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Near-Coherent QPSK Performance With Coarse
Phase Quantization: A Feedback-Based Architecture

for Joint Phase/Frequency Synchronization
and Demodulation
Aseem Wadhwa and Upamanyu Madhow

Abstract—As communication systems scale up in bandwidth,
the limited resolution in high-speed analog-to-digital converters
(ADCs) is a key challenge in realizing low-cost “mostly digital”
transceiver architectures. This motivates a systematic effort to un-
derstand the limits of such architectures under the severe quan-
tization constraints imposed by the use of low-precision ADCs.
In particular, we investigate a canonical problem of blind carrier
phase and frequency synchronization with coarse phase quantiza-
tion in this paper. We develop a Bayesian approach to blind phase
estimation, jointly modeling the unknown data, unknown phase
and the quantization nonlinearity. We highlight the crucial role of
dither, implemented via a mixed signal architecture with a digi-
tally controlled phase shift prior to the ADC. We show the efficacy
of random dither, and then improve upon its performance with
a simple feedback control policy that is close to optimal in terms
of rapidly reducing the mean squared error of phase estimation.
This initial blind phase acquisition stage is followed by feedback-
based phase/frequency tracking using an Extended Kalman Filter.
Performance evaluations for a QPSK system show that excellent
bit error rate (BER) performance, close to that of an unquantized
system, is achieved by the use of 8 phase bins (implementable using
4 one-bit ADCs operating on linear combinations of in-phase and
quadrature components).

Index Terms—Low precision ADC, synchronization, Bayesian
estimation, mixed signal architecture, adaptive control, frequency
tracking.

I. INTRODUCTION

MODERN communication transceivers (e.g., for WiFi and
cellular systems today) are based on a “mostly digital”

architecture, using digital signal processing (DSP) to implement
sophisticated functionalities such as synchronization, equaliza-
tion, demodulation and decoding, thus leveraging the economies
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of scale resulting from Moore’s law. The central assumption in
such designs is that analog signals can be faithfully represented
in the digital domain, typically using high-precision (e.g., 8–
12 bits) ADCs. However, the cost and power consumption of
high-precision ADCs become prohibitive at multi-GHz sam-
pling rates [1], which raises the question of whether DSP-
centric architectures scale as communication bandwidths in-
creases, such as for emerging millimeter wave wireless networks
(e.g., using the 7 GHz of unlicensed spectrum in the 60 GHz
band), as well as for optical and backplane communication. In
particular, it is of fundamental interest to understand the limits of
such architectures, and to devise algorithms for attaining them,
when ADC precision is severely reduced (e.g., to 1–4 bits).

Shannon-theoretic analysis for idealized channel models has
shown that the loss in channel capacity due to limited ADC
precision is relatively small even at moderately high signal-
to-noise ratios (SNRs) [2]. This motivates a systematic inves-
tigation of DSP algorithms for estimating and compensating
for channel non-idealities (e.g., asynchronism, dispersion) us-
ing severely quantized inputs. The present paper takes a step
in this direction by considering a canonical problem of blind
carrier phase/frequency synchronization. Our goal is to obtain
fundamental insight into the implications of coarse quantiza-
tion, rather than to provide a complete link design. We therefore
do not model timing asynchronism or channel dispersion, and
study the simplest setting of coherent reception of QPSK over an
AWGN channel. We consider phase-only quantization, which
suffices for hard decisions with PSK constellations, and has
the advantage of not requiring automatic gain control (AGC),
since it can be implemented by passing linear combinations of
the in-phase (I) and quadrature (Q) components through one-bit
ADCs (quantization into 2n phase bins requires n such linear
combinations). We develop and evaluate the performance of a
Bayesian approach based on joint modeling of the unknown
data, frequency and phase, and the known quantization non-
linearity, using a mixed signal architecture in which digitally
controlled phase shifts are applied to the samples prior to phase
quantization.

A. Receiver Architecture

In the model depicted in Fig. 1, the analog preprocessing
front-end performs downconversion, ideal symbol rate sam-
pling, and applies a digitally controlled derotation phase on the
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Fig. 1. Receiver Architecture.

complex-valued symbol rate samples before passing it through
the ADC block. The quantized phase observations are processed
in DSP by the estimation and control block: this runs algo-
rithms for nonlinear phase and frequency estimation, computes
feedback for the analog preprocessor (to aid in estimation and
demodulation), and outputs demodulated symbols. The design
of this estimation and control block is the subject of this paper.

The frequency offset between transmitter and receiver is typ-
ically much smaller than the symbol rate, allowing us to accu-
rately approximate the phase as a constant over a few symbol
periods. We can therefore divide the synchronization problem
into two stages: (1) rapid blind acquisition of initial phase, (2)
continuous phase/frequency tracking while performing data de-
modulation. In the tracking stage, the derotation phase is simply
an estimate of the (negative of the) overall phase offset. In the
acquisition stage, it is not clear a priori how to choose the dero-
tation phase. For unquantized (or finely quantized) samples,
we could simply set it to zero. However, as we shall see, an
appropriate choice of the derotation phase, which serves as a
controllable and variable dither, is a crucial tool for estimation
with severely quantized observations, especially at high SNR.
Thus, a significant portion of this paper is dedicated to inves-
tigation of dithering strategies for Bayesian phase estimation,
including open loop pseudorandom dither as well as feedback
control.

B. Contributions

Our contributions are summarized as follows:
1) For the acquisition stage, we develop a Bayesian algo-

rithm for blind phase estimation with coarse phase quan-
tization, and highlight the need for dither. After showing
that random open-loop dither works well, we investigate
the problem of optimal dither, which falls in the general
category of control for sequential estimation, finding an
exact solution to which is known to be computationally
intractable. While several asymptotically optimal policies
have been proposed in the literature, these need not be
optimal for the small number of measurements of interest
to us. We propose a greedy strategy that chooses the feed-
back to minimize the uncertainty (Shannon entropy) in the
posterior distribution of the phase, prove that it converges
to an asymptotically optimal policy, while showing via

numerical results that it is close to “genie-optimal” for a
small number of samples.

2) For the tracking/demodulation stage, we use a two-tier al-
gorithm: decision-directed phase estimation over blocks,
ignoring frequency offsets, and an extended Kalman filter
(EKF) for long-term frequency/phase tracking. The feed-
back to the analog preprocessor now aims to compensate
for the phase offset, in order to optimize the performance
of coherent demodulation with differential decoding. We
provide numerical results demonstrating the efficacy of
our approach for both steps, and show that the bit er-
ror rate with 8–12 phase bins (implementable using lin-
ear I/Q processing and 4–6 one bit ADCs) is close to
that of a coherent system, and is significantly better than
that of standard differential demodulation (which does
not require phase/frequency tracking) with unquantized
observations.

