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ABSTRACT
Deep Neural Networks (DNNs) are vulnerable to adversarial
attacks: carefully constructed perturbations to an image can
seriously impair classification accuracy, while being imper-
ceptible to humans. The most effective current defense is to
train the network using adversarially perturbed examples. In
this paper, we investigate a radically different, neuro-inspired
defense mechanism, aiming to reject adversarial perturbations
before they reach a classifier DNN, using an encoder with
characteristics commonly observed in biological vision, fol-
lowed by a decoder restoring image dimensions that can be
cascaded with standard CNN architectures. Unlike adversarial
training, all training is based on clean images. Our exper-
iments on the CIFAR-10 and a subset of Imagenet datasets
show performance competitive with state-of-the-art adversarial
training, and point to the promise of bottom-up neuro-inspired
techniques for the design of robust neural networks.

Index Terms— Adversarial, Machine learning, Robust, Im-
age classification, Defense

1. INTRODUCTION

The susceptibility of neural networks to small, carefully crafted
input perturbations raises great concern regarding their ro-
bustness and security. Since this vulnerability of DNNs was
pointed out [1, 2], there have been numerous studies on how
to generate these perturbations (adversarial attacks) [3, 4] and
how to defend against them [4, 5, 6, 7]. Existing defenses that
attempt to employ systematic or provable techniques either
do not scale to large networks, or have been defeated by ap-
propriately modified attacks [5, 6, 8]. State of the art defenses
[4, 9, 10] employ adversarial training (i.e., training the model
with adversarially perturbed examples), but there is little in-
sight into how DNNs designed in this end-to-end, “top down”
fashion provide robust performance.
Approach: In this paper, we turn to neuro-inspiration for de-
fending against adversarial attacks, inspired by the observation
that humans barely register adversarial perturbations devised
for machines. While neuro-inspiration could ultimately pro-
vide a general framework for designing DNNs which are ro-
bust to a variety of perturbations, in this paper, we take a
first step by focusing on the well-known `∞ bounded attack,
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Fig. 1: Proposed autoencoding defense. Decoder restores input
size but does not attempt to reconstruct the input in our nominal
design (supervised decoder+classifier training).

which captures the concept of “barely noticeable” perturba-
tion. Our architecture, illustrated in Figure 1, does not require
adversarial training: it consists of (a) a neuro-inspired encoder
learnt in purely unsupervised fashion, (b) a decoder which
produces an output of the same size as the original image, (c)
a standard CNN for classification. The decoder and classifier
are trained in standard supervised fashion using clean images
passed through our encoder.

The key features we incorporate into our encoder design
are sparsity and overcompleteness, long conjectured to be
characteristic of the visual system [11], lateral inhibition [12],
synaptic noise [13], and drastic nonlinearity [14]. We use stan-
dard unsupervised dictionary learning [15] to learn a sparse,
highly overcomplete (5-10X relative to ambient dimension)
patch-level representations. However, we use the learnt dictio-
nary in a non-standard manner in the encoder, not attempting
patch-level reconstructions. Instead, we take the top T coef-
ficients from each patch (lateral inhibition), randomly drop a
fraction p of them (synaptic noise and lateral inhibition), and
threshold and quantize them, retaining only their sign (drastic
nonlinearity). We use overlapping patches, providing an ad-
ditional degree of overcompleteness. The patch-level outputs,
which have ternary quantized entries, are fed to a multi-layer
CNN decoder whose output is the same size as the original
RGB image input. This is then fed to a standard classifier
DNN.

We report on experiments on the CIFAR-10 and a subset
of the ImageNet dataset (“Imagenette”), demonstrating the
promise of a “bottom-up” neuro-inspired approach, in contrast
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Fig. 2: Histogram of correlations for a typical patch with atoms
of an overcomplete dictionary vs. that of activations through
layer 1 filters of a standard classifier CNN.

to the top-down approaches that currently dominate adversarial
machine learning. For state of the art PGD attacks tailored to
our architecture, our attacked accuracy is slightly worse than
that of adversarial training [4, 9] for CIFAR-10, while being
on par or slightly better than these methods for ImageNette,
showing that our approach scales to larger image sizes.

We invest significant effort into attacking our own defense:
following the guidelines in [16], our strongest attack is tailored
specifically to account for the structure of our defense while
avoiding the gradient obfuscation problem exposed in [17].
The software for our defense, including the attack library we
have created, is available at github.com/canbakiskan/neuro-
inspired-defense.

