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Abstract—This paper contains a systematic investigation of
practical coding strategies for noncoherentcommunication over
fading channels, guided by explicit comparisons with informa-
tion-theoretic benchmarks. Noncoherent reception is interpreted
as joint data and channel estimation, assuming that the channel is
time varying and a priori unknown. We consider iterative decoding
for a serial concatenation of a standard binary outer channel
code with an inner modulation code amenable to noncoherent
detection. For an information rate of about 1/2 bit per channel
use, the proposed scheme, using a quaternary phase-shift keying
(QPSK) alphabet, provides performance within 1.6–1.7 dB of
Shannon capacity for the block fading channel, and is about 2.5–3
dB superior to standard differential demodulation in conjunction
with an outer channel code. We also provide capacity computa-
tions for noncoherent communication using standard phase-shift
keying (PSK) and quadrature amplitude modulation (QAM)
alphabets, comparing these with the capacity with unconstrained
input provides guidance as to the choice of constellation as a
function of the signal-to-noise ratio. These results imply that
QPSK suffices to approach the unconstrained capacity for the
relatively low information and fading rates considered in our
performance evaluations, but that QAM is superior to PSK for
higher information or fading rates, motivating further research
into efficient noncoherent coded modulation with QAM alphabets.

Index Terms—Capacity, coding, fading channels, noncoherent
detection, wireless communications.

I. INTRODUCTION

WHILE THE problem of reliable digital communication
over time-varying wireless channels has a rich history, it

is increasingly important to find power- and bandwidth-efficient
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solutions to this problem, in view of the rapid growth of com-
mercial cellular and personal communication systems. There are
two main approaches currently employed for this purpose.

1) Use pilot symbols or codes to estimate and track the time-
varying channel, and then docoherentdemodulation and
decoding using the estimated channel. This is the ap-
proach used in most current cellular communication sys-
tems.

2) Usenoncoherentdemodulation, which does not require
explicit knowledge or estimation of the channel phase. A
special case of this is differential modulation, in which the
channel is approximated as roughly constant over at least
two consecutive symbols, and information is encoded in
symbol transitions. Another special case is orthogonal
modulation, whose bandwidth efficiency, however, is too
low for consideration in most commercial systems.

Since a time-varying channel isa priori unknown, the nonco-
herent paradigm, interpreted in its broadest sense as joint data
and channel estimation, is most appropriate in this setting. In-
deed, pilot-based systems can be viewed as suboptimal imple-
mentations within this paradigm, rather than as coherent com-
munication systems (in which the channel estimate should be
essentially ideal). A standard pilot-based system is inherently
suboptimal because it uses only the energy of the pilot symbols
for channel estimation, rather than also exploiting the (typically
larger) energies in the unknown data symbols. Moreover, it re-
quires excessive overhead for rapidly time-varying channels or
for multiple-antenna communication (the latter is not consid-
ered here).

However, existing noncoherent methods such as standard dif-
ferential demodulation are far from optimal, and are often infe-
rior compared to pilot-based schemes. Block demodulation of
differentially modulated signals can improve performance for
uncoded systems [1], [2], but such methods must be integrated
with sophisticated coding techniques to obtain an efficient non-
coherent system.

The goal of this paper is to obtain systematic approaches
for designing practical noncoherent coding and modulation
schemes for fading channels, with a view to approaching
information-theoretic limits. There are two reasons why this
effort is particularly timely. First, Shannon capacity of a
reasonable (albeit idealized) block Rayleigh fading model has
been recently derived by Marzetta and Hochwald [3], thus
providing a benchmark for comparing with practical schemes.
Second, efficient iterative decoding methods and turbo-like
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codes, used typically on the additive white Gaussian noise
(AWGN) channel [4], hold the hope for approaching capacity
over more complicated channels.

As a practical approach to noncoherent reception, we propose
a turbo-like serial concatenation of a standard outer channel
code with an inner modulation code amenable to noncoherent
detection, together with iterative joint decoding and demodula-
tion. We wish to determine whether this class of schemes can
approach the Shannon capacity for noncoherent communica-
tion. Hence, while the proposed methods apply to continuously
time-varying channels, performance evaluation is restricted to
the block fading channel model, since exact information-theo-
retic benchmarks are available only for this model.

The main results of this paper are summarized as follows.

1) We study concatenated coding schemes which consist
of an outer channel code, a random interleaver, and an
inner modulation code amenable to noncoherent demod-
ulation. The encoding and decoding techniques are tai-
lored to phase-shift keying (PSK) alphabets. It is shown
that, for information rates of about 1/2 bit per channel use
and bit-error rate (BER) of , the proposed methods
are within 1.6–1.7 dB of Shannon capacity (ergodic ca-
pacity), and are about 2.5–3 dB superior to the system
composed of a standard differential phase-shift keying
(DPSK) demodulation scheme in conjunction with a pow-
erful outer channel code.