C. Related Work

A phase-quantized carrier-asynchronous system model sim-
ilar to ours was studied in [3], but it employs block nonco-
herent demodulation, approximating the phase as constant over
a block of symbols. This approach incurs a loss of about 2
dB with respect to unquantized block noncoherent demodula-
tion, unlike our approach of explicit phase/frequency estimation
and compensation, which attains performance almost identi-
cal to an unquantized coherent system. A receiver architecture
similar to ours (mixed signal analog front-end and low-power
ADC with feedback from a DSP block) was implemented for
a Gigabit/s 60 GHz system in [4], including blocks for both
carrier synchronization and equalization. While the emphasis
in [4] was on establishing the feasibility of integrated circuit
implementation rather than algorithm design and performance
evaluation as in this paper, it makes a compelling case for ar-
chitectures such as those in Fig. 1 for low-power mixed signal
designs at high data rates. Some of the other related work on
estimation using low-precision samples includes frequency es-
timation [5], amplitude estimation for PAM (pulse amplitude
modulation) signaling [6], channel estimation [7], equalization
[8] and multivariate parameter estimation from dithered quan-
tized data [9]. We postpone discussion of related literature in
control for estimation to Section IV, where we describe our
greedy feedback control policy and place it in the context of past
research.

A preliminary version of this work was presented in a con-
ference paper [10], in which we proposed the information-
theoretic greedy control strategy and evaluated its performance
via numerical simulations. The present paper goes well be-
yond [10] in terms of theoretical analysis, as well as more
comprehensive performance evaluation for both acquisition and
tracking.

The rest of the paper is organized as follows. In Section II, we
describe the complex baseband system model. In Sections III
and IV, we discuss the procedure of rapid acquisition of an
initial estimate of the phase and the control policy for setting the
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feedback. In Section V, we present the phase/frequency tracking
algorithm and discuss the concluding remarks in Section VI.

II. SYSTEM MODEL

We now specify a mathematical model for the receiver ar-
chitecture depicted in Fig. 1. The analog preprocessor applies a
phase derotation of e−jθk for the kth sample. In order to sim-
plify digital control of the derotation, we restrict the allowable
derotation values θ to a finite set of values. In our simulations,
we restrict it to the integer multiples of π/180 (or 1◦). After
derotation, the sample is quantized using n 1-bit ADCs into one
of M = 2n phase bins:

[
(m − 1) 2π

M ,m 2π
M

)
for m = 1, ...,M .

In this paper, we consider M = 8 and M = 12 (Fig. 3(a) and
(c)). As mentioned earlier, such phase quantization can be easily
implemented by taking n linear combinations of I and Q sam-
ples followed by 1-bit ADCs. For example, M = 8 bins can be
obtained by 1-bit quantization of I,Q, I + Q and I − Q. We
always include boundaries coinciding with the I and Q axes,
since these are the maximum likelihood decision boundaries for
coherent QPSK demodulation.

Denoting the phase-quantized observation corresponding to
the kth symbol by zk , we therefore have the following complex
baseband measurement model:

zk = QM

(
arg

((
bkejφk + wk

)
e−jθk

))
∈ {1, 2, ...,M} (1)

where bk are the transmitted QPSK symbols and wk is complex
white Gaussian noise. bk are uniformly drawn from the set{
ejπ/4 , ej3π/4 , ej5π/4 , ej7π/4

}
. Without loss of generality, we

assume magnitude of bk to be 1 so that Re (wk ) = Im (wk ) ∼
N

(
0, σ2

)
where SNR per bit = Eb

N0
= 1

2σ 2 .
The time varying phase offset, φk , depends on the initial

offset, φ0 (at time 0) and the frequency offset, Δf .

φk = φ0 + kηTs ; η = 2πΔf (2)

Ts is the symbol time period. ηTs represents the rate of change
of phase in radians per symbol. The carrier frequency offset
Δf is typically of the order of 10–100 ppm (parts per million)
of the carrier frequency, whereas symbol rates are of the or-
der of 1–10% of the carrier frequency, hence ηTs is small. For
example, consider the following typical values: fc = 60 GHz,
bandwidth of 6 GHz, i.e., Ts =

(
6 × 109

)−1
secs, an offset

Δf = 50 ppm · fc , which leads to ηTs = 2πΔfTs = π · 10−3

radians, or a linear phase change of 0.18◦ per symbol. Thus,
the phase offset is well approximated as constant over a few
tens of symbols. This allows us to break the problem into a
rapid phase acquisition stage assuming zero frequency offset
(Sections III and IV), followed by decoding and tracking ini-
tialized with the phase estimate of the first stage (Section V).
We assume that the latter recovers the phase modulo π/2, hence
we employ coherent demodulation followed by differential de-
coding across consecutive symbols. This incurs at most a fac-
tor of two degradation in symbol error rate with respect to
coherent demodulation with per-symbol absolute decoding (a
negligible degradation in dB at even moderate SNRs). Thus,
our explicit estimation and compensation strategy (with severe
quantization) performs significantly better than two-symbol

Fig. 2. (a) Probability Density of unquantized phase u at β = 0, fu (α)
for SNR = 5 dB. (b) Single step likelihoods l (φ|m) given z = m and
θ = 0◦ (M = 12, SNR = 5 dB). A: l (φ|1) = l (φ|4) = l (φ|7) = l (φ|10),
B: l (φ|2) = l (φ|5) = l (φ|8) = l (φ|11), C: l (φ|3) = l (φ|6) = l (φ|9) =
l (φ|12).

differential demodulation even with unquantized observations.
Block noncoherent demodulation with unquantized observa-
tions is known to approach coherent performance as block
size increases [11], but as noted earlier, block noncoherent de-
modulation with severe phase quantization incurs about 2 dB
degradation [3].

III. PHASE ACQUISITION: BAYESIAN ESTIMATION AND

THE NEED FOR DITHER

Setting Δf = 0, the measurement model (1) specializes to

zk = QM (uk ) ; where uk = arg
(
bkejφe−jθk + wk

)
(3)

where φ is the constant unknown channel phase offset. Since
the noise is circularly symmetric, it is not affected by dero-
tation. Given the model in (3), it is straightforward to derive
the conditional pmf (probability mass function) of the observa-
tion, conditioned on the phase offset φ and derotation phase θ.
It does not depend on k, and is denoted by p (z = m|φ, θ) =
pθ

φ (z = m) ,m = {1, ...,M}. The pmf is computed from (3)
as follows. We first find the distribution of the unquantized
phase u, fu (α|β), conditioned on the value of the net rotation
β = φ − θ. For a given QPSK symbol, u is simply the phase of
a complex Gaussian random variable. The observation pmf is
computed by integrating fu (α|β) over appropriate bins. Details
are provided in Appendix A.

Fig. 2(a) plots fu (α|β = 0). We see that it is periodic with
period 90◦ with modes at {45◦, 135◦, 225◦, 315◦}, because we
choose the symbols uniformly from the QPSK constellation. It
suffices, therefore, to limit φ to the interval [0, 90◦). Fig. 2(b)

shows the log likelihood plots l (φ|m) = log
(
p0

φ (z = m)
)

,

as a function of the unknown phase φ, setting the derotation
phase θ = 0. Nonzero θ simply results in a circular shift, with
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Fig. 3. (a) M = 8 uniform quantization regions. 4 1-bit ADCs at
{I, Q, I ± Q}. (b) Example 1: SNR = 5 dB and M = 8 regions. (c) M = 12
uniform quantization regions. 6 1-bit ADCs at

{
I, Q, I ±

√
3Q, Q ±

√
3I

}
.

