
5464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012

Localizing Multiple Events Using Times of Arrival:
a Parallelized, Hierarchical Approach to the
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Abstract—A fundamental problem in localizing multiple events
based on Times of Arrival (ToAs) at a number of sensors is that of
associating ToAs with events. We consider this problem in the con-
text of acoustic sensors monitoring events that are closely spaced
in time. Due to the relatively low speed of propagation of sound,
the order in which the events arrive at a sensor need not be the
same as the order in which they occur, potentially creating funda-
mental ambiguities. We first explore such ambiguities in an ide-
alized setting with two events and noiseless observations, showing
that it is possible to localize both events with nine or more sensors
(as long as degenerate sensor placement is avoided), but that we
can construct examples with six sensors for which unambiguous
space-time localization is not possible. We then show that these
potential ambiguities are not a bottleneck in typical practical set-
tings, proposing and evaluating an algorithm that successfully lo-
calizesmultiple events using noisy observations. The algorithm em-
ploys parallelism and hierarchical processing to avoid the excessive
complexity of naïvely trying all possible associations of events with
ToAs. We use discretization of hypothesized event times to enable
us to efficiently generate a set of candidate event locations, which
contain noisy versions of true events as well as phantom events. We
refine these estimates iteratively, discarding “obvious” phantoms,
and then solve a linear programming formulation for matching
true events to ToAs, while identifying outliers and misses. Simu-
lation results indicate excellent performance that is comparable to
a genie-based algorithm which is given the correct association be-
tween ToAs and events.

Index Terms—Multiple events, source localization, time of ar-
rival, ToA.

I. INTRODUCTION

E STIMATING the location of an event using its times
of arrival (ToAs) at a number of sensors is a canon-

ical problem with many applications such as environmental
monitoring (e.g., localizing animals by their sounds) and de-
fence/homeland security (e.g., localizing sources of gunfire or
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Fig. 1. Three events, that we call “Blue (B)”, “Green (G)” and “Red (R)”,
happen close to one another in time and produce ToAs at 8 sensors. The ToAs
at each sensor are sorted in ascending order. The red arrows connect the ToAs
produced by the red event and so on. Note that the events need not arrive at the
sensors in the same order: for example, the order of ToAs at sensor 1 is RGB,
whereas it is BRG at sensor 2. The goal of this paper is twofold.We ask (a) under
what conditions can we group the ToAs belonging to each event and localize
them and (b) how do we do this in a robust fashion with low complexity? Note
that we can have outlier ToAs at some sensors, such as the ToA in the orange
bubble at sensor 1, which must be discarded. Additionally, some sensors might
miss an event and not have a corresponding ToA, but this is not shown in the
figure.

explosions). In this paper, we address the problem of ToA-based
source localization in acoustic sensor networks when there are
multiple events closely spaced in time. We consider a mini-
malistic model where each sensor has a list of ToAs but the
association between ToAs and events is not known a priori.
The central difficulty is the following: because the speed of
propagation of sound is relatively low, the propagation delay
between an event and a sensor could vary significantly with
the event location. Therefore, when many events occur close
to one another in time, the order of ToAs at a sensor could
differ from the order of occurrence of the corresponding events.
We provide an example in Fig. 1. In such cases, the simple
strategy of sorting the ToAs at each sensor in ascending order,
associating the ToA at each sensor to a common event
and then localizing the event will fail. Thus, in the regime of
interest to us, the association problem becomes a fundamental
bottleneck, in contrast to much of the literature on ToA-based
localization, which assumes the association between ToAs and
events as given. An additional complication is that the number
of ToAs at each sensor may not be the same because of missed
and outlier observations, thereby forcing us to estimate the
number of events that occurred as well.
A naïve approach to the association problem is to consider

all possible combinations, to use a conventional ToA-based lo-
calization algorithm to check whether there is an event loca-
tion and time of occurrence which can explain each combina-
tion of ToAs, and to keep only the “good” explanations. An ob-
vious disadvantage of this approach is its computational com-
plexity: when events produce ToAs at sensors, the number
of combinations grows exponentially with the number of sen-
sors as . Moreover, there is no guarantee that only among
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the combinations will be flagged as “valid,” and it is un-
clear how this approach can be extended to handle misses and
outliers. An alternative approach [1] is to consider points in
space-time as candidate events and quickly discard chunks of
space-time where events are not likely to have occurred. How-
ever, this algorithm does not account for all the constraints of
the problem and is, therefore, prone to estimate more events
than the number that occurred. Our goal in this paper is to un-
derstand when unambiguous space-time localization of multiple
events is possible and to develop techniques for achieving such
localization which are robust to sensor non-ideality and have
reasonable computational complexity while accounting for all
the constraints of the problem.

A. Contributions

We first identify conditions for space-time localization of
multiple events based on noiseless ToA readings. We begin
with the straightforward observation that, when the temporal
separation between any two events exceeds the propagation
delay corresponding to the diameter of the deployment region,
the association problem is equivalent to sorting the ToAs. We
then make precise our intuition that, even when this condition
is not satisfied, we should be able to achieve space-time local-
ization if there are “enough” sensors. In particular, we prove
that, when the ToAs are noiseless, nine or more sensors suffice
to localize two events arbitrarily located in space and time, as
long as the sensor deployment is not degenerate (the sensors
should not lie on a branch of a hyperbola). We also provide an
example showing that six sensors are not enough for unam-
biguous localization: two different sets of events can provide
the same set of ToAs. In simulations, we have found that eight
sensors suffice to provide reliable space-time localization even
when there are three events, hence it remains an open problem
to tighten these results.
Next, we develop a robust, low-complexity algorithm for

localization with noisy observations, outliers and misses,
assuming that we have enough sensors for unambiguous local-
ization. The algorithm has three stages. The first stage is based
on the realization (crucial to sidestepping the computational
bottleneck in direct approaches to the association problem) that
discretization of the potential times of event occurrence enables
us to quickly generate a relatively small set of candidate events.
For a hypothesized event time and an observed ToA , the
event must lie on a circle of radius centered at the
sensor, where is the speed of propagation. Intersections of
circles at pairs of sensors generates candidate events, many
of which are “phantoms” (arising from intersection of circles
corresponding to ToAs for different events) and “duplicates”
(intersections of circles for different pairs of sensors, corre-
sponding to ToAs for the same event). At the second stage,
we refine these candidate events using Bayesian processing
of the observations from all sensors, and develop a goodness
metric for each candidate which can be utilized to discard
a large number of phantoms and to cluster duplicates. This
leaves us with an overcomplete palette containing the true
event estimates and a few phantoms. At the third stage, we
exploit the relatively small palette size to solve a variant of
the matching problem on a graph to reject phantoms and to

pair event estimates with observations; this can be posed as
a binary integer program, which we then relax and solve as a
linear program. Simulations show that our algorithm provides
performance comparable to that of a genie-based algorithm
which is given the correct grouping between ToAs and events.