2) We compute the capacity of the noncoherent block fading
channel for both PSK and quadrature amplitude modu-
lation (QAM) alphabets, comparing it with the capacity
with unconstrained input (except an average power con-
straint) [3] in order to determine the appropriate alphabet
for a given channel coherence length and transmission
rate. QPSK is a suitable choice for transmission rates
of approximately 1/2 bit per channel use and coherence
lengths larger than or equal to 10, which are the settings
emphasized in the performance evaluation of our practical
strategies. For higher transmission rates and/or smaller
coherence lengths, our computations show that QAM sig-
naling is superior to PSK signaling for approaching un-
constrained capacity. This motivates future work on ex-
tending our code constructions and decoding techniques
to QAM alphabets.

3) We consider two different types of inner modulation
codes based on differential encoding. -ary DPSK
and block-based -ary differential phase-shift keying
(B-DPSK). In order to achieve better performance, inner
modulation codes should be matched to the outer channel
codes. Our simulations suggest that the following three
combinations of outer channel codes and inner modula-
tion codes lead to excellent performance: convolutional
code with DPSK, repeat-accumulate (RA) code with
B-DPSK, and turbo code with B-DPSK.

4) We propose a suboptimal noncoherent demodulator
which has linear complexity with respect to the coher-
ence length. This demodulator employs a simple, robust,
averaging estimator for the channel fading amplitude, and
the technique of phase quantization for the phase shift
caused by the channel. By considering several different

hypotheses regarding the channel phase shift, we reduce
a noncoherent channel to a set of coherent channels, thus
greatly reducing the complexity. Simulations show that
our simple estimator for the fading amplitude induces
only about 0.3–0.5 dB performance degradation com-
pared to the case when the fading amplitude is perfectly
known.

The literature most relevant to this paper is summarized as
follows. The work most closely related to ours is [5], which em-
ployed a similar iterative noncoherent receiver for an AWGN
channel with unknown phase shift. They also pointed out that a
certain differential encoder (RDE code) similar to the B-DPSK
code considered in this paper, is superior to DPSK, when con-
catenated with turbo code and decoded iteratively. The differ-
ences and similarities between our work and [5] will be high-
lighted appropriately in later sections of the paper.

A key paper in uncoded noncoherent communication is
[1], which showed that block demodulation of DPSK alle-
viates performance loss from standard demodulation based
on a two-symbol block. Peleg and Shamai [6] first proposed
a new receiver for coded and interleaved DPSK based on
multiple-symbol differential detection (MSDD) and iterative
decoding for an AWGN channel with an unknown phase shift.
Iterative structures for joint noncoherent demodulation and
decoding have also been considered in [7]–[9] for AWGN chan-
nels, and in [10]–[15] for fading channels. In all of these papers,
iterative processing is applied to a serially concatenated system
consisting of an outer channel code, an interleaver, and an inner
modulation code, with soft information exchange between
the demodulator and the outer channel decoder proceeding
in an iterative fashion as described in [16]. Since the optimal
noncoherent demodulator has a complexity exponential in the
memory, a key component of the design effort in many of these
papers is in devising soft-input–soft-output (SISO) noncoherent
detectors with reasonable complexity. In the following, we
classify some of the major approaches to complexity reduction.

Explicit estimation of the channel followed by coherent de-
tection was considered in [11], which uses linear prediction
and per-survivor processing. Another approach is to employ
Bahl–Cocke–Jelinek–Raviv (BCJR)-type algorithms [17] with
a truncated channel memory. Colavolpeet al.[8] derived a mod-
ified BCJR algorithm for both PSK and QAM signaling over an
AWGN channel with an unknown phase shift. Similar detectors
for PSK alphabets were also studied in [9] and [10]. The com-
plexity of this approach, however, is exponential in the channel
memory. An alternative implementation based on noncoherent
sequence detection [18], [19] was proposed in [8], where state-
reduction techniques were used to reduce complexity. In con-
trast, our approach in this paper and in [20], and the approach
of [5], is to quantize the unknown channel state. This approach
is particularly advantageous for channels with large memory,
since the complexity per demodulated symbol is independent of
the channel memory. A detailed comparison of the performance
and complexity of these various approaches is beyond the scope
of this paper.

The phase-quantization approach for reducing complexity
was considered previously for noncoherent demodulation alone
(see [2], [21], [22], and references in [5]). In other related
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work, [23] uses the tangential sphere bound to show that a
serial concatenation of a convolutional code with differential
encoding outperforms the stand-alone convolutional code.
Turbo coding for coherent fading channels has been studied in
[24] and [25].

The remainder of this paper is organized as follows. Section II
contains information-theoretical results for the noncoherent
block fading channel. The proposed capacity-approaching
coding and modulation schemes are discussed in Section III.
Simulation results are presented in Section IV. Finally, Sec-
tion V contains conclusions and discusses directions for future
work.

II. BLOCK FADING CHANNEL

In this section, we describe the block fading channel model,
followed by capacity computations for both unconstrained input
(except for a power constraint) and constrained input from finite
constellations.