(d) Example 2: SNR = 35 dB and M = 12 regions. In subplots (a) and (c),
solid black square dots denote the locations of transmitted QPSK symbols. Solid
black round dots denote the noiseless symbol locations received after constant
phase offset. (a) φ = 10◦, (b) Posterior for φ after 100 symbols (top) Derotation
value θk kept constant (bottom) θk varied randomly, (c) φ = 10◦, (d) Posterior
for φ after 30 symbols (top) Derotation value θk kept constant (bottom) θk

varied randomly.

likelihood function given by l (φ − θ|m), where it is under-
stood that the argument is always expressed modulo 90◦. An
interesting property to note is the periodicity of l (φ|m) in
the observation m, with period M/4. This follows from the
symmetry induced by equiprobability of the transmitted QPSK
symbols. For example, if M = 8 (Fig. 3(a)), only the obser-
vation modulo M/4 = 2 is relevant: l (φ|z) = l (φ|z̃), where
z̃ = z mod 2 ∈ {1, 2}.

A. Estimator Structure

Conditioned on the past derotation values θk
1 (which are

known) and the quantized phase observations zk
1 , applying

Bayes rule and using independence of noise across symbols,
we get a recursive equation for updating the posterior of the
unknown phase as follows:

p
(
φ|zk

1 , θk
1
)
∝ p

(
zk |φ, zk−1

1 , θk
1
)
p

(
φ|zk−1

1 , θk
1
)

= p (zk |φ, θk ) p
(
φ|zk−1

1 , θk−1
1

)
(4)

Normalizing the probability density obviates the need to eval-
uate the denominator. Going to the log domain, we obtain an

additive update for the cumulative log likelihood. Denoting by
l1:k (φ) = log

(
p

(
φ|zk

1 , θk
1
))

the cumulative update up to the
kth symbol, we obtain a simple recursive update, as follows:

l1:k (φ) = l1:k−1 (φ) + l (φ − θk ) (5)

The maximum a posteriori (MAP) estimate after N symbols is
given by

φ̂MAP;N = argmax p
(
φ|zN

1 , θN
1

)
= argmax l1:N (φ)

We start with a uniform prior p (φ) over [0◦, 90◦). Single step
likelihoods, l (φ|m) for m = 1, ...,M/4, can be precomputed
and stored offline. The recursive update (5) requires only the
latest posterior to be stored.

B. The Need for Dither: Two Examples

As investigated in the next section, appropriate choice of the
derotation phases provides a means of applying a controlled
dither prior to quantization in order to aid in phase estimation.
We motivate this in this section by considering two scenarios in
which not applying dither (i.e., setting θk to a constant for all k)
yields poor performance.

Example 1: Consider M = 8 phase quantization bins and
φ = 10◦ (Fig. 3). In this case, not dithering (θk ≡ 0) results in
a spurious peak at φ = 35◦. We have already noted that, for
M = 8, the observation z can be reduced to z̃ = z modulo 2
(i.e., noting whether we fall in an even or odd bin). Next, we
note that circularly symmetric noise is equally likely to rotate
us clockwise or anticlockwise. These two observations can be
used to show that there is an unresolvable ambiguity in the like-
lihood function: l (φ|z̃) = l (45◦ − φ|z̃). For zero dither, this
implies that the posteriors for φ and 45◦ − φ are identical for
any sequence of measurements. This ambiguity is formally de-
scribed later in Lemma 2. Such ambiguities were also noted in
the block noncoherent system in [3]. One approach to alleviate
this ambiguity is to dither θk randomly; this dithers the spurious
peak in the posterior while preserving the true peak, leading to
a unimodal posterior distribution when computed over multi-
ple symbols. Another approach is to break the symmetry in the
phase quantizer, using 12 phase bins instead of 8. However, even
this strategy can run into trouble at very high SNR, as shown in
the next example.

Example 2: Now consider M = 12 phase bins and no noise
(or very high SNR), again with true phase offset φ = 10◦. Since
there is no noise, all observations fall in bins 2, 5, 8, 11, resulting
in a flat phase posterior over the interval [75◦, 90◦] ∪ [0◦, 15◦] if
there is no dither (θk ≡ 0◦) (for a formal statement see Lemma
1). This could lead to an error as high as 25◦ (Fig. 3). On the
other hand, using randomly dithered θk s results in an accurate
MAP estimate, with the combination of shifted versions (shifted
by θk ) of the flat posterior leading to a unimodal posterior with
a sharp peak.

IV. FEEDBACK CONTROL FOR PHASE ACQUISITION

While randomly dithered derotation is a robust design choice
which overcomes the shortcomings of a naive no-dither strat-
egy, it does not utilize the information obtained from the
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measurements. It is natural to ask, therefore, whether we can do
better with feedback control of the dither, with the goal of reduc-
ing the mean squared error (MSE) of the phase estimate faster.
This problem of dither design falls in a general category of prob-
lems in control for sequential estimation, which has received
significant attention recently in the context of multi-hypothesis
testing [12]–[14], as well as for estimation of continuous-valued
parameters [15]. Such problems are either solved over a finite
horizon, in which case the goal is to minimize a metric such as
the MSE, or over a variable horizon (with some stopping cri-
terion), in which case the cost function to be minimized is the
sum of the expected number of observations, plus a penalty term
associated with the quality of the final estimate (e.g., the MSE).
As discussed in the literature, either formulation can be mapped
to a Partially Observable Markov Decision Problem (POMDP)
whose optimal solution is computationally intractable. Signif-
icant recent effort [12]–[15] has therefore gone into character-
izing asymptotically optimal solutions (in the limit of a large
number of observations and a large coefficient for the penalty
term). Since we are interested in phase estimation over a small
number of observations, these results do not directly apply to our
setting. However, the intuitively pleasing Greedy Entropy Policy
(GE) policy that we employ is closely related to policies that
have been used to derive theoretical bounds for multi-hypothesis
testing [12].

Our GE policy picks an action at each step that minimizes
the expected entropy (an information theoretic measure of un-
certainty) of the next step phase posterior. It can be shown to be
equivalent to a policy which, at each step, maximizes the mu-
tual information between the new observation and the unknown
phase offset. In this form, it is identical to a policy recently dis-
cussed in [14], [16] for hypothesis testing, where the goal is to
maximize mutual information between the unknown hypothesis
and the set of observations over a finite horizon. It is shown in
[14], [16] that the greedy approach is the best among all poly-
nomial time algorithms, and achieves a cost function which is
within a constant factor 1/e of the optimal cost. While such
guarantees translate to our problem as well, our interest is in
minimizing MSE rather than maximizing mutual information.

A policy [15] that is closely related to ours is to maximize
the Fisher information at each step, taking the latest MAP esti-
mate as the true value of the parameter. While this Maximum
Fisher Information (MFI) policy is shown to be asymptotically
optimal in [15] under appropriate consistency conditions, its per-
formance for a small number of observations is not investigated
in [15]. We find that GE outperforms MFI in the latter regime,
especially at low SNR, while converging to it (and hence inher-
iting its asymptotic optimality) as the number of observations
gets large.