2. ADVERSARIAL ATTACKS AND DEFENSES

Attacks: These can be broadly grouped into two categories:
whitebox attacks, in which the attacker has access to both
the structure and the parameters of the neural network; and
blackbox attacks, which have access only to the network out-
puts. Given a classifier f : x ∈ RN → y ∈ RC , the goal
of an adversary is to find a perturbation e that maximizes the
given loss function L for classification under some constraints.
Typically, adversarial attacks are constrained in `p norm, with
p =∞ receiving the greatest attention because it can be tuned
to be imperceptible to humans [3, 18]. Among the many attack
methods, Projected Gradient Descent (PGD) appears to be the
most effective first order `∞ bounded attack, and is therefore
generally used to evaluate defense methods. PGD computes
the perturbation iteratively as follows:

ei+1 = clipε
[
ei + δ · sign(∇eL(f(x + ei),y))

]
(1)

where ei corresponds to the value of the perturbation at it-
eration i with e0 = 0 or e0 with each element drawn from
uniform distribution U(−ε, ε), ε is the overall `∞ attack bud-
get, and δ is the step size for each iteration. Expectation Over
Transformation (EOT) is suggested in [19] to make attacks
robust against transformations, and [16] suggests using this
method to evaluate defenses utilizing stochasticity. With EOT,
PGD becomes:

ei+1 = clipε
[
ei + δ · sign(

NE−1∑
r=0

∇eLr(f(x + ei),y))
]

(2)

where e0 = 0 and NE corresponds to the number of runs used
to average the gradients.
Defenses: State of the art adversarial training employs pertur-
bations computed using variants of the original FGSM method
[3] of gradient ascent on a cost function, including PGD [4] and
recent enhancements such as the faster single-step R+FGSM
scheme in [20], the use of a modified cost function aiming to
trade off clean and adversarial accuracy (called TRADES) in
[9], or the use of more unlabeled data in [10].

3. AUTOENCODING DEFENSE

The rationale behind our encoder design is as follows: An
overcomplete dictionary for sparse coding results in large ac-
tivations for a small fraction of the atoms, in contrast with
filters learnt in the first layer of a traditional convolutional
neural network where activations are clustered around zero;
see Figure 2. We can therefore drop most of the activations,
reducing the effective subspace available to the attacker. An
attacker can still perturb the subset of top T coefficients in
each patch. Randomly dropping a large fraction p of these
coefficients allows the decoder and classifier to learn to be
resilient to randomness in the sparse code, and to an attacker
knocking a coefficient out of the top T . The thresholds for
ternary quantization of the selected coefficients are selected
to provably guarantee that the attacker cannot flip the sign of
any nonzero entry in the sparse code. The hard thresholding
ensures that the perturbation cannot add to a coefficient which
would have been selected for a clean image. Rather, the at-
tacker must invest the effort in pushing a smaller coefficient
into the top T , and gamble on it being randomly selected.

3.1. Patch-Level Overcomplete Dictionary

We consider images of size N × N with 3 RGB channels,
processed using n×n patches with stride S, so that we process
M = m×m patches, wherem = b(N − n)/Sc+1. Learning
at the patch level allows for the extraction of sparse local
features, effectively allowing reduction of the dimension of
the space over which the adversary can operate for each patch.

We use a standard algorithm [15] (implemented in Python
library scikit-learn), which is a variant of K-SVD [21].
Given a set of clean training images X = {X(k)}Kk=1, an
overcomplete dictionary D with L atoms can be obtained by
solving the following optimization problem [15]

min
D∈C,{α(k)}Kk=1

K∑
k=1

∑
i,j

(1

2

∥∥∥RijX
(k) −Dα

(k)
ij

∥∥∥2

2

+ λ
∥∥∥α(k)

ij

∥∥∥
1

)
(3)

where C ,
{
D = [d1, . . . ,dL] ∈ Rn̄×L | ‖dl‖2 = 1 ,∀l ∈

{1, . . . , L}
}

, λ is a regularization parameter, α(k) is an m×
m× L tensor containing the coefficients of the sparse decom-
position, and Rij ∈ Rn̄×N̄ with n̄ , 3n2 and N̄ , 3N2
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extracts the (ij)-th patch from image X(k). The optimization
problem in (3) is not convex, but its convexity with respect to
each of the two variables D and {α(k)}Kk=1 allows for efficient
alternating minimization [15, 21].

3.2. Sparse Randomized Encoder

Based on the overcomplete dictionary obtained from (3), we
encode the image patch by patch. For given image X, patch
xij ∈ Rn̄ is extracted based on the (ij)-th block of X; that is,
xij = RijX, and then projected onto dictionary D in order
to obtain projection vector x̄ij , where x̄ij = DTxij . Since
the dictionary is highly overcomplete, a substantial fraction
of coefficients typically take large values, and a sparse recon-
struction of the patch can be constructed from a small subset
of these. However, our purpose is robust image-level inference
rather than patch-level reconstruction, hence we use the dic-
tionary to obtain a discrete sparse code for each patch using
random “population coding,” as follows.
1) Top T selection: We keep only T elements of the projection
vector with largest absolute values and zero out the remaining
elements. The surviving coefficients are denoted by x̌ij .
2) Dropout: Each of the top T coefficients is dropped with
probability p, leaving surviving outputs

x̃ij(l) =

{
0, with probability p
x̌ij(l), with probability 1− p , (4)

for all l ∈ {1, . . . , L}.
Note that we use dropout for both train and test time, as op-
posed to only during training in its standard usage.
3) Activation/Quantization: Finally, we obtain sparse codes
with discrete values by applying binary quantization with a
dead zone designed to reject perturbations.