A. Block Fading Channel Model

In a block fading channel model, the complex-baseband
transmitted signals undergo fading, characterized by multipli-
cation by a complex Gaussian random variable. This Gaussian
random variable is called thefading coefficient, which is
assumed to remain constant over a block ofsymbols.
The constant is also called thecoherence length. Fading
coefficients for different blocks are modeled as independent
random variables. The independence condition requires suffi-
cient separation in time or frequency between blocks. Thus,
block fading channels can provide good approximations for
time-division multiple access (TDMA), frequency hopping, or
block-interleaved channels.

For a block fading model, we have

(1)

where , , and are 1 complex-valued column vectors;
is the received signal,is the transmitted signal with power con-
straint , and denotes the Hermitian operator;

is the fading coefficient, which is complex Gaussian
distributed with distribution ; and

is the white Gaussian additive vector with distribution
.

B. Capacity With Unconstrained Input

In this section, we briefly review capacity results obtained in
[3] for noncoherent block fading channels.

Let denote the differential entropy of a continuous
random variable. Also let and denote the trace and
determinant, respectively, of a square matrix.

The noncoherent channel capacity, by definition, is equal
to

(2)

where is the probability density function (pdf) for the input
signal and is the conditional density function.

Any input signal can be written as , where the com-
plex vector is a unit vector and is a scalar repre-
senting the signal amplitude that satisfies the power constraint

. It is shown in [3] that and can be assumed in-
dependent for the capacity-achieving distribution

(3)

Furthermore, the distribution is uniform over the -dimen-
sional complex sphere .

Since is known, the task of finding the optimal distribu-
tion reduces to a simpler task of finding the optimal dis-
tribution . Substituting the independence condition (3) into
the expression of the channel capacity (2), we have

(4)

Based on (4), the capacity is computed [3] numerically
using a modified version of the Blahut–Arimoto algorithm [26].
However, no details of this algorithm were given in [3]. Ap-
pendix A gives some of the necessary details in order to com-
pute the unconstrained capacity.

C. Capacity With Constrained Input From Finite
Constellations

In this paper, we are interested in computing the noncoherent
capacity achieved by constrained inputs from finite constella-
tions and compare them with the unconstrained capacity. In de-
signing practical coded modulation schemes, the rule of thumb
is to choose the smallest constellation size which, for the infor-
mation rate of interest, gives a capacity “close enough” to the
capacity with unconstrained input.

Assume that each element of the input signal vector
is chosen independently from afinite constellation set with
equal probabilities. The channel capacity can then be written as

.
To compute , we use the fact that conditioned on is

Gaussian. It is known that the differential entropy of a complex
Gaussian random variable with the covariance matrixis equal
to . Here, we have , where
is a identity matrix. It follows that

For the first term , we have

(5)

Evaluation of (5) cannot be done in a closed form. A practical
approach to numerically evaluate it is by Monte–Carlo integra-
tion. A detailed implementation of this method is described in
Appendix B.

In Fig. 1, we plot the noncoherent channel capacity computed
using various PSK/QAM modulation schemes for coherence
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Fig. 1. Noncoherent channel capacity for various constellations.

Fig. 2. QAM constellations.

lengths 5 and 10. We use the 8-QAM and 16-QAM constella-
tions shown in Fig. 2. The 8-QAM constellation is known to be
the best eight-point QAM constellation because it requires the
least power for a given minimum distance between signal points
[27]. Also, for the most frequently used rectangular 16-QAM
constellation shown in Fig. 2, the average transmitted power re-
quired to achieve a minimum distance is only slightly greater
than the average power required for the best 16-point QAM
constellation [27]. Capacity with unconstrained input is also
plotted, serving as benchmarks.

Fig. 1 shows that, at the coherence length and a trans-
mission rate of about 1/2 information bit/channel use, QPSK is
a good choice, being the smallest constellation whose capacity
comes close to that of the unconstrained input. However, for
higher transmission rates exceeding one information bit/channel
use, approaching the capacity with the unconstrained input re-
quires the use of amplitude/phase modulation (e.g., 8-QAM is
appreciably better than 8-PSK) and larger constellations. This
effect is more pronounced for smaller coherence lengths. Sim-
ilar conclusions were obtained by Abou-Faycalet al. [28] for
the extreme case of coherence length .

III. CAPACITY-APPROACHING CODING

AND MODULATION SCHEMES

This section describes our results for designing capacity-ap-
proaching coding and modulation schemes. It is organized
as follows. In Section III-A, the system model is introduced.
The joint demodulation and iterative decoding schemes are
discussed in Sections III-B–III-D. Section III-B discusses the

structures for the proposed suboptimal noncoherent demodu-
lator, assuming the prior information for the transmitted bits are
available from the outer channel codes. Section III-C studies
two different types of inner modulation codes: DPSK and
B-DPSK. Section III-D gives a brief description of the iterative
decoding algorithms for the outer channel codes.