In this section, we first discuss the GE and MFI policies as-
suming consistency of the MAP estimate (i.e., assuming that,
even with constant action, the posterior converges to a unimodal
distribution centered around the true value of phase). This al-
ways holds for M = 12 with nonzero noise (Sub-Section IV-D).
We then analyze the special case of zero noise separately, when
the phase posteriors are flat and the MAP estimate is ill-defined.
We show that in this case GE reduces the support of the posterior

density by half at every step, thereby reducing the absolute er-
ror at an exponential rate. Finally, we discuss a simple strategy,
mixing feedback control with intermittent random actions, for
ensuring a consistent unimodal posterior when M = 8.

A. Greedy Entropy Policy

At step k − 1 (i.e., after observing k − 1 symbols) the net
belief about the phase is captured by the posterior fk−1 (φ) :=
p

(
φ|zk−1

1 , θk−1
1

)
. We now drop the subscript k, since the de-

velopment below applies for any k. The entropy of the current
belief, f (φ) is given by

h (f (φ)) = −
∫

f (φ) log (f (φ)) dφ (6)

The new posterior, conditioned on the next action θ = θk and
observation z = zk , is given by

fnew (φ|θ, z) =
pθ

φ (z) f (φ)
pθ (z)

(7)

where pθ
φ (z) represents the conditional distribution of the ob-

servation (21) given the true phase offset, φ, and the derotation
action, θ. The normalization term in the denominator is the prob-
ability density of observing z in the next step under the effect
of taking action θ, averaged over the current belief, i.e.,

pθ (z) =
∫

pθ
φ (z) f (φ) dφ (8)

We can now compute the expected entropy of the new posterior
if action θ is chosen, by averaging over the observation density
pθ (z) as follows:

hθ (fnew(φ)) = Ez [h(fnew(φ|θ, z))] =
M∑

i=1

pθ (zi)h(fnew(φ|θ, z))

(9)
The GE policy chooses the derotation phase that minimizes the
entropy of the new posterior, i.e.,

θGE = argmin
θ

hθ (fnew (φ)) (10)

This can also be expressed as maximization of information util-
ity, IUθ , which is the amount by which the uncertainty (entropy)
is decreased due to the action θ :

⇒ θGE = argmax
θ

(
h (f (φ)) − hθ (fnew (φ))

)
= argmax

θ
IUθ

(11)

This can in turn be expressed in terms of the Kullback-Leibler
(KL) divergence (which is useful for proving the convergence
of GE to MFI as discussed later), using (11), (6), (7):

IUθ =
∫

f (φ)Dθ (φ) dφ (12)

where Dθ (φ) is the KL divergence between densities pθ
φ (z)

and pθ (z)

Dθ (φ) =
∑

i

pθ
φ (zi) log

pθ
φ (zi)

pθ (zi)
(13)
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Fig. 4. Fisher Information as a function of φ (θ = 0).

It is straightforward to implement the greedy entropy policy
by evaluating the information utility (12) over the finite set of
actions (i.e., the discretized set of phases from which the dither
is chosen).

B. Fisher Information

Fisher information provides a measure of the sensitivity of
the estimation problem to the value of the parameter being
estimated; parameter values that result in higher Fisher infor-
mation can be estimated with greater accuracy or with fewer
measurements. The well-known Cramer-Rao bound, which is
the inverse of the Fisher information, provides a lower bound
on the mean square error for any unbiased estimator. For our
phase estimation problem, the Fisher information as a function
of the true phase φ and the derotation action θ, is given by:

FIθ (φ) =
M∑

i=1

(
∂pθ

φ (zi)
∂φ

)2

· 1
pθ

φ (zi)
(14)

The derivative of the observation density pθ
φ (z) can be computed

by differentiating the function fu (·) prior to integration; see
(20) and (21) in Appendix A. Given the expression in (20), we
note that evaluating the derivative of fu (·) wrto φ is straightfor-
ward as it comprises of easily differentiable functions (including
erfc). In Fig. 4 we plot the Fisher information as a function of
the phase offset (setting the dither θ = 0) for 4 different cases:
SNR low or high and number of quantization bins M = 8, 12.
We observe that in three of the cases, Fisher information is max-
imum for phase offsets that bring the final phase after rotation
to the “boundary” i.e., one of the bin edges. This is intuitive at
high SNR: if the complex QPSK symbol ends up being in the
“middle” of the quantization bin, the same measurement would
be recorded at every symbol period, resulting in a flat posterior
and hence a poor estimate. Interestingly, when the noise is high
enough to knock the symbol around more and the bins are nar-
rower (M = 12), Fisher information is maximized for a phase
offset (30◦) that brings the symbol to the “middle” of the quan-
tization cone (Fig. 4(d)) (for instance, if the QPSK symbol π

4 is
transmitted, the net phase is 30◦ + 45◦ = 75◦ which is exactly
in between the phase thresholds at angles 60◦ and 90◦).

Genie optimal lower bound: The preceding Fisher informa-
tion computations provide us with a “genie” optimal control
policy; the best action for any φ is the one that brings the net
phase φ − θ to a value for which the Fisher information is maxi-
mized. This yields a Cramer-Rao bound which provides a lower
bound for MSE against which any policy can be compared.

Since we do not know the actual value of the phase φ, a
natural approach is to use the best guess, which is the latest
MAP estimate. This is the MFI policy, which chooses actions at
each step as follows:

θMFI = argmax
θ

F Iθ (φMAP)

where

φMAP = argmax
φ

f (φ) (15)

where FIθ (φ) is computed via (14). f (φ) is the latest be-
lief/posterior distribution of the phase offset. MFI chooses near-
optimal actions if the MAP estimate is close to the true offset,
and is therefore asymptotically optimal under consistency as-
sumptions [15]. However, when the uncertainty in f (φ) is high
(and the MAP estimate is poor), we expect a policy that takes into
account the entirety of the posterior distribution (rather than just
its maximum), such as the GE, to perform better. This is borne
out by simulation results presented shortly. On the other hand,
as the uncertainty in f (φ) reduces and the estimator becomes
more confident of the MAP estimate, the GE policy reduces to
MFI under a Gaussian approximation for the posterior, as stated
in the following theorem.

Theorem 1: Suppose that the latest phase posterior is nor-
mally distributed, i.e., f (φ) ∼ N

(
φ0 , v

2
)

where v is in the
unit of radians. Then, as v → 0, the GE policy chooses the same
actions as the MFI policy, i.e.,

lim
v→0

argmax
θ

IUθ = argmax
θ

F Iθ (φ0) (16)

Specifically

lim
v→0

IUθ

v2 =
1
2
FIθ (φ0) (17)

The proof is provided in Appendix (B). Of course, f (φ) is not
strictly Gaussian as its support is

[
0, π

2

]
, but under consistency

and asymptotic normality, the results kick in as the number
of observations increases. In fact, in our simulations, we find
that the equation argmax θ IUθ ≈ argmax θ FIθ (φ0) starts
holding as soon as the standard deviation of f (φ) is within a
few degrees. We also note from the theorem that the value of
the information utility scales with the variance of the posterior
density, independent of the actions.

