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Abstract—It is well known that independent and identically distributed
Gaussian inputs, scaled appropriately based on the signal-to-noise ratio
(SNR), achieve capacity on the additive white Gaussian noise (AWGN)
channel at all values of SNR. In this correspondence, we consider the
question of whether such good input distributions exist for frequency-non-
selective Rayleigh-fading channels, assuming that neither the transmitter
nor the receiver has a priori knowledge of the fading coefficients. In this
noncoherent regime, for a Gauss–Markov model of the fading channel,
we obtain explicit mutual information bounds for the Gaussian input
distribution. The fact that Gaussian input generates bounded mutual
information motivates the search for better choices of fixed input distribu-
tions for high-rate transmission over rapidly varying channels. Necessary
and sufficient conditions are derived for characterizing such distributions
for the worst case scenario of memoryless fading, using the criterion that
the mutual information is unbounded as the SNR gets large. Examples
of both discrete and continuous distributions that satisfy these conditions
are given. A family of fixed input distributions with mutual information
growth rate of ((log log SNR) ), 0 are constructed. It is
also proved that there does not exist a single fixed-input distribution that
achieves the optimal mutual information growth rate of log log SNR.

Index Terms—Channel capacity, fading channels, high signal-to-noise
ratio (SNR), noncoherent communication, Rayleigh fading.

I. INTRODUCTION

In this correspondence,we provide an information-theoretic perspec-
tive on the choice of input distributions for high-rate data transmission
over rapidly fading, frequency-nonselective, wireless channels. The
standard practice of tracking the channel based on known pilot sym-
bols is expensive in this setting. Instead, we consider the paradigm
of noncoherent communication, in which the receiver does not have
a priori knowledge or estimates of the channel. Pilot-aided channel
estimation is a suboptimal receiver strategy that falls within this
framework.

For the classical additive white Gaussian noise (AWGN) channel,
it is well known that independent and identically distributed (i.i.d.)
Gaussian inputs, when appropriately scaled according to signal-
to-noise ratio (SNR), achieve capacity over the entire range of SNR.
This motivates us to investigate whether such good fixed input dis-
tributions exist for the noncoherent Rayleigh fading channel. Our
focus is on the high SNR regime, in order to explore the feasibility of
high-rate transmission under rapid channel time variations.
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We first study the Gauss–Markov channel and derive the mutual
information bounds generated by the Gaussian input. Our results
show that the mutual information achieved by the Gaussian input
remains bounded at high SNR. This is in contrast to the block-fading
channel model, studied in detail in [1], [2] for finite SNR: for this
model, Gaussian input results in unbounded mutual information in
the high-SNR limit [3], as long as the channel is constant over a
block of at least two symbols. The block-fading model, and other
blockwise constant channel models, are also attractive from the point
of view of design of practical turbo-coded modulation schemes using
conventional signal constellations, and iterative channel estimation,
demodulation, and decoding [4], [2], [5], [6]. However, our results
suggest that, even though the block-fading channel model is considered
to be a good approximation for a continuously varying fading channel
with block interleaving (or frequency hopping), the accuracy of the
approximation breaks down as the SNR gets large. The boundness of
mutual information generated by Gaussian input is also obtained by
Lapidoth and Moser [7] for more general fading processes.

The suboptimality of Gaussian input motivates us to consider
alternative input distributions. We look for good input distributions
that generate unbounded mutual information in the high-SNR limit
and study the mutual information growth rate as a function of SNR.
Necessary and sufficient conditions are derived to characterize such
distributions for memoryless fading. Examples of both discrete and
continuous distributions that satisfy these conditions are given. In
particular, we identify input distributions that are not suitable for
high-rate communication due to the boundness of mutual information
at high SNR. Such distributions include any continuous distribution
that is bounded around 0 (such as the Gaussian distribution) and
any constant amplitude distributions (such as the phase-shift keying
(PSK) signaling).

Formemoryless fading, Taricco and Elia [8] and Lapidoth andMoser
[7] proved that the noncoherent channel capacity grows double loga-
rithmically (log log(SNR)) as a function of SNR. It is shown in [7]
that this rate of growth also applies to more general ergodic fading
processes. In this correspondence, we propose a special class of dis-
crete input distributions that, when scaled appropriately with SNR, has
a mutual information growth rate approaching this optimal capacity
growth rate. It is shown by Abou-Faycal et al. [9] that the optimal
input distribution for memoryless fading is discrete and has finite mass
points. However, the exact number and the location of thesemass points
vary significantly with SNR and have to be computed numerically. In
this correspondence, we concentrate on input distributions with closed-
form analytical expressions.