B. Related Work

There is a vast literature on the general problem of source
localization, including algorithms that use ToAs [2], [3], AoAs
[4], Time Differences of Arrival (TDoAs) [5]–[7], hybrid ver-
sions of these (hybrid TDoA-AoA) [8] andwideband processing
of recorded signals [9]. The fundamental limits of wideband lo-
calization are derived in [10]. These results are used to arrive at
the limits of cooperative localization (where the agents to be lo-
calized exchange information with one another) in [11] and dif-
ferent aspects of this problem are surveyed in [12]. Reference
[13] uses MUSIC-like techniques to estimate the different taps
of a multipath channel (and thereby, extract ToAs). The book
[14] and the survey paper [15] explore many of these issues in
detail and provide a more exhaustive set of references.
Localization using ultra-wideband (UWB) radios has at-

tracted a lot of research (for example, [16] considers UWB
ranging). References [17] and[18] derive the fundamental
limits of localizing events from ToAs when the UWB signals
go through a multipath/Non Line-of-Sight (NLoS) channel and
the transmit/receive clocks are non-ideal. They also simulate
the performance of practical estimation algorithms in such
settings. Reference [19] improves the localization accuracy in
UWB settings by exploiting NLoS paths. Subscriber location
service in CDMA systems using ToAs has been explored in
[20].
However, most prior papers on ToA-based localization

consider one event at a time and hence ignore the association
problem central to this paper. A notable exception is [1], which
does consider localization of multiple events using ToA sensors.
Conceptually, this algorithm can be thought of as discretizing
space and time, constructing a count function given
by the number of sensors agreeing on an event occurring at

, and estimating event locations as space-time bins
where the count exceeds a threshold. While a naïve imple-
mentation of this approach incurs complexity increasing with
the size of the deployment region, the algorithm in [1] incurs
reasonable complexity by using ideas from interval arithmetic
to discard regions where an upper bound on the count falls
below the threshold. However, since it completely sidesteps
the association problem, the number of events that it outputs
can differ from the actual number. Furthermore, it produces
a general neighborhood of the event locations, rather than the
best possible estimate based on the observations. Our algorithm
therefore provides improved performance (close to that of
genie-based localization) by refining the location estimates and
explicitly solving the association problem in its final stage,
while incurring complexity comparable to (slightly smaller
than) that in [1].
In terms of feasibility of localization, the number of sensors

and conditions on the sensor configuration for perfect event lo-
calization from TDoA measurements are characterized in [21].
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However, these results are for a single event, and do not address
the space-time localization problem considered here.
It is interesting to note that the inspiration for our algorithm

comes from the center-surround neural response characteristic
of mammalian vision [22]. The complex scenes that we per-
ceive are obtained by intersecting such responses and using
feedback from higher layers, which is similar in spirit to our
algorithm. This paper builds upon the work presented in a con-
ference paper [23] by adding new results and providing a more
complete presentation. Specifically, the section on the limits of
localizing multiple events (Section III) is entirely new. We pro-
vide a formal statement of the linear program which we could
not include in [23] owing to space constraints. We also discuss
the complexity of the algorithm and explain a more principled
approach to set the threshold for discarding phantom events.

C. Outline

We describe the system model in Section II and characterize
the limits of localizing multiple events with ideal measurements
in Section III. We describe the algorithm in Section IV, with
Sections IV-A–IV-C providing the mathematical details behind
each of the three stages. Finally, we present simulation results
in Section V and our conclusions in Section VI.

II. SYSTEM MODEL

We consider sensors deployed at locations
within a two-dimensional region that we wish to monitor. The
sensors are assumed to be synchronized in time (for example,
with a Global Positioning System (GPS) receiver at each sensor
or by using a synchronization protocol such as [24]).We observe
the system over the time window . An unknown number of
events, , occur during this period within . The event is
described by the triplet where is the spatial lo-
cation and the time of occurrence of the event. For any sensor
, the event is missed with probability , and, with prob-
ability , produces the following noisy ToA reading:

(1)

where denotes the speed of propagation, denotes the two-
norm of a vector and is the measurement noise, assumed to
be distributed as . In the rest of the paper, we simplify
notation by choosing our units so that . Misses and mea-
surement noise are assumed to be independent across events and
sensors. For our statistical processing, we model event occur-
rence as a space-time Poisson process, with events occurring at
rate per unit time, with locations uniformly distributed over
.
Outliers: Outliers result from “small-scale” events, typically

heard at only one sensor (e.g., a nearby slamming car door may
trigger an acoustic sensor deployed for detecting far-away ex-
plosions), which we are therefore unable to, and not interested
in, localizing. We do not model the locations of such events and
model their ToAs as arising from a Poisson process with a rate
(per unit time) at each sensor. These processes are assumed

to be independent across sensors.
Sensor Observations: Suppose that sensor records
ToAs due to events and outliers in the time window

. We denote the ToA at sensor by , where
the ToAs are sorted in ascending order at each sensor.
Therefore, the set of observations at sensor is given by

, with when-
ever . The number of ToAs can vary across sensors
because misses and outliers occur independently at each sensor.