C. The Zero Noise Setting

As discussed earlier, when SNR is very high, the resulting
posterior density is flat over a support interval determined by
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Fig. 5. Results of Monte Carlo simulations of different strategies for choosing the feedback θk with 4 and 6 ADCs (8 and 12 phase bins) at SNRs 5 dB and 15
dB. Policies: Greedy Entropy (GE), Maximizing Fisher Information (MFI), Random dither (R) and Constant derotation phase (Const).

the set of observations. In this case, dithering is critical, since
fixed θk results in the same measurement (modulo the symme-
tries induced by the constellation) and no change in posterior.
This is a common feature in systems involving heavily quan-
tized measurements: at high SNR, dither acts as artificial noise
and provides the necessary diversity of measurements required
for estimation. In this zero noise setting, the posterior remains
always flat, but its support changes as we change the action.
GE is equivalent to choosing the action that reduces the support
the most, and is therefore optimal. This is established via the
following lemma, whose proof is sketched in Appendix (C).

Lemma 1: In the absence of noise (i.e., wk = 0 ∀k in (3)),
the phase posterior fk (φ) is uniform over its support for each
k. Let Sk denote the size of its support at time k. The action
chosen by the Greedy Entropy policy is the one that minimizes
the expected value of Sk+1 . Furthermore, Sk+1 = 1

2 Sk , hence
the absolute phase error reduces exponentially at the rate of 1

2 .
MFI is not well defined as there is no unique MAP estimate, but
if the MMSE estimate is used instead in (15), then MFI chooses
the same actions as the GE policy.

D. Avoiding Phase Ambiguity for M = 8

We have assumed thus far that the MAP estimate converges
to the correct phase offset irrespective of the sequence of ac-
tions taken. This is indeed true for M = 12. This is because for
any action θ, different values of the true phase offsets result in
distinct observation densities. This is expressed mathematically
in terms of KL Divergence as follows

for any φ = φ′, D
(
pθ

φ ||pθ
φ ′

)
> 0 ∀ θ (M = 12) (18)

However, the preceding condition does not hold for M = 8.
Due to the symmetry of the angular thresholds, for any given
value of φ and a given derotation θ, there exists another phase
offset, φ′, which results in an identical distribution over the
quantized measurements. This means that if θ is kept constant,
the limiting posterior f (φ) is bimodal, with true and spurious
peaks at locations φ and φ′ respectively. The value of φ′ is a
function of φ (which remains fixed) and θ. The lemma below
specifies this relationship.

Lemma 2: When M = 8 and the true phase is denoted by
φ ∈

[
0, π

2

)
, for any derotation phase θ, there exists a value

φ′ ∈
[
0, π

2

)
= φ, such that D(pθ

φ ||pθ
φ ′) = 0. This holds for

φ′ = mod
(
2θ − φ + π

4 , π
2

)
.

The proof is provided in Appendix (D). We see that a constant
dither policy is unacceptable as it leaves a bimodal ambiguity
in the value of the phase offset. A random dither continuously
changes θ and thereby guarantees a unimodal limiting posterior.
However, feedback control policies such as GE or MFI, which
typically also eliminate bimodality, may occasionally run into
trouble, with a small probability of the final posterior being
maximized at the spurious phase offset value. This can happen
in the following manner: suppose a total of N measurements are
made, out of which a majority, say N1 ≈ N employed a constant
action (this can happen, say with MFI if φMAP remains same).
In the remaining few steps, N2 = N − N1 , different value(s) of
θ were used. Recall that the final φ posterior is just a summation
of the individual step log likelihoods, the order being irrelevant.
Now it may happen that these few N2 observations are affected
by bad noise instances and the φ posterior, computed based on
just these steps, has a larger probability mass at the spurious
value. Since the posterior distribution from the other N1 steps
is perfectly bimodal, the combined posterior ends up having a
stronger peak at φ′. The probability of such an event is generally
very small, as it requires getting multiple bad measurements
during which φ′ should appear to be more probable. However,
it does occur occasionally during our Monte Carlo runs.

Fortunately, a simple modification to the GE and MFI policies
can guarantee vanishing probabilities for such bad events. The
idea is to pick the actions randomly for a fixed fraction, γ,
of the steps. For simplicity, consider inserting such actions at
regular intervals; for instance, γ = 0.1 means choosing every
10th action randomly, while the remainder are chosen in the
usual manner as dictated by the feedback control policy being
employed. As N gets large, so does the number of random
dither steps, γN (for γ > 0), thereby ensuring that the limiting
posterior is unimodal and that the MAP estimate converges to
the correct phase. Note that a more efficient scheme can also
be used, as described in the [13], where the randomly chosen
actions are scheduled at intervals which grow exponentially.
However, for the small number of measurements (typically less
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than 100) of interest to us, the fixed rate schedule for inserting
random actions works well, with no noticeable deterioration in
the efficiency of the feedback control policy.

E. Simulation Results

The root mean squared error (RMSE) performance of phase
acquisition is evaluated using Monte Carlo simulations aver-
aging over randomly generated channel phases. Fig. 5 plots
results for two values of SNR: a low value of 5 dB and a high
value of 15 dB. Errors are computed modulo 90◦, for instance
if the true phase offset is 80◦ and the estimate is 5◦, this is
equivalent to an error of 15◦. We implement three policies:
greedy entropy (GE), random dither (R) and maximizing the
Fisher information (MFI). We also simulate the policy of keep-
ing the derotation phase constant when M = 12, the case for
which it is consistent. For comparison we plot the genie-optimal
performance, which is the CRLB computed by inverting the
maximal Fisher information (maximized over the true phase
offset φ, setting θ = 0). However, note that this does not give
a valid lower bound when the number of measurements are
few and the errors can be large. This is because the Cramer-
Rao bound is based on the standard notion of squared error,
not the modulo 90◦ error appropriate in our setting. In princi-
ple, such problems could be addressed via a tighter and more
sophisticated bound. However, even for a moderate number of
observations, we find that the error reduces quickly enough that
it becomes unnecessary to distinguish between the two notions
of computing error.

From the plots, we make the following observations: (a) The
performance of GE is very close to the “genie” optimal control
policy (CRLB) in all cases. (b) The performance of GE and
MFI is almost identical, but GE is slightly better at low SNR
and coarser quantization (5 dB, 8 bins), when the MAP estimate
that MFI relies upon can be poor initially. (c) At low SNR, there
is little to distinguish between random dithering and GE, since
the noise supplies enough dither to give a rich spread of mea-
surements across different bins. In fact at low SNR and finer
quantization (5 dB, 12 bins), constant action performs as well
as others. However, when the quantization is more severe (8
bins), the GE policy provides performance gains over random
dithering even at low SNR. To summarize, we find that efficient
dithering policies could be effective for rapid phase acquisi-
tion under the scenarios of more severe quantization and higher
SNRs.

Once an accurate enough phase estimate is obtained in the
acquisition step, we wish to begin demodulating the data, while
maintaining estimates of the phase and frequency. In the next
section, we describe an algorithm for decision directed (DD)
tracking. In this DD mode, the phase derotation values θk aims
to correct for the net channel phase in order to enable accurate
demodulation. This is in contrast to the acquisition phase dis-
cussed so far, where the derotation is designed to aid in phase
estimation.