This correspondence is organized as follows. Section II contains
basic definitions. Section III contains bounds on themutual information
for i.i.d. Gaussian input on a Gauss–Markov channel. The remainder of
the correspondence focuses on characterizing input distributions that
generate unbounded mutual information in the high-SNR limit. We
restrict attention to memoryless fading for this purpose. Section IV
contains necessary and sufficient conditions for an input distribution
to generate unbounded mutual information. Section V focuses on dis-
crete distributions, and provides an example of a class of distributions
that generates unbounded mutual information, with a rate of growth of
SNR approaching the optimal capacity. Concluding remarks are given
in Section VI.

II. ENTROPY, DIFFERENTIAL ENTROPY, AND MUTUAL INFORMATION

We first review the basic concepts of entropy, differential entropy,
and mutual information. When X is a discrete random variable with a
probability distribution pi = PPP (X = xi), i = 1; 2; . . ., the entropy of
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X , denoted by H(X), is defined as H(X) = �

1
i=1 pi log pi. The

logarithm is taken to the base e unless otherwise stated. Note that when
X is discrete, we have H(X) 2 [0;+1]. When X is a continuous
random variable, the differential entropy of X is defined as

h(X) = � p(x) log p(x)dx

= �
fx: p(x)�1g

p(x) log p(x)dx

+ �
fx: p(x)�1g

p(x) log p(x)dx :

The last equality is well defined except when the first term is equal to
�1 and the second term is equal to +1. When X is a continuous
random variable, we have h(X) 2 [�1;+1].

For a general measure theoretic definition of the mutual information
I(X;Z) between two random variables X and Z , we refer to Pinsker
[10]. According to this definition, I(X;Z) take values in [0;+1].
When X is discrete, we have I(X;Z) = H(X) � H(X j Z), pro-
vided thatH(X) andH(X j Z) are not both equal to+1. WhenX is
a continuous random variable, we have I(X;Z) = h(X)�h(X j Z),
assuming that the two terms h(X) and h(X j Z) are not both equal to
+1 or both equal to �1.

III. MUTUAL INFORMATION BOUNDS FOR GAUSSIAN INPUTS

Consider a Gauss–Markov fading channel model as follows:

Sn+1 =�Sn +
p
1� �2Un

Yn =SnXn + �Wn: (1)

For each time instant n, Sn, Xn, and Yn represent the fading coef-
ficient, the channel input, and the channel output, respectively. The
sequences of random variables fUng and fWng are i.i.d. complex
Gaussian, CCCN(0; 1) distributed. The fading process fSng is gener-
ated by a first-order Markov process with a parameter 0 � � < 1.
The constant � equals the square root of the noise variance. We as-
sume that noncoherent reception is employed; namely, the receiver has
no explicit information about the channel fading coefficients fSng.

Denote the sequence fY1; . . . ; Yng by Y n
1 and the sequence

fX1; . . . ; Xng by Xn
1 . Let

In =
1

n
I(Xn

1 ;Y
n
1 ) =

1

n
[h(Y n

1 )� h(Y n
1 j Xn

1 )]

be the average mutual information achieved by the input signals Xn
1

through n channel uses.
WhenXn

1 is i.i.d. Gaussian, the following theorem gives upper and
lower bounds on In.

Theorem 3.1: Consider the Gauss–Markov channel model defined
in (1). Suppose that the channel input Xn

1 is i.i.d. complex Gaussian
CN (0; 1) distributed. We have the following estimates.

1) Upper bound:

In � log 1 + �
2 �

1

0

e
�x log x 1� �

2 + �
2
dx:

In particular, we have

In � � log 1� �
2 + 
; as �2 ! 0 (2)

where 
=� 1

0
e�x log x dx = 0:5772 � � � is Euler’s constant.

2) Lower bound:

In �
1

0

e
�x log x + �

2
dx� 1

n
log �

21n + An (3)

where 1n is the n�n identity matrix;An is the n�n covariance
matrix of the vector Sn1 . The latter is a Toeplitz matrix with
entries aij = �ji�jj. Moreover,

lim
n!1

In �
1

0

e
�x log x+ �

2
dx� f(�) (4)

where

f(�) = log
k1(�) � k2(�) + k3(�)

2
:

with k1(�)=�2(1+�)2+1��2 , k2(�)=�2(1��)2+1��2 ,
and k3(�)=�2 1+�2 +1��2 . In particular, we have

lim
n!1

In � � log 1� �
2 � 
; as �2 ! 0: (5)

As seen from (2), for any fixed 0 � � < 1, the averagemutual informa-
tion achieved by the Gaussian input is bounded above by a constant at
high SNR. The same result was also obtained by Lapidoth and Shamai
[11] in the case of � = 0. As � ! 1, both the upper bound (2) and
the lower bound (5) in the high-SNR limit approach infinity and differ
by a constant 2 
. The lower bound, however, becomes trivial for small
values of �.