III. FEASIBILITY OF LOCALIZING MULTIPLE EVENTS

In this section, we investigate the feasibility of localizing
multiple events under the most ideal of conditions: no misses,
no outliers, no noise. If the order in which the ToAs arrive at
each sensor is the same as the order of occurrence of the events,
then we can guarantee perfect localization easily: arrange the
ToAs in ascending order at each sensor, the largest ToA
at each sensor is associated with the event, use a standard
single event localization algorithm to localize each event. This
approach works when the time interval between any two events
is larger than , where is the diameter of the deployment
region (proof is simple and is omitted). For a network of
acoustic sensors deployed over a circular region of radius 1
km, this approach suffices to localize events that are separated
by . However, if the time between events is
smaller than 6 seconds, we need more sophisticated approaches
to the association problem.
When events are closely spaced in time, it is intuitively plau-

sible that we can localize these events correctly if we deploy
“enough” sensors. We now show that 9 sensors suffice for local-
ization of two events (with arbitrarily small separation in space
and time, for noiseless observations), if the placement of the
sensors is not degenerate. Specifically, all sensors should not
lie on one branch of a hyperbola. We briefly review the ter-
minology associated with hyperbolas, introduce and define the
term half-hyperbola and then prove the required result.
A point lies on a hyperbola with foci and

major axis of length if

(2)

A hyperbola consists of two branches—the first branch contains
the points that lie on and the other
branch contains the points that lie on

. We use the term half-hyperbola to refer to a curve which
is one of the branches of a hyperbola, defined as follows:
Definition: A set of points in the two-dimensional plane

are said to lie on a half-hyperbola if there exist and
, so that,

(3)

We are now ready to state our feasibility result.
Theorem 1: Suppose that two events and

produce ToAs at each one of sensors located at
. Then, if the number of sensors and the

sensors do not lie on a half-hyperbola, we can guarantee perfect
localization of the events.

Proof: We prove the result by contradiction. First, we sup-
pose that an alternate set of events that explains the ToAs at all
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the sensors exists, preventing us from localizing the events cor-
rectly. We then show that the existence of such an alternate ex-
planation violates one of the conditions in the theorem, thereby
proving the required result.
For our ideal observation model (no misses, no outliers, ex-

actly two ToAs at each sensor), we can have an ambiguous re-
construction only if there is an alternate set of events

and which also explain the recorded
ToAs.
For the explanation set to be different from the set of

events that produced the ToAs , these sets must differ
in at least one event. This can happen in one of two ways:

Case a: Neither of the events are the same as ei-
ther of the events .
Case b: One of the events is the same but the other event is
different. For example, we might have (meaning,

and ), but (meaning ,
, or both).

We analyze these cases separately.
Case a: All Events Are Different: Since the explanation

produces the same set of ToAs as , exactly one
of the following conditions must be true at each sensor:
• The ToA corresponding to is equal to the one produced
by and the ToA corresponding to is equal to that
produced by .

• The ToA corresponding to is equal to the one produced
by and the ToA corresponding to is equal to that
produced by .

Let denote the subset of sensors which satisfy the first con-
dition and denote the subset that satisfy the second con-
dition. Then, the total number of sensors
where denotes the cardinality of the set . We now show
that .
Let denote the location of any sensor in . From the first

condition, we see that the location must satisfy both of the
following equations:

(4)

(5)

Equations (4) and (5) each describe a half-hyperbola. Further-
more, since the events are all different, neither of these equa-
tions are trivial. Therefore, any sensor in must be located at
the intersection of two half-hyperbolas. The number of points
of intersection of two half-hyperbolas is upper bounded by the
number of points in which their “parent” hyperbolas (obtained
by including the other branch of each half-hyperbola) intersect.
By Bezout’s Theorem [21], two hyperbolas intersect in at most
4 points. Thus, we have . By a similar argument, we
can show that . Thus, to construct two events
so that: (i) they explain the ToAs produced by and at all
the sensors and (ii) neither nor is the same as either of the
events or , we need the number of sensors to satisfy,

(6)

Case b: One of the Events Is Same: Suppose now that
but . Then, (4) is trivially true and all we can say

about sensors in ( and have the same definition as
in Case (a)) is that their location must satisfy (5).
We now show that the sensors in will also lie on this

half-hyperbola.
Let denote the location of any sensor in . Using the fact

that and writing out the conditions that a sensor in
must satisfy, we have

(7)

(8)

Subtracting (7) from (8), we see that the location of a sensor
in must satisfy (5). Thus, if we construct an alternate expla-
nation for the recorded data which differs in only one of the two
events, then all sensors must lie on a half-hyperbola.
Therefore, if we can find two sets of events and

that explain the recorded ToAs at sensors, then ei-
ther (i) or (ii) all the sensors lie on a half-hyperbola. The
true events obviously explain the recorded data. Since
we are given that and we cannot draw a half-hyperbola
through all the sensors, an alternate explanation of the data such
as cannot exist (since such an explanation would vio-
late either (i) or (ii)). Consequently, the only explanation for the
ToAs are the events themselves, thereby guaranteeing
perfect localization.
Remark: Degenerate placement of sensors on a half-hyper-

bola is a zero probability event for random sensor deployment,
and is not possible for regular grid-like deployments.
The immediate question that arises is: can two distinct event

sets and produce the same ToAs at
sensors (which do not lie on a half-hyperbola), so that these
sets cannot be disambiguated? While we are not able to answer
this question conclusively, we use insights from the analysis in
Case (a) to construct an example where 6 sensors are unable to
distinguish between the event sets and .
Example: We use two ideas in constructing this example:

(a) We can choose the event locations , , and and
the parameters and so that the half-hyperbolas
in (4) and (5) intersect in four points. This gives us four sen-
sors in which cannot disambiguate between the event sets

and . (b) Having made these choices, we show
that there is only one free parameter that fixes the two defining
half-hyperbolas for any sensor in . We choose this parameter
to ensure that these half-hyperbolas intersect in two points.
The example is shown in Fig. 2 and we now provide the de-

tails of the construction. We denote the half-hyperbolas that de-
fine the set by (4) and (5) respectively. First,
we choose , and to
generate . Next, we set and

so that ’s axis is at right angles to ’s
axis (for convenience) and they intersect in four points. Now
consider the possible sensor locations in the set . By the def-
inition of this set, the location of any sensor in must sat-
isfy both the equations and

. Since we have already chosen
the event locations, we only need to specify and
in these equations to construct . However, we cannot choose

and independently because we have already set
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Fig. 2. Each one of the sensors shown by the pink dots record two ToAs—one
fromEvent 1 and the other from Event 2, whose locations are shown by the black
triangles. However, events A and B, shown by the red squares, also produce the
same set of ToAs at all the sensors. Therefore, the sensors are unable to decide
which of the event sets and occurred.

and and these four quantities add
up to zero. Therefore, we choose (set ap-
propriately) so that the half-hyperbolas intersect in two points.
The six sensors shown in Fig. 2 cannot distinguish between the
event pairs and .

