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Abstract—As signaling bandwidths increase, analog-to-digital
conversion becomes a fundamental bottleneck for modern all-
digital baseband signal processing architectures. Motivated by
emerging millimeter (mm) wave communication systems, we
investigate the impact of severe quantization for 2 × 2 and
4 × 4 line-of-sight (LoS) multi-input and multi-output (MIMO)
systems employing QPSK. Unlike prior work on MIMO with low-
precision quantization, channel state information is utilized only
at the receiver (i.e., transmit precoding is not employed). Rather
than designing an optimal quantizer, we focus on quantizers
with regular structure, and ask whether high-SNR performance
approaches that of an unquantized system. First, we prove for
a 2 × 2 MIMO system that phase-only quantization (attractive
because it does not require automatic gain control) is unable
to achieve this, but that 2-level amplitude and 8-level phase
quantization can achieve the maximum data rate of 4 bits per
channel use as SNR gets large. We then show that quantizer de-
sign based on conventional minimum mean squared quantization
error (MMSQE) criterion performs worse than a quantizer based
on equal-probability regions. We show that I/Q quantization with
16 regions per antenna using the equal probability criterion
achieves the unquantized benchmark at high SNR, which is a
maximum data rate of 8 bits per channel use. We illustrate our
investigations via numerical examples.

I. INTRODUCTION

Modern communication receivers employ all-digital signal
processing, with baseband signals converted to the digital do-
main with analog-to-digital converters (ADCs), typically with
precisions of 8-12 bits per real-valued sample. As signaling
bandwidths increase, however, realizing high-precision ADCs
becomes a challenge [1]. This could be addressed, for example,
by hybrid analog/digital processing (with analog processing
typically used to reduce dynamic range prior to quantization),
but all-digital processing with severely quantized samples is
an attractive alternative. In this paper, we investigate the latter
approach for system models motivated by emerging millimeter
(mm) wave applications: 2 × 2 and 4 × 4 LoS MIMO [2]
systems employing QPSK modulation over each data stream,
resulting in a maximum data rate of, respectively, 4 bits and 8
bits per channel use. Such a setting is particularly attractive for
exploring the feasibility of attaining good performance with
drastic quantization, since small constellations and a simple
channel result in a relatively small dynamic range for the
received signal.
Contributions: Rather than trying to design optimal quan-
tizers, our goal is to design quantizers with regular structure

which approach the same Shannon limit as an unquantized
system at high SNR. A particularly attractive approach is
phase-only quantization: this can be implemented by passing
linear combinations of the real and imaginary parts of the
sample through sign detectors (one-bit ADCs), and therefore
does not require automatic gain control. Our main results are
as follows:
For a 2× 2 LoS MIMO system:
(1) We prove that phase-only quantizers do not meet the
unquantized benchmark at high SNR.
(2) We prove that 2-level amplitude and 8-level phase quan-
tization does meet the unquantized benchmark at high SNR,
thus demonstrating the necessity for amplitude quantization
for achieving the unquantized benchmark at high SNR.
For a 4× 4 LoS MIMO system:
(1) We show that per-antenna quantization into equal prob-
ability regions performs better than conventional MMSE
quantization, and that I/Q quantization performs better than
amplitude/phase quantization.
(2) We show that I/Q quantization designed based on 16 equal
probability regions can achieve the unquantized benchmark at
high SNR, attaining a maximum data rate of 8 bits per channel
use.
Related work: Shannon limits for an ideal SISO discrete-
time additive white Gaussian noise (AWGN) channel with low-
precision ADC are studied in [3]. It is shown that the optimal
input distribution is discrete and can be computed numerically,
but standard constellations are near-optimal. Further, the use of
ADCs with 2-3 bits precision results in only a small reduction
in channel capacity even at moderately high SNR. Our model
is perhaps the simplest possible extension of this framework
to MIMO systems.