A. System Model

Fig. 3 shows a schematic block diagram of the system. The
channel encoder encodes a sequence of information bitsinto a
sequence of coded bits. The resulting coded sequence is inter-
leaved by a random permutation and then mapped to a sequence
of MPSK symbols using Gray mapping. The sequenceis
then divided into blocks of symbols, where is equal to
the coherence length of the channel. The function of the inner
modulation coder is to code blocks of input symbols into
blocks of output symbols. Each block of output symbols
is then passed to the transmit filter, and sent through the block
fading channel.

At the complex baseband receive filter, for each block of re-
ceived samples, the block demodulator computesa posteriori
probabilities (APPs) of the input PSK symbols. Subsequently,
these symbol APPs are used to compute bit-wise APPs (a pre-
cise description follows in Section III-B). The “extrinsic” part
of these bit-wise APPs is then deinterleaved and passed to the
channel decoder. The channel decoder performs one decoding
iteration and generates bit-wise extrinsic information . As-
suming that the bits which constitute a PSK symbol are statisti-
cally independent, the interleaved bit-wise extrinsic information

is fed back to the demodulator, which updates the prior
symbol probabilities. For the next iteration, the demodulator
computes symbol APPs using updated prior probabilities. In this
manner, the demodulation and channel decoding proceed itera-
tively. After a fixed number of iterations, decisions are made at
the output of the channel decoder to generate the decoded bits.

We introduce some notation that we will use throughout this
paper.

• Denote the size of the MPSK constellation by and
the signal set by .
Alternatively, define the index set for as

, where each index represents
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Fig. 3. Schematic block diagram of the system.

a constellation point . We restrict atten-
tion to the case where is a power of two, and define

as the number of bits in each MPSK symbol.
• Denote the input vector for the modulation coder by

. For each ,
represents an input MPSK symbol encodingbits. The
bits encoded in are denoted by .

• Denote the output vector of the modulation
coder corresponding to the input vector by

. Each
is the index for the MPSK symbol

. We also write
instead of .

For the modulation codes considered in this paper,is a
reference symbol inserted by the modulation coder and is in-
dependent of . To simplify notation, we let . Even
though we only consider the block fading channel here, the
block modulation codes proposed are designed to accommo-
date a block approximation of the continuously time-varying
channel. Therefore, in general, we do not assume thatis a
pilot symbol known by the demodulator. More details are given
in Section III-C.

B. Noncoherent Block Demodulator

In this section, we give a description of the noncoherent block
demodulator employed in our iterative decoding scheme. Due
to the statistical independence of the fading coefficients in ad-
jacent blocks and the block encoding scheme, the noncoherent
demodulator operates blockwise.

For each bit , , , let
, 0,1, denote the input bit-wise priors pro-

vided by the channel decoder. We assume that these bit-wise
priors associated with the same block are independent due to the
presence of the channel interleaver. Based on this independency
assumption, the demodulator takes the following three steps to
compute the output bit-wise extrinsic information to be passed
back to the channel decoder.

1) For each symbol , the demodulator generates
symbol-wise priors from input bit-wise
priors as

2) For each symbol , the demodulator computes
symbol-wise APPs as

(6)

To make our notation consistent, we let
denote the prior probability for the reference symbol.
Computing turns out to be the bottleneck in terms
of computational efficiency. We focus on this problem in
Sections III-B.1 and III-B.2.

3) For each bit , the demodulator generates updated
bit-wise APPs and the bit-wise ex-
trinsic information . The latter will be
passed back to the channel decoder.

Using the symbol-wise APPs computed in step 2, we have

Then the bit-wise extrinsic information is obtained
by removing bit-wise priors from

Next, we discuss how to efficiently compute the summation
in (6).

1) Optimal Noncoherent Demodulator:When a PSK con-
stellation is used, we simplify the noncoherent pdf given in [3]
to obtain the following:

(7)
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For any , define a new vector by
for every . In other words,

is obtained from by a rotation in the signal space. Note that
the noncoherent pdf satisfies therotational invarianceproperty:

.
For the inner modulation codes considered in this paper, the

number of terms in the summation of (6) is equal to ,
which increases exponentially with the coherence length.
In contrast to the coherent setting whereis known, the
noncoherent conditional density shown in (7) cannot
be computed recursively, because the second exponential in

does not decompose into a product of suitable individual
terms. Therefore, when (7) is used to compute symbol APPs,
the resulting complexity is prohibitive, even for moderate
coherence lengths.

2) Suboptimal Noncoherent Demodulator:In the following
section, we derive an approximate approach close to the optimal
solution, while requiring complexity that grows only linearly
in the coherence length. The main idea of the proposed nonco-
herent demodulator is to approximate the noncoherent channel
by a set of coherent channels. This is achieved by discretizing
the unknown channel fading coefficient with the am-
plitude and the phase shift. We treat these separately.

We derive an averaging estimatorfor the fading amplitude

(8)

Once is computed, we keep it fixed for all iterations of joint
demodulation and iterative decoding.

This estimator is simple because it does not require any prior
knowledge of the transmitted symbols. As shown in the simu-
lation results, is rather robust. For moderate-to-small coher-
ence lengths, this estimator incurs only 0.3–0.5 dB performance
degradation, compared with a genie-aided system in which the
fading amplitude isperfectlyknown. Thus, as expected, the per-
formance for PSK alphabets is more sensitive to the channel
phase than to the amplitude. However, we anticipate that our
coarse amplitude estimator will need to be improved for good
performance with multiamplitude signaling such as QAM.