x̂ij(l) =

{
sign (x̃ij(l)) ‖dl‖1 , if |x̃ij(l)|

ε‖dl‖1
≥ β

0, otherwise
, (5)

for all l ∈ {1, . . . , L}, where β > 1 is a hyperparameter.
Rationale: By Hölder’s inequality, an attacker with `∞ bud-
get ε can perturb the kth basis coefficient by at most ε ‖dk‖1.
By choosing β > 1, we guarantee that an attacker can never
change the sign of a nonzero element of the sparse code. Thus,
the attacker can only demote a nonzero element to zero, or pro-
mote a zero element to a nonzero value. As discussed, a large
dropout probability alleviates the impact of both demotions
and promotions.

Another consequence of choosing β > 1 is that weak
patches whose top T coefficients are not large enough com-
pared to the maximum perturbation ε ‖dk‖1 get killed, thereby
denying the adversary the opportunity to easily perturb the
patch-level sparse code. The scaling of the surviving ±1 out-
puts by ‖dl‖1 allows basis coefficients surviving a larger `1

norm based threshold to contribute more towards the decoder
input, but could be omitted, since the decoder can learn the
appropriate weights.

PGD with EOT

Clean Whitebox PW-T Blackbox

Our defense 80.06 61.28 39.53 57.76

Table 1: Accuracies for our defense method under different
attacks (CIFAR-10, ε = 8/255)

Following patch-level processing with stride S, the encoder
outputs an image level sparse code which is an m ×m × L
tensor.

3.3. CNN-based Decoder

We employ a CNN-based decoder architecture employing three
transposed convolutional layers, each followed by ReLU ac-
tivation function, clipped at the end to produce output with
dimension N ×N ×3 equal to that of the original RGB image.

3.4. Ensemble Processing

In order to utilize the full potential of the randomization em-
ployed in the encoder, we allow for ensemble processing in
which an input image is processed using E random realiza-
tions of our encoder during inference, with classifier softmax
outputs averaged across the realizations.

4. EXPERIMENTS, RESULTS AND DISCUSSION

Our main focus is on evaluating our defense on the CIFAR-
10 dataset (N = 32), for which there are well-established
benchmarks in adversarial ML. In order to verify that our ap-
proach scales to larger images, we also consider the Imagenette
dataset: 9469 train and 3925 validation RGB images, cropped
to size 160 × 160 (N = 160). Both datasets contain images
from 10 classes. For CIFAR-10, we use 4× 4 patches (n = 4)
and an overcomplete dictionary with L = 500 atoms. The
stride S = 2, so the encoder output is a 15× 15× 500 tensor
(m = 15, L = 500). The regularization parameter in (3) is set
to λ = 1 and the number of iterations is chosen as 1000 to
ensure convergence. The hyperparameters for Imagenette are:
8 × 8 (n = 8) patches and an overcomplete dictionary with
L = 1000 atoms, stride S = 4 which gives encoder outputs
of size 38 × 38 × 1000 (m = 38, L = 1000). The number
L of dictionary atoms is 10 times the ambient dimension for
CIFAR-10, and 5 times the ambient dimension for ImageNette.
The number of iterations in dictionary learning is set to 10000,
and in order to promote sparsity, the regularization parame-
ter λ is set to 0.5, in the upper range of values resulting in
convergence.

We set T = 50, p = 0.95,E = 10 for our nominal defense
based on ablation studies (omitted due to space restrictions),
with hyperparameter β = 3 for the threshold in (5). We train
the CNN-based decoder in supervised fashion in tandem with
the classifier, using the standard cross-entropy loss. For unsu-
pervised (US) decoder training, we use `2 distance-squared
regression over 50 epochs. In all cases, we use a cyclic learning