Prior work on MIMO capacity with low-precision ADC
assumes that the transmitter performs precoding, utilizing
channel state information. The channel capacity with 1-bit
ADC is studied in [4], which provides capacity bounds and
a convex optimization based algorithm to obtain capacity-
achieving constellations. In [5], the capacity with transmit
precoding, together with hybrid analog-digital processing at
the receiver, where analog linear combinations of the signals
received at different antennas are quantized, is studied. In
our system model, we avoid transmit precoding, since the in-
creased dynamic range aggravates the already difficult problem



of producing power at millimeter wave frequencies.
Prior research on LoS MIMO implementations in the set-

ting considered here explores the feasibility of analog-centric
spatial demultiplexing [6] and [7] which sidesteps the ADC
bottleneck as bandwidths scale up. LoS MIMO with digital
reception has been implemented in industry, but to the best of
our knowledge, employs standard precision ADCs rather than
pushing the limits of low precision as in this paper.

We assume that the receiver has ideal channel estimates.
Channel estimation with low-precision ADC is not as chal-
lenging as demodulation: [8] is an early example for a SISO
dispersive channel, while [9] proposes effective estimation
techniques for massive MIMO with 1-bit quantization at the
receive antennas.

Notation: Throughout the paper, random variables are de-
noted by capital letters and small letters are used for the
specific value that the random variables take. Bold letters
are used to denote vectors and matrices. EZ denotes the
expectation operator over the random variable Z. |Z| and
∠Z represent the amplitude and the phase of Z, respectively.
Xᵀ and X† are the transpose and Hermitian transpose of X,
respectively. In is the identity matrix of size n.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a 2 × 2 LoS MIMO communication scheme in
which two transmit antennas (i.e., NT = 2) are aligned with
two receive antennas (i.e., NR = 2) with inter-antenna spacing
of d and horizontal distance of R as illustrated in Fig. 1. Each
transmit/receive antenna (which may itself be a “subarray” [2])
forms a highly directive beam along the LoS, and multipath
is ignored. The received signal vector Y , [Y1 Y2]

ᵀ ∈ C2×1

is given by

Y = HX + N , (1)

where X , [X1X2]
ᵀ ∈ C2×1 is the transmitted symbol vec-

tor, H ∈ C2×2 is the channel matrix, and N ∼ CN (0, σ2 I2) is
AWGN. Since the path loss differences among the transmitters
and the receivers are negligible, the normalized channel matrix
is given by

H =
1√
2
ejΦ

[
1 ejθ

ejθ 1

]
, (2)

where the random variable Φ denotes the common phase
change along the path between the transmitter and the receiver
and θ ≈ πd2

λR for R � d with λ indicating the carrier wave-
length. We would like our quantizer designs to be robust to
variations in Φ, which is assumed to be uniformly distributed
over [0, 2π).

The quantized output of the ith receive antenna can be
expressed as

Ȳi = Q(i)(Yi) , (3)

for i ∈ {1, . . . , NR}. Q(i)(·) in (3) represents the quantizer
function at the ith receive antenna and for a given input y,
Q(i)(y) can be characterized as

Q(i)(y) = j , if y ∈ Γ
(i)
j , (4)
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Fig. 1. 2× 2 LoS MIMO communication system model

for j ∈ {1, . . . ,Ki}, where Γ
(i)
1 , . . ., Γ

(i)
Ki

denote the decision
regions for the quantizer, with Ki denoting the number of
quantizer bins at the ith receive antenna.

For QPSK modulation, {Xi}NT
i=1 are independent

and identically distributed symbols taking values
{ejπ/4, ej3π/4, ej5π/4, ej7π/4} with equal probability. We
define SNR = E{|Xk|2}/σ2 = 1/σ2 where E{|Xk|2} = 1
for all k ∈ {1, . . . , NT }.