We assume that takes only discrete values in the interval
[0, ]

(9)

Define for every .
Assuming that the estimated fading amplitude is, we have

(10)

We now substitute (10) into (6) to approximate . It fol-
lows that for every , we get the result shown in (11) at the
bottom of the page.

Based on the last equality of (11), we can compute
recursively using the BCJR algorithm [17] or the sum–product
algorithm [29]. The overall computation requirement is equiva-
lent to times the complexity of a BCJR algorithm applied to
the coherent demodulation of the block modulation code.

C. Block Modulation Codes

Block modulation codes suitable for noncoherent commu-
nication were considered by Sun and Leib [30], Warrier and
Madhow [2], and Peleg and Shamai [7]. Codes considered in
[30] and [2] are especially effective for higher SNR, in which
case they provide significant coding gains. Codes considered
in [7] are effective for lower SNR. In our system, coding gains
are realized by employing powerful outer channel codes in con-
junction with very simple inner modulation codes with iterative
information exchange between the inner demodulator and the
outer decoder. For the relatively low SNRs considered in this
paper, this approach appears to suffice for approaching channel
capacity. Next, we consider two examples of such modulation
codes based on differential encoding. In particular, we concen-
trate on the form that (11) takes in this case.

1) -ary DPSK: The first modulation code structure we
consider is the standard -ary DPSK. The encoding enforces
the rule

if
if

(11)
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Fig. 4. Trellis sections for the noncoherent demodulator.

The first symbol is the reference symbol. For the block
fading channel, it can be a known pilot symbol inserted by
the modulation coder; thus, the transmission rate is reduced
by a factor of . Such a transmission rate loss can
be avoided when using a block fading approximation for a
continuously fading channel, by overlapping successive blocks
by one symbol, using the last symbol of the previous block
as the reference symbol for the encoding of the current block.
In this case, the demodulator does not know the value of.
Applying the rotational invariance property of to (6)
and using the fact that is independent of the other symbols

in the same block, one can see that the output APPs do not
depend on the priors of .

Without loss of generality, therefore, we assume thattakes
any value in with equal probability. Next, we show that,
when the quantization level is an integer multiple of , (11)
can be simplified. Instead of quantizing the phase shiftin the
interval [0, ] as shown in (9), we quantize it in the subinterval
[0, ], thus reducing the number of quantization levels. The

reduced phase quantization level is equal to . Writing
any number , in the form , where

and , we can simplify (11) in the last
equality of (12), shown at the bottom of the page.

We next give a graphical description of the demodulation
scheme suitable for an efficient BCJR algorithm. A trellis is
a graphical structure illustrating the dynamical behavior of a
system. We define the trellis structure for the DPSK demodu-
lator as follows. There are a total oftrellis sections and
trellis state classes. Let denote theth state class and let
be a particular state. Each state represents a 2-tuple
( ), where
and . The number of possible values of each state equals

. Branch transitions between state
and are allowed if and only
if and . Hence, it
can be seen that the trellis is composed of complete bi-
partite graphs of vertices, as depicted in Fig. 4(a).
In accordance with the last equality of (12), the branch

(12)
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metric for each of the transitions defined above is equal
to ,

.
In the definition above, state transitions are not allowed

between states with different values of. Therefore, the total
number of branches within each trellis section is .

The trellis structure proposed here resembles that of [5]. The
main distinction is that the trellis structure proposed here is the
product [31] of two trellises, one corresponding to the modula-
tion coder, and the other one corresponding to the phase shift
of the channel. This is a general structure that can be modified
to accommodate time-varying channels, and to support modula-
tion coders beyond differential coders with PSK signaling. The
complexity of the proposed trellis structure is the same as that
of [5].

2) Block-Based -ary DPSK: An alternative block mod-
ulation code relates all symbols directly to the first reference
symbol in each block. We refer to this modulation code as block-
based -ary DPSK (B-DPSK).

For each input , the B-DPSK encoder generates outputas

if
if

When the reference symbol is placed in the center of each
block and all other symbols are differentially encoded to it, one
obtains the RDE code studied by Peleget al. [5]. For the block
fading channel, B-DPSK and RDE are equivalent because the
location of the reference symbol is irrelevant, as the channel
remains constant within each block. The advantage of B-DPSK
comes when the block fading model is used as an approximation
for a continuously fading channel, with the reference symbol
taken to be the last symbol of the previous block to overcome
the transmission rate loss of the factor . The RDE
code can also overcome such rate loss using similar techniques
described in [5] and [7].

Using the rotational invariance property of the noncoherent
density function, the demodulator can assume that ,
even though for the B-DPSK encoder may take any values
between 0 and . Under this assumption, as far as the
demodulator is concerned, the encoding rule becomes

if
if

In other words, the demodulator treats the first output symbol
as a pilot symbol and the remaining output symbols as
uncoded information symbols. As shown in later sections, de-
spite its simplicity, B-DPSK works surprisingly well with cer-
tain outer channel codes.