IV. ALGORITHM DESCRIPTION

We now explain our algorithm for localizing multiple events,
assuming that we have deployed enough sensors. The key idea
is to narrow down the set of candidate event locations and times
to a small set quickly, which we do by discretizing the times
at which events occur. While this process generates estimates
of the events that occurred, it also generates “phantom” esti-
mates—events that never occurred.We discard “obvious” phan-
toms by developing a statistical metric and discarding events
whose metric is too low. This process is described in Stage 1
(Section IV-A). We then refine the estimates using measure-
ments at all the sensors in Stage 2 (Section IV-B). At this point,
we have a palette containing refined estimates of the true events
and non-obvious phantoms. In Stage 3, we pick the subset of
events from the palette that best explains the observations at the
sensors and thereby reject the non-obvious phantoms too.We do
this using a linear program and we describe it in Section IV-C.

A. Stage 1: Generating Candidate Events

We begin by hypothesizing that the ToA at sensor and
the ToA at sensor are produced by the same event that
occurred at time . If the measurements are noiseless, we see
from (1) that the location of the hypothesized event, denoted by
, must satisfy both the equations

(9)

(10)

Thus, the hypothesized event must be located at the intersection
of two circles centered at and with radii and

respectively. The points of intersection, denoted by
and , can be computed easily in closed-form as

(11)

where and are the radii
of the circles, is the distance between the
sensors, and

is a vector perpendicular to

the line joining the sensors . Additionally, if the mea-
surement noises are small, we can show that the error in the

estimated location (Appendix A gives an

explicit formula for ) and therefore, the covariance of the es-
timate is . Thus, given an event
time , we can generate candidate event locations and their co-
variances quickly by intersecting circles drawn at different pairs
of sensors.
Fig. 3 illustrates what happens in this process by considering

the ToAs produced by two events “red” and “green” at sensors
and . The red event generates ToAs and at sen-
sors and ; similarly, the green event produces ToAs and

. For each of these ToAs, we hypothesize that it was gen-
erated by an event at time and draw the circles on which such
an event must lie. Suppose that the time at which the red event
occurred is equal to the hypothesized time . Then, one of the
points of intersection of the red circles will be close to the true
event location and this is shown in Fig. 3 by . The red circles
also intersect at a second point ; however, no event occurred
there in reality and hence we call it a phantom estimate. Such
phantom estimates arise because we have only taken measure-
ments at a pair of sensors into account while generating
them. We will later use measurements from the other sensors
to discard them. Phantom estimates are also generated when we
intersect circles drawn using ToAs generated by completely dif-
ferent events (for example, intersecting green and red circles
produces the phantoms and ) or when we intersect
ToAs produced by the same event but the hypothesized time is
wrong (for example, the time at which the green event occurred
might be different from the hypothesized time . In this case,
intersecting the green circles produces phantoms and ).
We generate a set of candidate events

by repeating this
process for different choices of the hypothesized event time ,
pair of sensors and ToAs at these sensors. Specifically,
we do the following:
• Hypothesize a discrete set of event times

.
• Pick pairs of sensors

randomly (we
will explain how to choose later).

• For , ,

— Intersect circles centered at and with radii
and .

— Add points of intersection (if any) and their covariances
to the list of candidate events.
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Fig. 3. Geometry of the processing in Stage 1. Six sensors
are shown. There are two events “red” and “green” that produce ToAs at these
sensors. The red event produces ToAs at sensors and ; simi-
larly, the green event produces ToAs . We hypothesize an event
time and draw circles corresponding to the different ToAs. The time at which
the red event occurred is close to and hence we obtain an estimate of the red
event location . However, we also generate phantom estimates : loca-
tions where no event happened in reality.

In addition to phantoms, this process of generating candi-
dates also produces duplicate estimates of true events. To see
this, suppose that for a hypothesized event time , we intersect
circles of radii and centered at sensors
and to produce an event estimate . For the next hypothe-
sized time , intersecting circles of radii and

centered at these sensors will result in an estimate
that is very close to (assuming is small). It is clear that

and are duplicate estimates of the same event
and it is sufficient to retain the “better” estimate among the two.
The goal of the rest of the algorithm is to use measurements at

the other sensors to (a) discard the phantoms, (b) cluster the du-
plicate estimates into a single estimate and (c) refine true event
estimates to reduce the impact of measurement noise. In the rest
of this section, we describe a method to discard “obvious” phan-
toms and cluster duplicates. We first develop a goodness metric
for each candidate—the higher its value, the less likely that it is
a phantom. Candidates with very low goodnesses are discarded
as obvious phantoms. This is described in Section IV-A-I. We
then introduce the concept of a grouping to cluster duplicates in
a principled manner in Section IV-A-II.
1) Discarding Obvious Phantoms Using Goodness: Con-

sider a candidate event with a covariance matrix
. We compute the goodness for in two steps:

first, we calculate individual goodnesses for at each sensor and
then, multiply them out to obtain an overall goodness. The good-
ness for event at sensor depends on the difference between
the predicted ToA for at sensor , given by ,
and the closest among the observed ToAs to the predicted value,
denoted by . Loosely,

is the “best evidence” that the sensor has to offer for
the event having taken place. We define the mismatch to be

and we denote the goodness by . Intu-
itively, we expect the goodness to be large when the mismatch
is small and decrease monotonically as increases.
We compute by first conditioning on the event being

heard or missed at sensor and obtain the conditional likeli-
hoods and . The overall good-
ness is a weighted average of the conditional likelihoods, with

the weights depending on (typically, we choose it to be
5%):

(12)
When an event is heard at sensor , the mismatch be-
tween the predicted ToA and the observed ToA arises
for two reasons: (a) errors in the spatial estimate of the event
(obtained by intersecting circles) cause the predicted ToA
to be slightly wrong and (b) measurement noise corrupts

the observed ToA . Using these observations, we show in
Appendix B that , where

(13)

Therefore, we have

(14)

When the event is missed at sensor , the mismatch is
obtained by taking the difference between the predicted ToA for
, denoted by , and an observed ToA . The ToA
has two properties: (a) it is produced by a completely different
event and (b) it is the closest among all ToAs at this sensor to
. Assuming that the ToAs arrive at the sensors as a Poisson

process with rate , we can show that
(details in Appendix B)

(15)

Substituting (14) and (15) in (12), the goodness at sensor
for event is given by

(16)
The exponential in the second term decays much slower than the
first—it goes down only as unlike the first which
decays as . Furthermore, in the regime of interest
to us, the constants controlling the decay rates and satisfy

. This slows down the decay in the second term relative
to the first even further. Therefore, we can neglect the decay in
the second term and approximate as

(17)