One possible formulation of optimal quantization is to
minimize

D(X,YQ, θ) , EΦ{I(X;Y | Φ, θ)− I(X;YQ | Φ, θ)}
(5)

where YQ ,
[
Ȳ1 Ȳ2

]ᵀ
and the function I(X̄; Ȳ | Φ, θ) rep-

resents the mutual information between the random variables
X̄ and Ȳ for given Φ and θ. Based on the data processing
equality, D(X,YQ, θ) ≥ 0 since X, Y, and YQ form a
Markov chain; that is, X → Y → YQ. Also, I(X;Y | Φ, θ)
in (5) does not depend on any parameter related to quantizer.
For that reason, the problem of minimizing D(X,YQ, θ) in
(5) is equivalent to

max
{{Γ(i)

j }
Ki
j=1}2i=1

EΦ{I(X;YQ | Φ, θ)} . (6)

In the optimization problem in (6), the mutual information
between X and YQ must be maximized over the set of all
possible quantization regions of the quantizers at the receive
antennas. The number of quantization bins for each quantizer
is not fixed in (6), and must also be optimized. Thus, it is
difficult to solve (6). Furthermore, the optimal quantizers may
correspond to irregular regions, leading to implementation dif-
ficulties. In this paper, therefore, we opt for designing regular
quantizers with the goal of ensuring that D(X,YQ, θ) → 0
at high SNR.

III. PHASE-ONLY QUANTIZATION

In this section, we consider M -ary phase-only quantization
with Q(1) = Q(2). Let {Γ̄i}Mi=1 denote the equally partitioned
quantization regions of the phase-only quantizers at the re-
ceivers. Then, the quantization set of ith-bin (i.e., ith-sector)
can be expressed as

Γ̄i = {Ȳ | 2π

M
(i− 1) ≤ ∠Ȳ <

2π

M
i} , (7)



for i ∈ {1, . . . ,M}. Our goal is to determine whether such
a scheme attains the unquantized benchmark, and the number
of bins required for adequate performance.

The following lemma establishes a negative result: for some
pairs of X, the noise-free outputs prior to quantization have
the same phase value. Thus, when phase-only quantization
is considered, those outputs reside in the same quantization
bin and consequently cannot be distinguished by using any
possible phase-only quantization scheme.

Lemma 1: Suppose Y
(i)
1 , ejφ(X

(i)
1 + ejθX

(i)
2 )/
√

2

and Y
(i)
2 , ejφ(ejθX

(i)
1 + X

(i)
2 )/
√

2 for i ∈ {1, 2}.
For (X

(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) where i ∈

{1, . . . , 4}, the following statements holds:
(i) For θ ∈ (−π/2, π/2) and (X

(2)
1 , X

(2)
2 ) =

(X
(1)
2 , X

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 (8)

∠Y (2)
1 = ∠Y (2)

2 (9)

∠Y (1)
1 = ∠Y (2)

1 (10)

(ii) For θ ∈ (π/2, 3π/2) and (X
(2)
1 , X

(2)
2 ) =

(X
(1)
2 , X

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 + π (11)

∠Y (2)
1 = ∠Y (2)

2 + π (12)

∠Y (1)
1 = ∠Y (2)

1 + π (13)

(iii) For θ ∈ (−π/2, π/2) and (X
(2)
1 , X

(2)
2 ) =

(ejπX
(1)
2 , ejπX

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 (14)

∠Y (2)
1 = ∠Y (2)

2 (15)

∠Y (1)
1 = ∠Y (2)

1 + π (16)

(iv) For θ ∈ (π/2, 3π/2) and (X
(2)
1 , X

(2)
2 ) =

(ejπX
(1)
2 , ejπX

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 + π (17)

∠Y (2)
1 = ∠Y (2)

2 + π (18)

∠Y (1)
1 = ∠Y (2)

1 (19)

Proof: The result in the lemma can simply be shown by
using Euler’s formula and Pythagorean trigonometric identity.

�
This results in the following proposition stating that phase-

only quantization cannot achieve the unquantized benchmark.
The proposition is intuitively obvious from Lemma 1, hence
we skip its proof.

Proposition 1: For any phase-only quantization scheme
with any number of bins, D(X,YQ, θ) > 0 for all θ ∈ [0, 2π)
as σ → 0.

Remark: We assume identical quantizers at both receive an-
tennas for simplicity of exposition, but our negative result does
not require this, and holds for any phase-only quantization
scheme.