rate scheduler [22] with a minimum and maximum learning
rate of ηmin = 0 and ηmax = 0.05, respectively. In order to
provide a consistent evaluation, we employ the ResNet-32 clas-
sifier used in [4] for CIFAR-10, and use EfficientNet-B0 [23]
for Imagenette. The number of epochs for supervised training
is 70 for CIFAR-10 and 100 for Imagenette.
Attacks: We report on three attacks on our nominal defense:
(1) whitebox, where every differentiable operation is differ-
entiated. For the non-differentiable activation/quantization,
we take a smooth backward pass approximation. (2) Pseudo-
Whitebox - Transfer (PW-T), where we generate whitebox
attacks for an unsupervised-trained decoder with the same
encoder, with standard supervised training of the classifier.
This attack is adapted specifically for our defense, and does
not apply to the benchmark defenses that we compare against.
Blackbox, where the adversarial attack is generated based on
a standard adversarially trained surrogate classifier. For at-
tacks, we consider PGD and PGD with EOT if it is applica-
ble. Different from the existing EOT implementation, we use
δ · sign (Er [∇x/||∇x||2]) in each step to compute the expec-
tation, which we find yields stronger attacks. Unless otherwise
stated, we use the following parameters for `∞ bounded PGD
with EOT for CIFAR-10 trained models: an attack budget of
ε = 8/255, a step size of δ = 1/255, a number of NS = 20
steps, a number ofNR = 1 restarts, and a number ofNE = 40
realizations for EOT. The same default attack parameters are
used for attacking models trained on Imagenette, but given the
lack of standard benchmarks, we test several attack budgets
ε ∈ {2/255, 4/255, 8/255}.
Benchmarks:Our benchmarks are the PGD adversarially
trained (AT) [4], R+FGSM adversarially trained [20], and
TRADES [9] defenses for the same classifier architecture.
We reimplement these, to enable stress-testing these defenses
with attacks of varying computational complexity. We train
these models for 100 epochs with the same cyclic learning
rate that we use for our models, and verify, for ResNet-32
classifier for CIFAR-10 and EfficientNet-B0 for Imagenette,
that we can reproduce results obtained using the original code.
For both PGD AT and TRADES, training hyperparameters
are ε = 8/255, δ = 1/255, NS = 10, NR = 1 additionally,
for TRADES λTRADES = 1/6. For RFGSM AT, they are
ε = 8/255, α = 10/255. We also report on naturally trained
(NT) networks (i.e., no defense).

Note that the classifier CNN used in our paper is "simpler"
ResNet-32 rather than the wide ResNet-32, both of which are
utilized in [4] and other studies in the literature. The choice
of the smaller ResNet-32 network makes evaluation of attacks
computationally more feasible.
Robustness against Defense-Adapted Attacks: We first in-
vestigate the performance of our defense under the different
attack types specified earlier. Table 1 provides clean and adver-
sarial accuracies for the different attack types. We note that the
worst-case attack for it is not a white box attack, rather, it is the
pseudo-whitebox transfer (PW-T) attack. While this result is

Clean
Adv.

(Worst case)

NT 93.10 0.00
PGD AT [4] 79.41 42.05

RFGSM AT [20] 80.86 42.42
TRADES [9] 75.17 45.79
Our defense 80.06 39.53

Table 2: Comparison of our defense with other defense tech-
niques (CIFAR-10, ε = 8/255). Attack details are: PGD with
NS = 100, NR = 50 for the first 4 rows and PGD EOT with
NS = 20, NR = 1, NE = 40 for the last row.

surprising at first, it is intuitively pleasing. An attack succeeds
only to the extent to which it can change the identities of the
top T coefficients in the encoder. Since the latter is designed
to preserve information about the original image, providing
an unsupervised decoder might provide better guidance to the
attacker by giving it a reproduction of the original image to
work with.
Comparison with benchmarks: Table 2 lists worst-case ac-
curacies for each defense, where we vary the computational
burden of attack on the benchmarks up to a point that is com-
parable to the default settings for our own EOT/PGD attack.
NT denotes natural training (no defense). The worst-case ad-
versarial accuracy for our defense is 39.53%, a little worse
than the worst-case accuracies of 42-46% for the benchmark
defenses. On the other hand, the worst-case accuracy of our
defense (again achieved by the PW-T attack) is slightly better
than for the benchmark defenses for Imagenette, as reported in
Table 3. For NT, PGD AT, and TRADES, we use PGD attack
with default parameters.

5. CONCLUSIONS

While our results demonstrate the potential of neuro-inspiration
and bottom-up design of robust DNNs, there is significant
scope for further improvement. We attenuate perturbations
in a single, rather drastic, encoding step, but spreading the
burden across more layers may help with both clean and
attacked accuracy. Our separation of decoder and classifier
enables reuse of standard classifier architectures, but there
might be better options. Finally, the efficacy of the transfer
attack designed specifically for our defense highlights the need
for further research on adaptive attacks for novel defenses.

Clean
Adversarial (ε = x/255)

x = 2 x = 4 x = 8

NT 89.35 11.44 0.28 0.00
PGD AT 80.97 75.31 68.81 53.32

TRADES 80.08 75.67 70.75 59.46
Our defense 79.36 76.03 72.81 65.45

Table 3: Accuracies for Imagenette dataset
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