negative log likelihood LML(θ) =
− log p(Y | θ), and is the solution to the following nonlinear
least squares problem

θ̂ML = arg minθ LML(θ)

= arg minθ [ 1
σ2
R

∑N
i=1(Ri − ri)

2 + 1
σ2
Ω

∑N
i=1(Ωi − ωi)

2

+ 1
σ2
V

∑N
i=1(Vi − vi)

2]

(10)
Limitation: The ML one-shot estimate is usually effective,
but can yield unstable estimates in degenerate settings, as
discussed later. We therefore regularize the nonlinear least
squares problem in (10) using a Bayesian framework using
a Gaussian prior for the state:

x ∼ N (0, σ2
x), y ∼ N (0, σ2

y)
vx ∼ N (0, σ2

vx), vy ∼ N (0, σ2
vy )

(11)



Fig. 7: The one-shot fusion pipeline for a two-radar network.

The Bayesian estimate of θ corresponds to maximizing the
posterior density

θ̂Bayes = arg maxθ p(θ | Y) = arg maxθ p(Y | θ)p(θ)
(12)

or minimizing the corresponding negative log likelihood ratio
LBayes(θ) = −log(P (Y | θ)P (θ)). In our Gaussian setting,
this yields the following regularized nonlinear least squares
problem:

θ̂Bayes = argmin
θ

[
1

σ2
R

N∑
i=1

(Ri − ri)
2 +

1

σ2
Ω

N∑
i=1

(Ωi − ωi)
2+

1

σ2
V

N∑
i=1

(Vi − vi)
2 +

x2

σ2
x

+
y2

σ2
y

+
v2x
σ2
vx

+
v2y
σ2
vy

]
(13)

This can be solved iteratively using the Levenberg-Marquardt
method, but the solution is sensitive to initial estimates.
Initial position estimate: Let (xti , yti ) be the target’s position
estimates w.r.t. Si, which is located at (xi, yi) w.r.t. S1, then
the initial estimate for the target position is

xinitial = 1
N

∑N
i=1(xti cosϕi − yti sinϕi + xi)

yinitial = 1
N

∑N
i=1(yti cosϕi + yti sinϕi + yi)

(14)

Initial velocity estimate: The initial estimate for the target
velocity is taken as

vinitialx = 1
N

∑N
i=1(Vi cos (ϕi + θi))

vinitialy = 1
N

∑N
i=1(Vi sin (ϕi + θi))

(15)

Covariance Estimation: Downstream tasks such as central-
ized tracking require estimates of posterior covariances as well
as posterior means. Although the 4 × 4 posterior covariance
matrix can be estimated analytically by Laplace’s method [9],
we consider a direct numerical approach based on computing
the posterior density over a grid for the state (x, y, vx, vy),
centered around the Bayesian estimate (θ̂Bayes).

Figure 7 illustrates the one-shot fusion pipeline for a dis-
tributed setup with two radar nodes.

B. Experimental Results

We evaluate the one-shot fusion algorithm for the two-node
network for the configuration and target trajectories described
in Fig. 4. Due to the absence of exact ground truth for target
position and velocity at each frame, we use track-level fusion
estimates [10] as a benchmark for our one-shot estimates.
Viewing self-calibration as “training” of the radar network, and

Fig. 8: Geometric degeneracy in configuration C

one-shot fusion as “inference” based on the trained network,
we use different tracks for these two stages. Thus, for each
configuration, we use the straight line trajectory for self-
calibration when evaluating one-shot fusion for the random
trajectory, and vice versa.

We set less informative priors (σx = σy = 3m) for
position estimates as they are more accurate when using range
and angle measurements. In contrast, Doppler measurements
only provide estimates of radial velocity. Therefore, we apply
stronger priors (σvx = σvy = 3.5m/s) by incorporating our
knowledge of average human walking and running speeds. For
measurement noise, we use σR = 0.035m, σΩ = π/4, and
σV = 0.1807m/s, which are the range, spatial frequency, and
Doppler resolutions, respectively.