While the unquantized benchmark cannot be achieved, it
is still of interest to ask how many phase quantization bins
are enough to reach the high-SNR asymptote for phase-only
quantization. We now establish that, for our system, 8 phase
quantization bins suffice. We begin with the following lemma.

Lemma 2: For any possible (X
(1)
1 , X

(1)
2 ) and (X

(2)
1 , X

(2)
2 )

input pairs, ∠Y (1)
1 − ∠Y (2)

1 = 0 (mod π/4) and ∠Y (1)
2 −

∠Y (2)
2 = 0 (mod π/4), where Y (i)

1 and Y (i)
2 are as defined

in Lemma 1. Also, ∠Y (1)
1 − ∠Y (2)

1 and ∠Y (1)
2 − ∠Y (2)

2 can
take 8 different values.

Proof: By using arctan(x)− arctan(y) = arctan( x−y1+xy )
and Euler’s formula, the proof is straightforward. �

Based on Lemma 2, we can derive the following proposition
stating that 8 phase quantization bins suffice. We skip its proof
due to space limitation.

Proposition 2: As σ → 0, any phase-only quantization
schemes with more than 8 regions cannot achieve higher
data rate than phase-only quantization scheme with 8 equally
partitioned sectors.

IV. AMPLITUDE AND PHASE QUANTIZATION

For K-ary amplitude and M -ary phase quantization, the
quantization set of (m+M(k − 1))th-bin of a quantizer can
be written as

Γ̄m+M(k−1) = {Ȳ | Ak−1 ≤ |Ȳ | < Ak ,

2π

M
(m− 1) ≤ ∠Ȳ <

2π

M
m} , (20)

for m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K}, where
A1, . . . , AK−1 are the amplitude thresholds (we set A0 = 0
and AK =∞ to maintain a unified notation across quantiza-
tion bins).

The following proposition states that K = 2 and M = 8
suffices to attain the unquantized benchmark.

Proposition 3: As σ → 0, a circularly symmetric quan-
tization scheme with 2-level amplitude and 8-level phase
quantization attains D(X,YQ, θ)→ 0 for θ ∈ [0, 2π).

Proof: Proposition 1 is based on the observation that the
outputs of some input pairs have the same phase at both
of the antennas as σ → 0, so that those outputs cannot
be differentiated by employing any phase-only quantization
scheme. On the other hand, the proof of Proposition 2 shows
that a phase-only scheme with equally partitioned 8 regions
can distinguish noise-free outputs having two different phases,
due to the result in Lemma 2. In this proof, the aim is
to show that considering a 2-level amplitude quantization
together with phase quantization resolves the ambiguities
leading to the result in Proposition 1. First, it can be shown
that only the outputs corresponding to the input pairs dis-
cussed in Lemma 1 cannot be distinguished via phase-only
scheme having equally partitioned 8 regions. For that reason,
consider the input pairs in Lemma 1. For (X

(1)
1 , X

(1)
2 ) =

(ejπ(2i−1)/4, ejπ(2i+1)/4) and (X
(2)
1 , X

(2)
2 ) = (X

(1)
2 , X

(1)
1 ),

where i ∈ {1, . . . , 4}, |Y (1)
1 | < 1 < |Y (2)

1 | and |Y (2)
2 | <

1 < |Y (1)
2 | for θ ∈ (0, π/2], |Y (1)

1 | = |Y (2)
1 | = 1 and
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Fig. 2. 4× 4 LoS MIMO communication system model

|Y (2)
2 | = |Y (1)

2 | = 1 for θ = 0, and |Y (2)
1 | < 1 < |Y (1)

1 |
and |Y (1)