Technically, the mismatches are not independent of each
other because the error in the spatial estimate causes a correlated
pattern of errors in the predicted ToAs at the different
sensors. We ignore such dependence among the mismatch
values (this is reasonable when the spatial estimation error
is not too large) and compute the overall goodness for the event
, denoted by , to be

(18)

If the goodness falls below a threshold , we declare the event
to be a phantom and discard it from the candidate list.We choose
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conservatively to ensure that, in the process of discarding
phantoms, we do not discard the estimates close to a true event.
Specifically, we pick so that the estimate of a true event is
thrown awaywith a very small probability . The threshold
is a function of and we explain how to com-
pute it in Appendix C.
2) Clustering Duplicates via ToA Groupings: We now de-

scribe how we cluster duplicate event estimates by introducing
the concept of a grouping. Consider an event whose
goodness is greater than , so that it survives the pruning process
described above. We continue to denote the predicted ToA for
at sensor by and the corresponding

“best fit” evidence by . The grouping associated with an
event is a set of quantities where stores
the evidence if it is “compelling”; otherwise, it assumes
that sensor has missed the event. Specifically, if the difference

is smaller than a threshold , we set ;
otherwise, we store the string in . Duplicated events,
such as and in the example described above,
are likely to have the same grouping—since the events are close
to one another in space and time, evidence that is “compelling”
for one is also likely to be compelling for the other. This obser-
vation provides us with a simple rule to cluster events and pick
a representative: if two events and have group-
ings and that are identical, then we only retain the event
with the greater goodness (as defined in (18)).
At the end of this process, we have a list of candidate events

, consisting of true event estimates and
“non-obvious” phantoms.

B. Stage 2: Refining the Estimates

The event location estimates in Stage 1 are produced by inter-
secting circles whose radii are derived from the observed ToAs
at a pair of sensors . Since the measurements are noisy, es-
timates based on ToAs at only two sensors can have significant
errors. In this section, we use the measurements at other sensors
to refine such noisy estimates.
Let be an event in the candidate list at the end

of stage 1. We only use the sensors that have “compelling”
evidence for in the refinement process. Specifically, we use
sensor in the refinement process only if the predicted ToA
and the corresponding “best fit” ToA satisfy

.
Refinement Procedure: Suppose that the sensors

have ToAs that are within of the predicted ToA
for at these sensors. We denote the best evidence for
at these sensors by respectively.

Since the refined estimate, denoted by , must
fit the measurement model, we have

(19)

where and . If the spatial refine-
ment is much smaller than the distance between
the event and sensor , we can expand as a
Taylor series in to obtain

(20)

Fig. 4. Modified version of matching problem on a bipartite graph. Events in
the overcomplete palette at the output of stage 2 are shown as blue circles in the
first row. The observations are denoted by blue stars, with the observations at
each sensor arranged in a column. The second of row of nodes show the deci-
sions we make for each event: green circles represent events that we declared to
have occurred and red circles denote phantom events. We need to draw edges
between the picked events and the observations, subject to constraints, so as to
maximize the sum of the values of the edges.

for . Let denote the dimensional vector
whose component is and denote

the matrix whose row is . Then, the

least-squares estimate of the refinements is given by

(21)

We update the event location and time estimates and set
and . We now use the refined estimate

as a starting point and repeat the process—this
includes computing the grouping for , using the
grouping to identify sensors that heard it and then refining the
estimate further using the ToAs at these sensors. We typically
perform 10 such rounds of refinement for each candidate point
from stage 1. The threshold parameter —used to decide if a
sensor heard/missed —must be chosen appropriately and from
our simulations, we find that choosing works well.
After such refinements, we run the clustering algorithm once

again to merge duplicates. The output of stage 2 is a palette of
candidate events, consisting of true event estimates and non-ob-
vious phantoms, that are refined versions of the estimates from
stage 1.

C. Stage 3: Picking True Events From the Palette

The goal of Stage 3 is to find the subset of events from the
overcomplete palette that best explains (in terms of likelihood)
the observations at all sensors. We do this by solving a variant
of the matching problem on a bipartite graph, where the events
in the palette form one set of nodes and the observations at the
sensors form the other set. An example is shown in Fig. 4.
The first set of decisions we need to make are: did event

happen, or is it a phantom? We denote
these decisions by the binary variables : if we declare to
have occurred, we set ; otherwise, we set it to zero. The
second row of nodes in Fig. 4 gives an example of such deci-
sions—picked events are shown in green ( and ) while
the ones declared to be phantoms are shown in red ( and
).
Having decided on a set of events that occurred, we must

establish a correspondence between the picked events and the
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ToAs at the different sensors (which event produced which ToA
at each sensor?). While constructing these correspondences, we
must satisfy two types of constraints: event node constraints and
observation node constraints.
Event Node Constraints: At each sensor, an event that we

declared to have occurred must either produce one
of the observed ToAs or it must be missed. This can be neatly
summarized in Fig. 4: exactly one of the edges connecting to
the three ToAs at sensor 1 (blue ) or the miss node (orange
) must be “active”. We can capture this with binary decision

variables associated with each edge.
Observation Node Constraints: Similarly, a ToA at any

sensor must have either been produced by one of the events we
declared to have occurred or it must be an outlier. In Fig. 4, if
we wish to declare the first ToA at sensor 2 to be an outlier,
we activate the edge that joins it to the node marked “Outlier”;
on the other hand, if we decide that it was produced by one
of the events we declared to have occurred, we activate the
appropriate pink edge. Note that we cannot activate any of the
dotted red edges, because they associate this ToA to events that
we have already declared to be phantoms. We now state these
correspondence constraints formally.
Let be a running index for all the observation nodes (in-

cluding the “miss” nodes) as shown in the figure. Let
—the set of all observed ToAs at sensor and the

miss node —denote the observation nodes at sensor . Let
if we activate the edge between observation and event

; otherwise, we set .
Event Node Constraints: Consider a picked event (one

with ). Since it must be associated with exactly one ob-
servation node at each sensor , we have

(22)

To convert this into a constraint that is valid for all events—and
not just for those that are picked—we can rewrite (22) as

(23)

When , this reduces to the constraint in (22) and when
, the constraint is trivially satisfied. Therefore, we need

to choose our decisions and so that they satisfy the con-
straints

(24)

Observation Node Constraints: Next, we consider the con-
straints at a node that is an observed ToA at one of the sensors
(not one of the miss nodes). Let if we declare obser-
vation to be an outlier; otherwise, we set . If we wish
to associate it with a picked event (say, event ), then we must

have . Since the observation node must either be
paired with a picked event or declared as an outlier, we have