V. PHASE/FREQUENCY TRACKING

We must now account for the frequency offset in order to track
the time-varying phase, and to compensate for it via derotation

in order to enable coherent demodulation. As we have discussed,
the phase is well approximated as roughly constant over a few
tens of symbols, whereas accurate estimates of the frequency
offset η (2) require observations spanning hundreds of symbols.
This motivates a hierarchical tracking algorithm. Bayesian esti-
mates of the phase are computed over relatively small windows,
modeling it as constant but unknown. The posterior computa-
tions are as in the acquisition stage, with two key differences:
the derotation phase value is our current best estimate of the
phase, and we operate in decision-directed mode, and hence do
not need to average over all possible symbols. These relatively
coarse phase estimates are then fed to an extended Kalman fil-
ter (EKF) for tracking both frequency and phase. The filter is
initialized with the phase estimate from the acquisition stage.
The data is differentially encoded over the QPSK symbols (this
is necessary, since phase estimation was performed modulo π

2
in the acquisition stage).

Denote by φ̂MAP;W (k) the MAP phase estimate over a sliding
window of W symbols. This is fed as a noisy measurement of
the true time varying phase φ (k) to an EKF constructed as
follows:

Process Model:

xk = Axk−1 + wk

[
φ (k)
η (k)

]
=

[
1 Ts

0 1

] [
φ (k − 1)
η (k − 1)

]
+ w (k)

where w (k) ∼ N (0, QLO). We set the noise covariance matrix
QLO using the two-state model for the LO (local oscillator)
clock dynamics, as discussed in [17].

QLO = w2
c q2

1

[
Ts 0

0 0

]

+ w2
c q2

2

⎡

⎣
T 3

s
3

T 2
s
2

T 2
s
2 Ts

⎤

⎦ (19)

wc = 2πfc represents the carrier frequency (in rad/s) and pa-
rameters q2

1 (units of seconds) and q2
2 (units of Hertz) are the

noise parameters corresponding to white frequency noise and
random walk frequency noise respectively. As discussed in [17]
their values can be determined from the Allan variance of the
LO, which in turn can be computed from the LO phase noise
characteristics [18].

Measurement Model:

yk = h (xk ) + vk

y (k) =

⎡

⎣
cos

(
4 · φ̂MAP;W (k)

)

sin
(
4 · φ̂MAP;W (k)

)

⎤

⎦=

[
cos (4 · φ (k))

sin (4 · φ (k))

]

+ v (k)

where h (·) is a nonlinear measurement function. The particular
form is chosen to avoid explicit phase unwrapping. Since track-
ing is done in decision directed mode, there is no need to average
over the distribution of QPSK symbols (this also removes the
ambiguity that was present with M = 8 during acquisition) and
thus the phase (φ (k)) is estimated over the interval [0, 2π).
However as differential encoding is being used, integer shifts of
90◦ in the phase estimate are permissible, hence a factor of 4
is used inside the sine and cosine arguments. The measurement
noise is v (k) ∼ N (0, Rk ). For the EKF, computation of the
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Jacobian of the nonlinear function h (·) is required, which in
this case evaluates to

Hk =

[
−4 sin (4φ (k)) 0

4 cos (4φ (k)) 0

]

The EKF update equations are given as follows (these are stan-
dard EKF equations, we refer the readers to Chapter 10 of [19]
for a discussion on EKF).

Time Update:

x̂k |k−1 = Ax̂k−1 ; P̂k |k−1 = AP̂k−1A
T + Qk

K = P̂k |k−1H
T
k

(
HkP̂k |k−1H

T
k + Rk

)−1

Measurement Update:

x̂k = x̂k |k−1 + K(yk − h(x̂k |k−1))

P̂k = (I − KHk )P̂k |k−1

where P̂k is the estimate of the state error covariance and Hk

is evaluated at x̂k |k−1 . The cleaned state estimate, x̂k , provides
the latest estimate of the frequency offset η̂ (k) = x̂k (2) and
a delayed estimate of the net phase, delayed due to the effect
of sliding window. The measurement at time k, yk , reflects the
phase estimated over the time window [k − W,k], hence the
feedback (for undoing the phase at time k) is set according to
θk = x̂k (1) + W

2 Tsη̂ (k).

A. Setting the Noise Covariances

To compute a practically relevant value of QLO for simula-
tions, we use the specifications of a Hittite 60 GHz receiver [20].
The phase noise characteristics in the specification sheet are used
to compute the Allan variance, which gives the process noise
parameter values q2

1 = 1.23 · 10−22 s and q2
2 = 3.5 · 10−21 s−1 .

This leads to a noise covariance matrix with very small vari-
ances (QLO ≈ [3 · 10−9 rad2 , 0; 0, 10−7 (rad/s)2 ]). Thus,
the process noise for typical oscillators is small and can be
tracked very easily. In order to enable the filter to react to abrupt
changes in the value of frequency offset (e.g., due to changes
in Doppler), we artificially inflate the process noise. We can
afford to do so because the resulting marginal increase in phase
offset error has a negligible effect on BER, which is our ul-
timate performance measure. For the measurement noise, the
covariance matrix Rk depends on the uncertainty, σ2

φ , in the
windowed MAP phase estimate. While the latter can be es-
timated empirically from the posterior, we find it convenient
to use an analytical approximation that is in close agreement
with empirical estimates. For the approximation, we decom-
pose the phase error into two independent contributions, and set
σ2

φ = σ2
fixed + σ2

sliding. The first term corresponds to estimation
error, assuming that the true value remains fixed over the es-
timation window, and is well approximated by the CRLB for
classical phase estimation [21]: σ2

fixed = σ 2

W (i.e., this first terms
depends only on SNR and estimation window size W ). The
second term represents the error in the piecewise constant phase
model due to the linear phase change uncertainty due to the

frequency offset, and evaluates to σ2
sliding =

η 2 T 2
s (W 2 −1)

12 , where

Fig. 6. Performance plots of EKF based Tracking Algorithm. (a) posterior of
phase (SNR = 6 dB), (b) Phase Estimates (SNR = 6 dB), (c) Frequency offset
estimate (η̂Ts ) (at SNR = 6 dB), (d) Bit Error Rate Plots.

value of frequency offset η is plugged in from the EKF estimate.
Finally, in order to compute the entries of the measurement
noise covariance Rk (i.e., Var [cos (4φ (k))] , Var [sin (4φ (k))]
and Cov [cos (4φ (k)) sin (4φ (k))]), we make the simplify-
ing assumption that φ (k) is normally distributed with mean
φ̂MAP;W (k) and variance σ2

φ . This Gaussianity assumption is a
good fit to the empirical posterior distribution (Fig. 6(a)), and
enables straightforward analytical computation of the entries of
Rk (expressions omitted due to lack of space). The analytical
estimates obtained are close to simulation results (when the vari-
ance estimate from the posterior distribution is used directly).