The trellis structure of the noncoherent demodulator with
B-DPSK is described as follows. There are a total oftrellis
sections and trellis state classes. Let denote the
th state class. Here each is equal to the quantization

set . Each particular
state represents a given quantization level. The
possible values of each state equal to. Branch transitions

between state and are allowed if and
only if . It follows that the trellis is composed
of complete bipartite graphs of two vertices, as depicted in
Fig. 4(b). There are a total of branches corresponding
to the possible inputs for the information symbol .
The branch metric for each of the branches defined above is
equal to ,

. Note that since the first symbol is
treated as a pilot symbol, we have . The
number of valid branches for a given trellis section equals to

, which is the same as that of the DPSK
demodulator. It is known that the complexity of a BCJR
algorithm is proportional to the number of trellis branches [32].
Hence, the complexity of running a BCJR algorithm on the
trellis of the B-DPSK demodulator is about the same as that of
the DPSK demodulator.

D. Iterative Decoding Algorithms for the Outer Channel
Codes

In previous sections, we discussed the trellis structures of the
noncoherent demodulator for different modulation codes. Based
on such structures, the demodulator can be implemented as a
SISO module using a BCJR-type decoding algorithm. The outer
channel decoder can also be regarded as a SISO module. The
input to the SISO module for the decoder is fed by the output
of the SISO demodulator. However, only one iteration is per-
formed inside the SISO decoding module for the channel de-
coder during each joint demodulation and decoding cycle.

Decoding algorithms for various outer channel codes consid-
ered in this paper are well investigated in the literature. For turbo
decoding, we refer to [4], and for decoding of RA codes, we
refer to [33]. A general description of SISO decoding of serial
concatenated modulus is given in [16].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
joint demodulation and iterative decoding algorithm by sim-
ulating the system shown in Fig. 3. Various choices of outer
channel codes and inner modulation codes are considered. The
block fading channel defined in Section II-A is used in all sim-
ulations.

A. Coding and Modulation Strategies

Three types of outer channel codes are considered: an RA
code, a convolutional code, and a turbo code, each with a rate
of 1/4 and a codeword length of 64 000 bits. We use the regular
rate 1/4 RA code as defined in [33]. For the convolutional code,
we consider two different systematic codes, a recursive and a
nonrecursive one. For the turbo code, a systematic code using
parallel concatenation of two component codes of rates 1/3 and
1/2 is considered. The overall rate of the turbo code is also 1/4.
For the inner modulation codes, we consider both types, DPSK
and B-DPSK, and each has a rate of . We always use
QPSK modulation in this paper.

The code parameters for the convolutional codes and the
turbo code are shown in Table I.
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TABLE I
PARAMETERS OFOUTER CHANNEL CODES

Fig. 5. Performance of the amplitude estimator.

1) Noncoherent Demodulator: Amplitude Estimation and
Phase Quantization:In this section, we look at the perfor-
mance loss due to the simple averaging amplitude estimator of
(8) and the finite number of quantization levels of (9).

In Fig. 5, we compare the performance of the noncoherent
demodulator with unknown phase and unknown amplitude with
the genie-aided noncoherent demodulator with unknown phase
but known amplitude. The latter is implemented by replacing
by the true amplitude in (10). This gives an upper bound
on the performance degradation due to the crudeness of the
amplitude estimator. We use the example of the RA code of
a codeword length 64 000 with the B-DPSK modulation code.
The number of iterations is set to 20. At , the perfor-
mance degradation inflicted by the amplitude estimator is less
than 0.3 dB. Performance degrades slightly for smaller. Even
for a very small coherence length , the performance is
still within 0.5 dB of the case when the amplitude is perfectly
known.

The number of quantization levels also affects the system per-
formance. Our simulation results show that when B-DPSK is
used, it is sufficient to use 20 quantization levels. Increasing the
number of quantization levels beyond 20 does not lead to signifi-
cant performance improvement. For DPSK, the number of quan-
tization levels needed is roughly of that of the B-DPSK.
Hence, four or five quantization levels are sufficient.

2) Different Combinations of Outer Channel Codes and
Inner Modulation Codes:Our results show that the best choice
of the modulation code is closely tied to the choice of the outer
channel code.

Fig. 6. Performance of different combinations of outer channel codes and
inner modulation codes.

Fig. 7. Probability of a correct bit decision through iterations.

In Fig. 6, we compare the performance of different combi-
nations of the three outer channel codes (convolutional, turbo,
and RA) with the two modulation codes (DPSK and B-DPSK).
The overall codeword length is 64 000 and . The RA
code and the turbo code perform better with B-DPSK than with
DPSK, since B-DPSK does not disturb their turbo-like struc-
tures. Similar phenomena were also observed by Peleget al.[5]
for AWGN channels. The convolutional code performs much
better with DPSK than with B-DPSK, since serial concatenation
with DPSK gives the overall code a turbo-like structure that it
lacks when used with B-DPSK. Indeed, when B-DPSK is used
with the convolutional code, the sharp turbo-like waterfall re-
gion seen for the other cases is no longer present.