(25)

Cost Function: We pick events from the palette and choose
their correspondence with the observed ToAs to maximize the
likelihood of the observations given these decisions. Computing
the likelihood is simplified by the following fact: given the deci-
sions (picking events and choosing the correspondence), the ob-
servations at two sensors and are independent. Thus, we can
set the value of each edge individually. Specifically, the value
of an edge that joins an observation node to an event node is
the log-likelihood of the observation given that the event pro-
duced it. Our goal is to pick events and activate edges, subject
to the aforementioned constraints, so that sum of the values of
the activated edges is maximized. We now specify the values of
different edges.
The value of an edge between an event node and the miss

node at sensor is . Consider the edge between
event and the observation at sensor , .
For to produce this observation, two things must happen: (a)
must be heard at sensor (which happens with probability

and (b) given that it was heard at sensor , it must
produce the observation . Therefore, the value of the edge
between and is

(26)

The value of the edge joining an observation at sensor to the
outlier node is trickier to compute. Since the outliers are gen-
erated by a Poisson process of rate , the chance that there
are outliers at sensor over an observation window of length
is . The logarithm of this quantity is (ignoring

constants),

(27)

If the term is absent, declaring an observation to be
an outlier has the value and the overall value of
declaring outliers is . However, the presence of
the term implies that the value of declaring an obser-
vation to be an outlier cannot be a constant quantity, say ;
rather, it also depends on the number of other observations
we declare to be outliers. To circumvent this problem, we
approximate the distribution of the number of outliers to be
geometric with parameter (as opposed to the true Poisson

distribution). With this approximation, the log-likeli-
hood of observing outliers at sensor is . Thus, we can
set the value of an edge that joins an observation at sensor
to the outlier node to . We choose to ensure that the
probabilities assigned by the Poisson and geometric distribu-
tions are close to one another (we minimize the mean-square
error between the sequences and
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). The overall value of the
decisions is given by

(28)

where is the value of activating the edge between the
observation node (this could be a miss node) and the event
and is the value of declaring the observation
node to be an outlier (this summation is only over observed
ToAs and does not include miss nodes).
Since the decision variables are all binary valued, our

problem can be stated as a binary integer program. By mas-
saging the problem, we can convert it to a form where the cost
function and the constraints are linear in the decision variables.
We provide these details in Appendix D. We relax the integer
program and allow the variables to take any value between 0
and 1. This allows us to solve the problem as a linear program
(LP), which is much faster. In all our simulations, when the
number of sensors is “large enough” (typically, we simulate

or sensors and events), we find that,
the decision variables that optimize the LP only take the values
0 or 1 and never take any value in between. This is analogous
to the efficacy of LP decoding for turbo-like codes and it is of
interest to investigate whether the literature in this area [25]
can shed light on the performance of our algorithm. Finally, we
declare the events “picked” by the LP (those with ) to
have taken place.

D. Complexity

We now give some insights into the complexity of the al-
gorithm and begin by analyzing the circle-intersection process.
Consider a pair of sensors and with ToAs each. For each
hypothesized event time , we need to intersect pairs
of circles (every combination of ToAs, one from each sensor)
at these sensors. Over a time window , we repeat this times
and if we repeat the whole process at pairs of sensors, the
total number of circle intersections is .
For a low-complexity algorithm, we would like to keep as

small as possible. However, if we intersect circles at too few
sensors, we run the risk of not generating candidates close to
some of the events. Suppose that we are intersecting circles cen-
tered at and one of the sensors misses the ToA belonging
to . Then, we will not generate any candidate close to and
this happens with probability . Since
the misses are independent across sensors, if we intersect circles
drawn at distinct pairs of sensors, the chance of missing any
event is . We choose to ensure that this value is
small (for example, with , we choose so
that ). Since depends only on and
not on the number of sensors , the complexity of the circle-in-
tersection process does not increase with the number of sensors.
Increasing is the only way to reduce the complexity of the

circle-intersection process. However, we cannot increase too
much for two reasons: while computing the threshold for the
goodness, we have ignored the finiteness of . If is too large,
the estimate of an event might be far away from the event it-
self, resulting in it being discarded because its goodness falls

below the threshold. Secondly, even if we choose the threshold
conservatively so that the estimate survives, if it is too far away
from the actual event, the iterative refinement process in Stage
2 might fail to bring the estimate closer. For example, we find
that with sensors (and other parameters described in
Section V), choosing results in a failure rate of
and has a failure rate of (we declare an estima-
tion failure if the (a) the estimated location for any event is at
least 40 m from the true location or (b) the algorithm outputs
a wrong number of events). Similarly, we find that the failure
rate with sensors and is and that with

is . Quantifying such failure rates analytically
or providing guidelines for choosing the “largest” possible value
of that avoids such failures are beyond the scope of this paper
and are an important topic for future work.
Computing the complexity of the other stages is complicated

because we discard many candidates (either when their good-
ness falls below the threshold or when they get clustered), but
it is difficult to quantify the number of discarded candidates.
However, given the number of candidates at each step, we can
compute the respective complexities and this is shown in Fig. 5
(we provide a detailed pseudocode of each block in Fig. 5 in a
technical report [26]). We now describe the average values for
the number of candidates that we observe at different stages of
the simulations.
We generate events over a time window and

simulate sensor deployments of and sensors.
The mean number of candidates generated after the circle in-
tersection process ( in Fig. 5) is virtually the same in both
cases: for sensors, we generate 5777 candidates and for

sensors, we generate 5713 candidates. It is at the next
step that we see the value of additional sensors. The number of
candidates whose goodness exceeds the threshold ( in Fig. 5)
is 879 when ( of ). However, when the number of
sensors increases to , the number of points at this stage
is only 66 (only of ). Similarly, after clustering we have

candidates when sensors and can-
didates when . We see that stage 1 is very effective in
reducing the number of candidates (down to 2.87% and 0.67%
of respectively).
The time taken to intersect circles is nearly identical for
and sensors. However, the time taken for subsequent
stages is larger when , since there are more phantom
estimates to be discarded. Specifically, when , the time
taken by Stages 2 and 3 is of the time taken to intersect
circles. However, with , the corresponding fraction is
only .