B. Simulation Results

We use M = 8 bins and sliding window length W = 40. The
EKF algorithm accurately tracks the phase (6(b)). Subplot 6(a)
shows several superimposed snapshots of the windowed poste-
rior of the phase, whose peaks (the MAP estimates) are used
as measurements for the EKF. In subplot 6(c) ηTs was changed
from 2π · 10−3 rad/symbol to π · 10−3 rad/symbol after 3000
symbols (Ts =

(
6 × 109

)−1
secs). The plot shows η̂Ts , the esti-

mate, by setting QLO to be [3 · 10−9 rad2 , 0; 0, 2 · 109 (rad/s)2 ]
(with noise inflated in the frequency offset term), which enables
the filter to lock onto the new value in about 200 symbols.
Subplot 6(d) shows BER curves for ideal (unquantized) dif-
ferentially encoded coherent QPSK and that of the proposed
algorithm, which is very close to the former. 400 runs with
25000 long bit sequences each were used to generate the BER
plots. Using noncoherent differential QPSK (DQPSK) obviates
the need for phase synchronization but results in a 2 dB perfor-
mance degradation.

VI. CONCLUSION

Hybrid analog-digital architectures with feedback provide
a promising approach for DSP-centric designs that exploit
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Moore’s law, by alleviating the ADC bottleneck encountered
at high communication bandwidths. In this paper, we show that
a simple digitally controlled analog preprocessing step prior
to quantization enables efficient use of the limited number of
ADCs available for phase quantization. The derotation feedback
provides (a) the dither required for phase acquisition with coarse
quantization and high SNR and (b) the correction required to
keep the received symbols in the center of the decision bound-
aries for optimal coherent demodulation in the tracking step.

The Bayesian framework as described in the paper effec-
tively handles the joint uncertainties of data and the channel for
a system with significant nonlinearities due to quantization. The
posteriors are useful for computing both the feedback for the
analog preprocessor and the quantities to be estimated. The BER
obtained by our approach is comparable to that of an unquan-
tized QPSK with differential decoding, unlike the degradation
of performance in an open loop system such as [3].

While the problem of optimal dither for blind acquisition is
a POMDP which is computationally intractable in general, we
show that the intuitively appealing strategy of choosing derota-
tions for minimizing the entropy of phase posterior is close to
genie-optimal over the short time windows of interest to us, and
prove that it is asymptotically optimal over large time windows.

An important direction for future work is to explore the chal-
lenges of implementing such ideas in more specific settings, as
well as to explore the fundamentals of mixed-signal strategies
for alleviating the ADC bottleneck in more challenging settings.
The phase-only quantization strategy considered here suffices
for PSK constellations over channels with minimal dispersion,
but more complex approaches are required to handle channel
dispersion and automatic gain control (the latter is important for
amplitude-phase constellations).

In this paper we have presented results assuming ideal sam-
pling. Simulations (skipped in the paper in favor of ease of
exposition) show that our approach is robust for small amounts
of timing mismatches (<10%). Larger timing offsets result in
large ISI (inter symbol interference) which needs to be handled
separately. This is part of our future work.

APPENDIX A
OBSERVATION DENSITY

The unquantized phase is given by u = arg
(ej (2i−1) π

4 ejβ + w), where i is uniformly distributed over
{1, 2, 3, 4} and β = φ − θ. It is straightforward to evaluate the
density of the argument of a Gaussian random variable [10],
we get the following expression for the density of u:

fu (α;β) =
4∑

i=1

1
4

⎡

⎢
⎣

ai

(
2 − erfc

(
ai

σ
√

2

))
e

a 2
i
−1

2 σ 2

2σ
√

2π
+

e−
1

2 σ 2

2π

⎤

⎥
⎦

where

ai = cos
(
(2i − 1)

π

4
+ β − α

)
(20)

Given the density of u, the observation pmf can be evaluated as
follows:

pθ
φ (z = m) = P (z = m|β) =

∫ m 2 π
M

(m−1) 2 π
M

fu (α;β) d

where

m ∈ {1, 2, ......,M} (21)

The pmf for β = 0◦ is evaluated numerically and stored. Since
the dependence on β is only through the cosine, pmf at non-
zero β values can be obtained by simple circular shifts of
P (z|β = 0◦).

APPENDIX B
PROOF OF THEOREM 1

The equivalence of Fisher information to the second deriva-
tive of Kullback-Leibler divergence between two parametric
densities with small perturbations is well known [22]. In this
proof we encounter a similar relation. Consider the Taylor se-
ries expansion of the KL divergence (13) centered at φ0 (note
that φ0 = φMAP since f (φ) ∼ N

(
φ0 , v

2
)
)

Dθ (φ) = Dθ (φ0 )+(φ − φ0 ) D
′θ (φ0 ) +

(φ − φ0 )
2

2
D′′θ (φ0 ) + · · ·

(22)

the superscripts′ and apos;′′ denote derivatives with respect to
φ. Substituting this in (12) gives

IUθ = Dθ (φ0)
∫

f (φ) dφ + D
′θ (φ0)

∫
f (φ) (φ − φ0) dφ

+ D′′θ (φ0)
∫

f (φ)
(φ − φ0)

2

2
dφ + · · · (23)

since f (φ) is normally distributed, this simplifies to

IUθ= Dθ (φ0) +
v2

2
D′′θ (φ0) + O

(
v4) (24)

⇒ lim
v→0

IUθ

v2 = lim
v→0

Dθ (φ0)
v2 + lim

v→0

1
2
D′′θ (φ0) (25)

Consider the first term in the equation above

Dθ (φ0)
v2 =

∑

i

pθ
φ0

(zi)
v2 log

(
pθ

φ0
(zi)∫

pθ
φ (zi) f (φ) dφ

)

=
∑

i

pθ
φ0

(zi)
v2 log

(
pθ

φ0
(zi)

pθ
φ0

(zi) + v 2

2 hθ
φ0

(zi) + O (v4)

)

where

hθ
φ (z) =

∂2pθ
φ (z)

∂φ2 (26)

where we have used the Taylor series expansion for pθ
φ (zi)

around φ0 in (26). Applying the limit v → 0 using the
L’Hospital’s rule (and using the fact that pθ

φ (z) is strictly positive
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for any finite SNR), the expression above simplifies to

lim
v→0

Dθ (φ0)
v2 =

−1
2

∑

i

hθ
φ0

(zi)

=
−1
2

∑

i

∂2pθ
φ0

(zi)
∂φ2 =

−1
2

∂2

∂φ2

(
∑

i

pθ
φ0

(zi)

)

=
−1
2

∂2

∂φ2 (1) = 0

where we use the fact that pθ
φ (z) is the observation density and

hence sums to 1. The first term in (25) is thus 0. For the second
term, evaluating the double derivative of the KL divergence and
using simple arithmetic simplifications (that we skip) gives

1
2
D′′θ (φ0) =

1
2

∑

i

hθ
φ0

(zi) log

(
pθ

φ0
(zi)∫

pθ
φ (zi) f (φ) dφ

)

+
1
2

∑

i

(
∂pθ

φ (zi)
∂φ

)2

φ=φ0

1
pθ

φ0
(zi)

which is a summation of two terms, the second one is the fisher
information evaluated at φ0 .

1
2
D′′θ (φ0) =

1
2
T1 +

1
2
FIθ (φ0) (27)

Fisher information is independent of v. The proof of the theorem
is complete by observing that the first terms goes to 0 as v → 0.
This is because the argument of the log term approaches 1.

lim
v→0

pθ
φ0

(zi)∫
pθ

φ (zi) f (φ) dφ
= 1 (28)

This can be easily derived by using the Taylor series expansion
of pθ

φ (zi) around φ0 .