In order to have a better understanding of the joint demodula-
tion and iterative decoding process, we track the probability of a
correct bit decision through iterations in the same spirit of EXIT
charts [34]. The results are shown in Fig. 7. Theaxis repre-
sents , the probability of a correct bit decision at the



CHEN et al.: JOINT NONCOHERENT DEMODULATION AND DECODING FOR THE BLOCK FADING CHANNEL 1685

TABLE II
CAPACITY BENCHMARKS FORBLOCK FADING CHANNEL

output of the decoder. Theaxis represents , the prob-
ability of a correct bit decision at the output of the demodulator.
There are six curves in the plot which correspond to all pos-
sible combinations of the three outer channel codes and the two
inner modulation codes. Each curve, representing a code com-
bination, is obtained by interpolating a sequence of points. The
coordinates of each point indicate the probability of a correct bit
decision at the output of the demodulator and the decoder at the
end of a certain iteration.

For the first iteration, since the soft input to the demodulator is
uniformly distributed, the output symbol APP has the same dis-
tribution for DPSK and B-DPSK. Therefore, is iden-
tical. For a fixed outer channel code, is also the same
at the end of the first iteration. It is only after the first iteration
that systems with different modulation codes start behaving dif-
ferently. As seen from the plot, the RA code and the turbo code
in conjunction with B-DPSK exhibit fast convergence. In four
or five iterations, approaches one. In contrast, when
DPSK is used, it takes up to 20 iterations before the system sta-
bilizes. Even then, there are still many incorrect bit decisions at
the end of the decoder output.

Interestingly, for the convolutional code, reaches as
high as 0.8 after only one iteration. Note that increases
rapidly within the next four iterations. By the time the system
converges, equals approximately 0.85, which is higher
compared to that of other code combinations.

In summary, the following code combinations lead to a supe-
rior performance:

• turbo code + B-DPSK;
• RA code + B-DPSK;
• convolutional code + DPSK.

In the remainder of this paper, we report simulation results for
the three combinations above only.

B. Capacity Benchmark

Denoting the received energy per symbol by and the re-
ceived energy per information bit by , we have the following
relationship:

where is the transmission rate, expressed in information bit
per channel use. Assume that the outer channel code has a rate
of 1/4. When QPSK modulation is used, we have for both mod-
ulation codes

(13)

where the term takes into account the rate loss due
to the reference symbol per block.

We consider three different coherence lengths: 10, 20, and 50.
For each coherence length, we list in Table II the transmission
rate computed from (13), and the minimum required to
transmit at such a rate based on capacity computations for un-
constrained input.

C. System Performance

In this section, we present various figures corresponding to
different coherence lengths ( 10, 20, and 50). In each figure,
we plot the performance curves for three good combinations of
outer channel codes and inner modulation codes mentioned in
the previous section, using the proposed joint demodulation and
iterative decoding algorithm. For comparison, we also provide
performance curves using coherent demodulation for the same
codes. The number of iterations for both coherent demodulation
and noncoherent demodulation equals 20.

Fig. 8(a)–(c) contain simulation results for long outer channel
codes of a codeword length 64 000. The main observations from
these figures are as follows.

1) The system performance depend on the coherence length
. At BER , the RA code performs the best for

. The nonrecursive convolutional code performs
the best for . For , the turbo code performs
the best. The gap between the Shannon limit and what is
achieved by the best code in each plot is approximately
1.6 to 1.7 dB.

2) The choice of codes should depend on whether coherent
or noncoherent detection is used. When coherent detec-
tion is used, the turbo code performs significantly better
(by about 0.5–0.7 dB) than the RA code. However, for
noncoherent detection, the RA code performs better for
moderate coherence lengths of and .
Only for , where the longer coherence length
enables a more accurate implicit channel estimate using
noncoherent detection, is the turbo code superior to the
RA code.

3) The convolutional code with DPSK performs well. For
, its performance is better than that of the RA

code and the turbo code for SNR smaller than 3.6 dB.
At higher SNRs, it exhibits an error floor. For ,
it outperforms both the RA and turbo codes. However, its
performance is appreciably worse than that of the RA and
the turbo code for , possibly due to the long fades
associated with such a large coherence length.

4) The joint demodulation and decoding algorithms pro-
posed in this paper lead to significant gains over the
traditional schemes that employ standard two-symbol
SISO differential demodulation followed by channel
decoding. No iterative information exchange between the
demodulator and the decoder is used in these traditional
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(a) (b)

(c) (d)

Fig. 8. Performance comparisons of different code combinations.

schemes. For , the performance of the traditional
schemes are plotted in Fig. 8(b) using dashed lines. The
performance gain of the proposed algorithm compared
to the traditional schemes is about 2.5–3 dB for the
RA code and the turbo code, and is even higher for the
convolutional code.