V. SIMULATION RESULTS

Sensor Deployment Model: We run two sets of simula-
tions—one with a “moderate” density of sensors and the other
with a larger deployment density. For moderate density, we
place sensors at random in a circular region of radius

meters. The denser deployment consists of
sensors placed at random over an identical region. Note that
the sensor locations do influence the localization error and the
properties of optimal sensor placement are studied in [27].



VENKATESWARAN AND MADHOW: LOCALIZING MULTIPLE EVENTS USING TIMES OF ARRIVAL 5473

Fig. 5. A schematic sketching the different stages of the algorithm and their complexities. Stages 1, 2, and 3 are shown in the left, middle and right boxes,
respectively. A stage is divided into blocks and the block description contains a list of the basic operations it uses and the number of times it is executed (# uses).
The number of candidates that survive different blocks are denoted by .

However, averaging over random deployments facilitates com-
parison of the proposed scheme with genie-based localization,
showing that, even without optimization of sensor locations,
the performance of our scheme matches that of a genie in most
cases.
Event Generation Model: We generate events, with

their times chosen uniformly at random from the interval 0–5
seconds. We choose the event locations so that they are “inside”
the convex hull of the sensors. Specifically, we pick them ran-
domly from a region that is a scaled-down version of the convex
hull of the sensors, with the scale-factor being 75%.We generate
outliers at a rate events/sec at each sensor. To com-
pute the goodness, we assume that every sensor observes ToAs
arriving at a rate events/sec.
Measurement Model: We set the speed of sound to 340

m/s. Guided by our experimental results in [28], we choose
the standard deviation of the measurement noise to be 0.02
s and the probability with which the sensors miss an event to be

.
In our processing, we assume that and are known

(obtained, say, using tests like [28]). When these values are un-
known and we approximate them, the algorithm could return
a set of events that is larger/smaller set than the truth. For ex-
ample, when the assumed cost for declaring an outlier is larger
than the true cost, the algorithm might group outlier observa-
tions at different sensors as an event (even though the event
might not fit the observations very well). A detailed analysis
of the algorithm’s sensitivity to the knowledge of and
(and robustifying it) is beyond the scope of this paper.
Algorithm Choices: We set the granularity of the hypothe-

sized event times at . We choose the probability
with which an actual event is discarded at the end of Stage 1
to be and compute the threshold accord-
ingly (see (40)). Finally, we choose —the parameter of the geo-
metric distribution that approximates the Poisson distri-
bution—to be 0.14.
We run 100 trials of the algorithm with the above parameters

and benchmark its performance with a “genie” that computes

Fig. 6. Scatterplots of localization error with the genie-based scheme (x-axis)
against those with the proposed algorithm (y-axis) for and
sensors. We see that the errors are nearly equal (falling along the line),
illustrating the efficacy of the proposed algorithm (a) sensors (b)
sensors.

the ML estimate of the events, given the correct association of
the ToAs. To do this, we discretize a
space-time neighborhood of the event with a gran-
ularity of along each of the spatial dimensions and
along the time dimension. We then compute the genie estimate
by choosing the point on the discrete grid that best fits the ToAs
produced by at different sensors in the least-squares sense.
Figs. 6(a) and 6(b) show scatterplots of the localization errors,
with the genie estimate (along x-axis) against the errors with the
proposed estimate (along y-axis), for the cases of and

sensors respectively. We make the following observa-
tions from these figures: (a) In all trials, our algorithm correctly
estimates the number of events to be three. (b) The localization
errors produced by the proposed algorithm and the genie are vir-
tually identical (most points are along the line, shown in
red), demonstrating the efficacy of the proposed scheme. The
average localization errors for the and sensor
cases are 5.32 m and 3.69 m respectively.
Comparison With Algorithm in [1]: For comparison, we

simulated the algorithm in [1] with the same scenarios. The al-
gorithm uses two parameters: is the maximum difference be-
tween the predicted and observed ToAs for a sensor to “agree”
on a candidate event and is the number of sensors that
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Fig. 7. Comparing the proposed algorithm and [1] using sample runs with and sensors. The sensors are represented by circles, and the three
event locations are shown using squares. The event estimates produced by [1] are large blobs surrounding the events, and we see that there are more blobs than the
number of events. In contrast, the proposed algorithm produces three event estimates (triangles) that virtually coincide with the true event locations (squares).

need to agree on a candidate for it to survive. We set
s, for when the number of sensors and

when sensors. We chose the tolerance
to be as small as possible, while ensuring that an actual event at

is not discarded by a sensor because of large measure-
ment noise (with high probability). Similarly, we chose
to ensure that the chance of the algorithm failing to output an
estimate for an event that occurred is small ( ).
The results from a sample run with sensors are plotted in
Fig. 7(a). The estimates produced by [1] are not precise points,
but regions surrounding the true events (shown in red squares).
These regions can be fairly large—in the blob around the event
at , the farthest point is roughly 70 m from the
event itself. Secondly, we see that the number of blobs (six) are
more than the number of events (three), indicating that some of
them are phantoms. In contrast, the proposed algorithm returns
exactly three estimates (shown in green triangles) that are very
close to the true event locations. This is because the clustering
and linear refinement procedures coalesce the blob into a single
point close to the event and the linear program rejects phantoms.
As the number of sensors increase (keeping the number of

events and the time window fixed), we observe that the number
of phantom blobs and the sizes of the blobs typically decrease.
This is expected: a larger set of measurements provide the al-
gorithm in [1] with increased resolvability, even though it does
not exploit all the constraints. However, on some trials we do
see phantom blobs even with sensors: an example is
shown in Fig. 7(b) (the blob around is a phantom).
The runtimes for the proposed algorithm and [1] were com-

parable. For example, with sensors, the mean time taken
by the proposed algorithm was 1.16 s, while the time taken by
[1] was 2.5 s. As the number of sensors increased to ,
the times taken were virtually identical: 0.75 s for the proposed
algorithm and 0.74 s for the algorithm in [1]. These numbers are
heavily dependent on the software used and the implementation,
hence we only provide them as an indicator that the complexi-
ties are comparable. An interesting question (beyond our current
scope, but of interest for future work) is whether the ideas from
[1] could be combined with ours to speed up Stage 1 (which

Fig. 8. Scatterplots of localization error with the genie-based scheme (x-axis)
against those with the proposed algorithm (y-axis) for and
sensors, with the events lying outside the convex hull of the sensors. The errors
are nearly equal (falling along the line) (a) sensors (b)
sensors.