APPENDIX C
PROOF OF LEMMA 1

The first part of the lemma follows directly from the recursive
Bayes equation (4) and by noting that in absence of noise, the
single step phase density, pθ

φ (z), is uniformly distributed over
φ (with support 2π

M ) for any given value of θ and z.
Since fk (φ) = 1

Sk
over its support and zero otherwise, its

entropy is given by

h (k) = −
∫

fk (φ) log (fk (φ)) dφ = log (Sk ) (29)

i.e., the entropy of a uniform density is equal to the log-
arithm of the length of the support interval. Hence mini-
mizing entropy corresponds to minimizing the support. Let
us denote the support interval of fk (φ) by

[
φ1

k , φ2
k

]
; 0 ≤

φ1
k ≤ φ2

k (we can assume it to be of this particular form if
we do not wrap around to force the phase to lie in the in-
terval

[
0, π

2

)
, something that we do in practice for a sim-

pler implementation). Note that φ2
k − φ1

k = Sk and Sk ≤ 2π
M .

Now, conditioned on the action θk+1 and the QPSK symbol
pk

π
4 ; pk ∈ {1, 3, 5, 7}, the net final phase in the next step,

Ωk+1 , lies uniformly in the interval Ωk+1 ∈
[
Ω1

k+1 ,Ω
2
k+1

]
=

Fig. 7. Distribution of the net phase Ωk+1 . Dotted line denotes the phase
threshold. Note that Ω2

k+1 − Ω1
k+1 = Sk .

[
φ1

k − θk+1 + pk
π
4 , φ2

k − θk+1 + pk
π
4

]
. Since this interval is

less than 2π
M , the bin size, there are only two quantized phase

measurements possible at k + 1; let us denote them by indices
i − 1 and i (Fig. 7).

pθk

φ (zk+1) =

{
α, zk+1 = i − 1

1 − α, zk+1 = i

α = Pr (Ωk+1 ≤ threshold) ∈ [0, 1]

The relative probabilities of getting these two measurements,
denoted by {α, 1 − α}, is determined by the action θk+1 through
which we can control the location of the uniform Ωk+1 density
relative to the closest threshold. It can be easily seen that if
we get the measurement zk+1 = i − 1, the uncertainty in phase
will be reduced to an interval of size αSk . This means that
the conditional entropy h (k + 1|z = i − 1) = log (αSk ). Sim-
ilarly h (k + 1|z = i) = log ((1 − α) Sk ). Hence the average
entropy is given by

E [h (k + 1)] = αlog (αSk ) + (1 − α) log ((1 − α) Sk ) (30)

which is minimized for α = 1
2 . This is achieved by the GE pol-

icy by choosing an action θ that places the net phase distribution
symmetrically around one of the thresholds. Irrespective of the
measurement, the support of the new posterior is half of the ear-
lier support, i.e., Sk+1 = Sk

2 . Note that this strategy is optimal
as choosing any value of α other than 1

2 results in a support
size that on average is greater than half of the previous support.
Also note that even though MFI is not well defined because
of the flat posterior, if we instead choose φMMSE , the mean of
the posterior, it is equivalent to GE since fisher information is
maximized when the net phase is placed at the “boundary” at
high SNR.

APPENDIX D
PROOF OF LEMMA 2

The key observation to see why the lemma holds is this: it can
be easily inferred from (20) and (21) that the set of phase offset
rotations β = φ − θ =

{
α, π

4 − α + k π
2

}
; k ∈ I; ∀ α

result in identical conditional densities P (z|β) when M=8. For
fixed derotation, these different values correspond to different
phase offsets. Setting k = 0 we can write:

α= φ − θ and
π

4
− α = φ′ − θ ⇒ φ′ =

π

4
− α + θ=

π

4
− φ + 2θ

(31)
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It suffices to consider k = 0 if φ′ is wrapped around to lie in
the interval

[
0, π

2

)
.
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los, C. S. Ong, J. Stelling, and J. M. Buhmann, “Near-optimal experimental
design for model selection in systems biology,” Bioinformatics, vol. 29,
no. 20, pp. 2625–2632, 2013.

[15] G. Atia and S. Aeron, “Asymptotic optimality results for controlled se-
quential estimation,” presented at the 51st Annu. Allerton Conf. Commun.,
Contr., Comput. (Allerton).

[16] A. Krause and C. E. Guestrin, “Near-Optimal Nonmyopic Value of Infor-
mation in Graphical Models,” 2012, arXiv Preprint arXiv:1207.1394.

[17] F. Quitin, M. M. U. Rahman, R. Mudumbai, and U. Madhow, “A scalable
architecture for distributed transmit beamforming with commodity radios:
Design and proof of concept,” IEEE Trans. Wireless Commun., vol. 12,
no. 3, pp. 1418–1428, Mar. 2013.

[18] “Characterization of Frequency and Phase Noise,” Tech. Rep. 580 of the
Int. Radio Consultative Committee (C.C.I.R.), pp. 142–150, 1986.

[19] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation: Theory Algorithms and Software. New York,
NY, USA: Wiley-Interscience, 2001.

[20] “HMC6001 Datasheet, Millimeter Wave Receiver,” [Online.] Available:
http://www.hittite.com/products/view.html/view/HMC6001

[21] D. Rife and R. R. Boorstyn, “Single tone parameter estimation from
discrete-time observations,” IEEE Trans. Inf. Theory, vol. IT-20, no. 5,
pp. 591–598, Sep. 1974.

[22] S. Kullback, Information Theory and Statistics. Mineola, NY, USA:
Courier Dover Publications, 1997.

Aseem Wadhwa received his bachelors degree in
electrical engineering from the Indian Institute of
Technology Delhi, in 2009, and masters and Ph.D.
degrees in electrical and computer engineering from
the University of California, Santa Barbara, in 2011
and 2014, respectively. He is interested in machine
learning, neuroscience inspired learning and ADC
constrained high speed communication. Aseem was
a postdoctoral researcher with Prof. Upamanyu Mad-
how at UC Santa Barbara from 2015 to 2016, and
currently works for Apple Inc, Cupertino.

Upamanyu Madhow is Professor of Electrical and
Computer Engineering at the University of Califor-
nia, Santa Barbara. His research interests broadly
span communications, signal processing and net-
working, with current emphasis on millimeter wave
communication, and on distributed and bio-inspired
approaches to networking and inference. He re-
ceived his bachelor’s degree in electrical engineering
from the Indian Institute of Technology, Kanpur, in
1985, and his Ph.D. degree in electrical engineering
from the University of Illinois, Urbana-Champaign

in 1990. He has worked as a research scientist at Bell Communications Re-
search, Morristown, NJ, and as a faculty at the University of Illinois, Urbana-
Champaign. Dr. Madhow is a recipient of the 1996 NSF CAREER award, and
co-recipient of the 2012 IEEE Marconi prize paper award in wireless commu-
nications. He has served as Associate Editor for the IEEE TRANSACTIONS ON

COMMUNICATIONS, the IEEE TRANSACTIONS ON INFORMATION THEORY, and
the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY. He is
the author of two textbooks published by Cambridge University Press, Funda-
mentals of Digital Communication (2008) and Introduction to Communication
Systems (2014).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