2 | < 1 < |Y (2)
2 | for θ ∈ [−π/2, 0). Due to

the symmetry, the same approach can be applied for other
input pairs (i.e., (X

(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) and

(X
(2)
1 , X

(2)
2 ) = (ejπX

(1)
2 , ejπX

(1)
1 ) for i ∈ {1, . . . , 4}) when

θ ∈ (π/2, 3π/2). Since the amplitude of the outputs does not
depend on Φ = φ and a circularly symmetric quantization
scheme is employed, a phase quantization scheme including
a 2-level amplitude quantization with A0 = 0, A1 = 1, and
A2 = ∞ resolves the ambiguity between those outputs. It is
easy to now conclude that D(X,YQ, θ) → 0 for θ ∈ [0, 2π)
as σ → 0. �

V. QUANTIZATION FOR 4× 4 LOS MIMO

In this section, we extend our results to 4× 4 LoS MIMO
systems and obtain the regular quantizers for such systems.
For that reason, consider a 4× 4 LOS MIMO communication
scheme in which 4 transmit and 4 receive antennas (i.e.,
NT = NR = 4) are configured in a two-dimensional (2D)
planar array as in Fig. 2. For this scheme, X and Y in
(1) are defined as X , [X1X2X3X4]

ᵀ ∈ C4×1 and Y ,
[Y1 Y2 Y3 Y4]

ᵀ ∈ C4×1, respectively. Also, N ∼ CN (0, σ2 I4)
and the normalized channel matrix for this scheme is given by

H =
1

2
ejΦ


1 ejθ ej2θ ejθ

ejθ 1 ejθ ej2θ

ej2θ ejθ 1 ejθ

ejθ ej2θ ejθ 1

 . (21)

In addition, YQ in (5) is defined by YQ ,
[
Ȳ1 Ȳ2 Ȳ3 Ȳ4

]ᵀ
and all the other parameters and metrics are kept same as in
the 2× 2 MIMO case.

It is obvious from the system model of 4×4 LoS MIMO that
there are 44 noise-free outputs that need to be considered for
quantizer design and it is, consequently, not easy to perform
the similar analysis that we perform for 2×2 MIMO. For that
reason, we rely on the probability density functions of the
outputs before quantization and design the regular quantizers
based on those. Due to the symmetry, it is clear that the outputs
before quantization (i.e., {Yi}4i=1) have the same probability
density function. Hence, without loss of generality, we focus
on one of the outputs before quantization (e.g., Y1) to design
the corresponding quantizer and employ the same quantizer for
all outputs. To begin with, Y1 has a complex distribution and
it is difficult to specify the quantizer regions by considering
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that. In order to facilitate it, first, we approximate it with a
circularly-symmetric complex Gaussian distribution; that is,
Ỹ ∼ CN (0, σ̃2) where we set σ̃2 = E{Y1 Y

†
1 } in order to min-

imize Kullback-Leibler divergence between the distributions of
Y1 and Ỹ . Then, we obtain the quantizers by considering that
Gaussian approximation.

In the quantizer design of 4×4 MIMO, we mainly consider
two different regular quantization schemes, I/Q quantization
and amplitude/phase quantization, each having a total of 16
regions as in Fig. 3. In consideration of those two schemes, we
determine the quantizer regions based on two different metrics:
equal probability-based regions and minimum mean squared
quantization error (MMSQE)-based regions. The former is ob-
tained by partitioning the fitted complex Gaussian distribution
into equal probability regions, whereas the latter is derived by
minimizing the distortion measured conventionally by mean
squared error.

VI. NUMERICAL RESULTS

In this section, numerical examples are provided to illustrate
the theoretical results. First, the statements in the lemmas
and the propositions are exemplified based on the noise-free
outputs (i.e., the outputs as σ → 0) before quantization and
then the Shannon limits for different quantization schemes are
compared.

We illustrate the geometry behind the proofs by presenting
noiseless outputs prior to quantization for a well-conditioned
and a poorly conditioned channel in Fig. 4 and Fig. 5, respec-
tively. We see that some output pairs (e.g., (b, e), (d,m), (g, j)
and (l, o) in Fig. 4 and (b, o), (d, g), (e, l) and (j,m) in Fig. 5)



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Fig. 5. All possible noise-free outputs before the quantization, ejφ(X1 +
ejθX2)/

√
2 (Left) and ejφ(ejθX1+X2)/

√
2 (Right), for θ = 17π/18 and

φ = π/18.