So far, we have only examined the performance of long outer
channel codes of a codeword length 64 000. In practice, codes of
shorter lengths may be preferred because of constraints on the
decoding delay. Fig. 8(d) displays simulation results for codes
of a codeword length 16 000 bits. The coherence length is 20.
At the end of the first 10 iterations, the convolutional code out-
performs both the RA code and the turbo code. By the end of
20 iterations, the RA code performs fairly close to the convo-
lutional code, while the performance of the turbo code barely
improves after the first 10 iterations.

V. CONCLUSIONS

Our investigation shows that there are three key aspects to
be considered in the design of noncoherent coded modulation
systems.

1) Information-Theoretic Aspect
The transmitted signal constellation set, which con-

sists of 1 ( is the coherence length) signal vectors to

be transmitted through the block fading channel, should
be chosen such that the channel capacity achieved for this
signal set is close to the unconstrained (except for the
constraint on power) channel capacity. We show that in-
dependent and identically distributed (i.i.d.) input from
appropriately chosen standard PSK and QAM alphabets
works well for a wide range of SNRs and channel coher-
ence lengths.

2) Complexity Aspect
Modulation codes should allow for efficient decoding.

For a transmission rate of bits per channel use, the
total number of transmitted signals over a block equals

. This is usually a large number which makes an ex-
haustive search impossible. Therefore, efficient decoding
schemes must be available for the modulation codes. Our
current encoding and decoding schemes are optimized for
PSK alphabets, and may need modification for QAM al-
phabets, including the development of more sophisticated
methods for handling the unknown channel amplitude and
phase, and generalization of differential modulation to
QAM constellations [2], [22].

3) Compatibility Aspect
In order to optimize performance, the inner modulation

code should be chosen to match the outer channel code,
so as to introduce or preserve the“turbo effect.”
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For the setting considered in our simulation results, it remains
an open issue as to how to account for the 1.6–1.7 dB gap to
capacity, and whether it is practically feasible to further close
this gap. As shown in the simulation results, the amplitude es-
timator can account for, at most, 0.3–0.4 dB, so there may be a
few tenths of a dB to be gained by improving the amplitude es-
timator. Another possibility is to optimize the tradeoff between
the complexity of the outer channel code and inner modula-
tion code, using modulation codes that are more sophisticated
than the rate one DPSK and B-DPSK codes. However, the re-
sults from initial experiments on such modulation codes have
not been promising. Finally, the use of a finite blocklength con-
tributes to the gap, especially because compared to the AWGN
channel, a larger degree of time averaging is needed for good
performance over fading channels.

APPENDIX A
CAPACITY COMPUTATION WITH UNCONSTRAINEDINPUT

We state in this appendix the modified Blahut–Arimoto al-
gorithm due to Marzetta and Hochwald [3] for computing the
optimal input distribution , where is a random scalar
coming from the signal decomposition .

Theorem 1: Given the parameter , for any distribution
, let be as shown in(A.1) at the bottom of the page.

If the initial distribution is strictly positive for any
, then as , the sequence of probability distributions

defined by

(A.2)

satisfies

1) (the optimal distribution).
2) , where is average

signal energy given the optimal distribution .
3) Let denote the mutual information generated by

and let denote the capacity achieved with optimal

input with energy constraint . Then
.

A simplified expression for , defined in (A.1), is derived
by [3], as shown in (A.3) at the bottom of the page, where

When implementingTheorem 1in practice, we approximate
the integral in (A.3) by finite summations. We choose a prede-
termined sampling constant. Let and be the number of
discrete samples used to approximateand , respectively. The
approximation error of the finite summation can be controlled
by the choice of the parameters, , and . Define the discrete
set for as ,
and the discrete set for as

.
The iterative steps inTheorem 1can be approximated as

shown in the last equation at the bottom of the page.
When the algorithm converges, we have

where . Note that, to satisfy the power con-
straint, the parametershould be chosen such that .

APPENDIX B
CAPACITY COMPUTATION WITH CONSTRAINED

INPUT FROM FINITE CONSTELLATIONS

We describe how to evaluate (5) with Monte–Carlo integra-
tion. To simplify, we assume that a uniformly distributed PSK

(A.1)

(A.3)
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constellation is used. Similar techniques can be used for other
input constellations, such as QAM.

Recall (5)

(B.1)

Define to be the all-one column vector. For
any input signal vector, we can write , where is
a diagonal unitary matrix representing a rotation in the
signal space. Note that , and

. The latter equality follows from the assumption
that the input distribution is uniform. We have

(change of coordinates)

(B.2)

Hence

(B.3)

where and .
Assume that we have an efficient method to compute .

Next, we generate a total of points, ( ), according to the
product distribution . We then approximate the last
integral in (B.3) by simulating the integrand on thesesample
points

(B.4)
It remains to give an efficient way to compute , or

in short notation . In order to reduce complexity, we rewrite
as follows:

(B.5)

where . The last in-
tegral in (B.5) can also be approximated by Monte–Carlo inte-
gration in the same fashion as shown in (B.4).
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