Geometric degeneracy for one-shot vector velocity estima-
tion occurs whenever the target lies on or near the straight
line connecting the two radars, since both radars are then
measuring the same radial velocity (with sign flipped). This
corresponds to poorly conditioned maximum likelihood fusion.
While this can happen for any of the three configurations
shown in Fig. 4, configuration C, in which the radar arrays
face each other, is the most vulnerable, since this happens for
a significant portion of the common FoV (Fig. 8). Bayesian
fusion incorporating realistic priors for target motion addresses
such degeneracies and significantly reduces RMSE values, as
shown in Table III.

More generally, the quality of one-shot position and ve-
locity estimates depends on the FoV diversity provided by
collaborating nodes. Ideally, the proportion of the common
FoV containing targets approximately along the line between
radars (leading to velocity estimate degeneracy) or at highly
correlated angles of arrival (causing poor position estimates)
should be small. Among the three configurations, configuration
B offers the best FoV diversity, while configuration C offers
the least. This is consistent with the position and velocity
RMSE values in Table III: configuration B achieves the best
estimates, while configuration C yields the poorest velocity
estimates. As illustrated in Figure 10, however, geometric
degeneracy can still occur in configuration B, reflected in
increased uncertainty in the posterior distribution.

To further validate the accuracy of the proposed one-
shot fusion approach, we provide a detailed comparison of
the position (X,Y ) and velocity estimates (VX , VY ) for a
random trajectory using configuration B, where self-calibration
is performed with the straight trajectory. The estimates are
obtained from: 1) the Extended Kalman Filter (EKF) at S1,
2) the EKF at S2 transformed into the reference frame of
S1, and 3) one-shot fusion, as shown in Fig. 9. We observe
that the EKF estimates from both S1 and S2 align closely,
confirming the effectiveness of self-calibration. Although the
one-shot velocity estimates exhibit more variations than the
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Fig. 9: X,Y, VX , VY estimates for Setup B random trajectory, after self-calibration using a straight trajectory

(a) Region 1 exhibits geometric
degeneracy

(b) Region 1 Posterior (c) Region 2 Posterior
Fig. 10: The velocity posterior distribution (b) for a target in
region 1 is broader than the posterior (c) for a target in region
2, as expected.

A B C

1 2 1 2 1 2

Position RMSE (m)
Bayesian 0.3396 0.3252 0.1699 0.1438 0.3846 0.3690
ML 0.3404 0.3248 0.1701 0.1438 0.3839 0.3691

Velocity RMSE (m/s)
Bayesian 0.3609 0.3205 0.3300 0.2656 0.4139 0.4433
ML 0.3639 0.3239 0.3439 0.2667 9.7155 6.0543

TABLE III: RMSE for one-shot fusion (Bayesian vs ML) with
track-level fusion estimates as benchmark. Values indicated in
bold indicate cases when ML estimates fail

smoothed estimates provided by the EKF, they clearly follow
the same trends. The state covariance matrix, derived from the
posterior distribution, allows us to assess the uncertainties tied
to the instantaneous state estimates. For example, in Fig. 10,
we display the uncertainties in velocity across two regions
using the velocity posterior distribution.

IV. CONCLUSION

In this work, we present and experimentally demonstrate
a framework for collaborative sensing in a distributed radar
network. We show that simplified point target representations
are sufficient for key tasks like self-calibration and one-shot
fusion for position and velocity estimation. While our results
focus on humans, the approach readily generalizes to other
moving targets like vehicles via centroid extraction. The self-
calibration accuracy is robust to radar configurations and target
trajectory types, while Bayesian one-shot fusion effectively
handles geometric degeneracies. This framework lays the foun-
dation for collaborative inference in larger, opportunistically
deployed sensor networks. As part of future work, we plan
to extend mmSnap to address multi-target scenarios and also
eliminate ghost targets caused by multi-path reflections.
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