generates an overcomplete set of events), while keeping the re-
finement and linear programming stages of our algorithm.
Events Outside the Convex Hull: We consider random de-

ployments of and sensors in a region of radius
. The events are constrained to lie outside the convex

hull, but within a scaled version of the convex hull (with scale
factor ). To compute the genie estimate, we discretize a

region around the event with a gran-
ularity of 3.4 m along the spatial dimensions and 0.01 s along
the time dimension. All other parameters are held the same. The
number of events is estimated correctly.We show scatterplots of
the errors produced by the genie estimate against the errors pro-
duced by our algorithm for sensors and sensors
in Figs. 8(a) and 8(b) respectively. In most trials, the estimation
errors produced by the proposed scheme are virtually the same
as those from the genie-based scheme. However, they are both
larger than when the events lie within the convex hull of the
sensors: the average localization error is 13.77 m with
sensors and 9.46 m with sensors. In a few trials, the
localization error with both the genie and proposed scheme is
large (100 m with 8 sensors and 60 m with 16 sensors). This is
consistent with prior work showing that the uncertainty in lo-
calizing events outside the convex hull can be large (e.g., [29]
gives examples where the determinant of the Fisher Information
Matrix falls off rapidly outside the convex hull of the sensors).
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Thus, in practice, we would want to have a dense enough sensor
deployment such that any point of interest does fall within the
convex hull of a large enough number of sensors.

VI. CONCLUSIONS

The problem of associating ToAs with events is a funda-
mental bottleneck in localizing multiple events in space and
time. Our results on feasibility and ambiguity indicate that
space-time localization should be possible with “enough” sen-
sors. We proposed an algorithm that avoids the computational
bottlenecks of direct approaches to the association problem. A
key element of our approach is to quickly generate a relatively
small set of candidate events by discretizing hypothesized
event times, and to then apply detection-theoretic criteria for
rejecting obvious phantoms. Only after further refinement of
the surviving location estimates do we attack the association
problem through a linear programming relaxation that matches
ToAs with events, and identifies likely misses and outliers. We
have used a slightly modified version of this algorithm in an
experimental demonstration with much bigger scope; see [30]
for a high level overview. The performance of the algorithm
was excellent, including on the few occasions when the events
were close to one another in time. We omit details owing to
lack of space.
There are a number of interesting questions that require

further investigation. How do the feasibility and ambiguity
results (which consider two events) generalize to more than
two events? What are fundamental bounds on the achievable
accuracy of space-time localization in the presence of noise?
(Existing bounds address spatial localization for a single event.)
Finally, how can the approach here be generalized to a network
of heterogeneous sensors? For example, a particular ToA ob-
servation, in conjunction with a hypothesized event occurrence
time, sketches out a circle, an Angle of Arrival sensor with a
specified error generates a conical region in space, and a binary
proximity sensor [31] generates a circular region. Developing
algorithms for integration of such information for source local-
ization and tracking of multiple events is an important topic for
future work.

APPENDIX

A. Spatial Covariance of Circle Intersection Estimates

Assuming that the measurement noises and
corrupting the ToAs and are small, we can use a
Taylor’s series expansion of (11) to show that the errors in the

estimates are given by where,

(29)

with , and

.

B. Computing and

Assuming that the error in the estimated event location
is much smaller than the distance between the event and sensor

, we can expand as a Taylor series in
and retain only the linear term, to approximate it as

(30)

where denotes the standard inner product. Using this ap-
proximation in the definition of , we get

(31)

Recognizing to be the predicted ToA and using
the fact that , we get

(32)

From (29), the error in the location estimate can be expressed

as where and are independent random

variables. Since and are all Gaussian random variables
with zero mean, is also a zero mean Gaussian random vari-
able whose variance, denoted by , is given by

(33)

Thus, we get the expression in (14) for the conditional likelihood
.

Now, suppose that event is missed at sensor and is
the closest among all ToAs recorded at sensor to the predicted
ToA for , denoted by . Two conditions must be satisfied for
this to have happened: (a) there must be no ToAs at sensor
that are closer to than . In other words, there must be no
ToAs in the interval where .
(b) We must observe a ToA close to i.e., there must
be a ToA in the infinitesimal interval .
Assuming that each sensor observes ToAs as a Poisson process
with rate , the probability of (a)
happening is and the likelihood of (b) is .
Since the time intervals considered in (a) and (b) do not overlap,
the events are independent and we obtain

(34)

Therefore, .

C. Computing the Threshold

Consider the event and let and de-
note the set of sensors that missed and heard respectively.
When sensor hears the event , the first term in (17) domi-
nates the second (for the parameter choices we are interested in)
and we can approximate as

(35)
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where . To further simplify the analysis, we ne-
glect variations in the prediction error variance across sen-
sors in the first term of the above expression. We set
in the first term of (35) and get

(36)

At a sensor that missed , the first term in (17) dies down
rapidly and we can approximate as

(37)

Therefore, if sensors hear the event and sensors miss
the event, we can use (36) and (37) to obtain an approximate
expression for the goodness of :

(38)

Since the prediction error , the term
in (38) is a chi-squared distributed random variable with
degrees of freedom with a non-zero mean given by the first two
terms. We denote this distribution by . By the law of
total probability, the unconditional distribution of the goodness

is given by

(39)

We set the threshold so that the chance that the goodness for
is lower than is equal to :

(40)

We run Monte Carlo simulations to generate samples of ac-
cording to (39) and then pick the threshold to satisfy (40).

D. Integer Program Formulation

From (23), (25) and (28), we see that the decision variables
are always multiplied by and never occur by themselves.

We can therefore define new decision variables that
are also binary-valued.We now pose the problem ofmaximizing
the cost function in (28) subject to the constraints in (23) and
(25) as the following binary integer program:

(41)

The variables and are also linked through the relation-
ship , where . It might appear that we
have omitted these constraints from the above formulation. We
now show that these constraints can indeed be excluded without
any change to the optimal solution.
Consider a “complete” formulation where we include these

constraints. First, we observe that, since the variables do
not appear in the objective function, any value they take while
respecting the constraints has the same cost. Thus, we can solve
the complete formulation as follows: first, we solve the “partial”
formulation in (41) and then pick to satisfy

. It remains to be shown that we can indeed find such .
The equation (all variables are binary valued) has
a solution for if . The first set of constraints already
ensures that this will be the case: since every term in the LHS of

is non-negative, each one of them is no larger
than the RHS. Thus, any solution to (41) satisfies ,
ensuring that the equations can be solved.
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