0 /2 3 /2 2

 (rad)

0

2

4

6

8

10

12

D
a
ta

 R
a
te

 (
b
it
s
/c

h
a
n
n
e
l 
u
s
e
)

Capacity

Unquantized, QPSK

ML Rule, QPSK

Phase Quantized, QPSK, 16 regions

Phase Quantized, QPSK, 8 regions

Phase Quantized, QPSK, 4 regions

Phase Quantized, QPSK, 2 regions
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have the same phase at both receive antennas, and hence
cannot be distinguished based on phase-only quantization, as
stated in Lemma 1. On the other hand, the other outputs can
indeed be distinguished based on phase-only quantization. In
addition, for given θ and φ, the phase of noise-free outputs can
have 8 different values, and two different outputs having two
different phase values cannot be in the same bin for phase-only
quantization with 8 equal sectors. This is the intuitive basis for
Proposition 2. Lastly, noise-free output pairs having the same
phase at both receive antennas, such as (b, e) in Fig. 4 can
be separated by employing an amplitude quantization scheme
with 2 regions as illustrated in Fig. 4 and Fig. 5. This is the
intuition behind Proposition 3.

Next, we plot the data rate (mutual information) attained by
different quantization schemes. Two benchmarks are consid-
ered: an unquantized system, and a quantizer based on Voronoi
regions to separating the outputs at each antenna. We may
view the latter as an ML decision rule at each antenna, where
input-pairs that fall on top of each other are interpreted as a
single point, and it is easy to see that it attains the unquantized
benchmark at high SNR. However, it depends on θ and Φ, and
is an irregular quantizer that is unattractive in practice.

Fig. 6 and Fig. 8 plot data rate versus θ ∈ [0, 2π) at 15
dB SNR for phase-only and amplitude-phase quantization,
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respectively. Similarly, Fig. 7 and Fig. 9 plot data rates versus
SNR, fixing θ = π/2 (the best conditioned channel). For 2-
level amplitude and 8-level phase quantization, the amplitude
threshold is set to A1 = 1, whereas the thresholds are
A1 = 0.75 and A2 = 1.25 for 3-level amplitude and 8-level
phase quantization. The plots illustrate the trends predicted by
our theoretical results: phase-only quantization does not attain
the unquantized or ML benchmarks, while amplitude-phase
quantization does attain these at high enough SNR. However,
there are some differences between performance at moderate
SNR and high-SNR asymptotics. While 8 phase quantization
bins are as good as any other phase-only quantization scheme
asymptotically, using 16 quantization bins does provide better
performance at moderate SNRs (Fig. 6 and Fig. 7). Similarly,
while 2-level amplitude quantization suffices, there is a gain at
moderate SNRs with 3-level quantization (Fig. 8 and Fig. 9).
In particular, Fig. 9 shows that for a well-conditioned channel,
while 2-level amplitude quantization attains the unquantized
benchmark at high enough SNR, 3-level amplitude quantiza-
tion has a significant advantage at moderate SNRs, reaching
unquantized performance at around 12.5 dB.
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Fig. 10 and Fig. 11 plot data rates versus SNR, setting
θ = π/2, for different quantization scenarios of 4 × 4 LoS
MIMO. The plots show that I/Q quantization outperforms am-
plitude/phase quantization when the equal probability regions
are taken into account for quantizer design. Also, conventional
MMSQE-based quantizer cannot achieve better than the equal
probability quantizer when I/Q quantization is considered as a
quantization scheme. Fig. 10 illustrates that equal probability
I/Q quantization having 16 regions attains the maximum data
rate of 8 bits per channel use at around 15 dB.

VII. CONCLUSION

Our results employ geometric insights for simple channels
and small constellations, with high-SNR asymptotics serving
as a useful alternative to brute force optimization. An inter-
esting open question is to investigate how far this approach
can be pushed as we increase the number of spatial channels
and the constellation size, and as we incur dispersion due to
geometric misalignments such as those considered in [7], [10].
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