Proof:

1) Proof of the upper bound.
By definition

In =
1

n
[h(Y n

1 )� h(Y n
1 j Xn

1 )]: (6)

For the first term, we have

1

n
h(Y n

1 ) � 1

n

n

i=1

h(Yi)

= h(Y1) � log(�e) + log 1 + �
2
: (7)

For the second term, we have

1

n
h(Y n

1 j Xn
1 ) =

1

n

n

i=1

h(Yi j Y i�1
1 ; X

n
1 )

� 1

n

n

i=1

h(Yi j Y i�1
1 ; X

n
1 ; Si�1)

=
1

n

n

i=1

h(Yi j Xi; Si�1)=h(Y2 j X2; S1):

Since

Y2 = X2S2 + �W2 = X2 �S1 +
p
1� �2U1 + �W2

the distribution of Y2, conditioned on X2 and S1, is Gaussian
with variance jX2j2(1 � �2) + �2. It follows that

1

n
h(Y n

1 j Xn
1 ) �h(Y2 j X2; S1)

=EEEX log �e jX2j2 1� �
2 + �

2

= log(�e)+
1

0

e
�x log x 1� �

2 +�2 dx:

(8)

Equations (7) and (8) combine to give the upper bound.
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2) Proof of the lower bound.
Again, we start from (6). First, we find a lower bound on

1
n
h(Y n

1 )

1

n
h(Y n

1 ) =
1

n

n

i=1

h(Yi j Y i�1
1 ) � 1

n

n

i=1

h(Yi j Y i�1
1 ; Si)

=
1

n

n

i=1

h(Yi j Si) = h(Y1 j S1)

=EEES log �e jS1j2 + �
2

= log(�e) +
1

0

e
�x log x + �

2
dx: (9)

Next, we derive an upper bound on 1
n
h(Y n

1 j Xn
1 ). To simplify

notation, denote Xn
1 by X . Conditioned on X , Y n

1 is Gaussian
with the covariance matrixQ(X) = �21n+�XAn�

H
X , where

�X denotes a diagonal square matrix with diagonal elements
X1; . . . ; Xn. We have

1

n
h(Y n

1 j Xn
1 )

=
1

n
EEEX log j�eQ(X)j

� 1

n
logEEEX j�eQ(X)j (Jensen's inequality)

= log(�e) +
1

n
logEEEX �

21n +�XAn�
H
X

= log(�e) +
1

n
logEEEX �

21n +An(�
H
X�X)

= log(�e) +
1

n
log �

21n +An : (10)

Substituting (9) and (10) into (6), we get (3).
Let us define �n = �21n+An. The matrix �n is a Toeplitz

matrix. Denote the eigenvalues of �n by f�nk ; k = 1; . . . ; ng
and the kth diagonal element by �k . Let

�(x) =

1

�1

�kx
�j2�k

; j =
p�1:

We then apply the Toeplitz distribution theorem [12] to obtain

lim
n!1

1

n
log �

21n +An = lim
n!1

1

n
log�n

k=1�
n
k

= lim
n!1

1

n

n

k=1

log �nk =
1=2

�1=2

log[�(x)] dx = f(�):

Remark: When the input is i.i.d. and has constant amplitude
jXij2 = 1, we have the following upper bound:

In � log(1 + �
2)� log(1� �

2 + �
2): (11)

The proof for this upper bound is similar to the proof for the
upper bound given in Theorem 3.1 for the Gaussian input. The
only difference is that one should replace the last equality in
(8) by log(�e) + log(1 � �2 + �2). By letting � ! 0, (11)
implies that the mutual information generated by PSK input is
also bounded from above by � log(1� �2). This suggests that
in the high-SNR regime, it is power inefficient to use large PSK
constellations.

IV. INPUT DISTRIBUTIONS THAT GENERATE UNBOUNDED MUTUAL

INFORMATION AT HIGH SNR

In the remainder of this correspondence, we study the worst case
i.i.d. memoryless fading channel, and characterize input distributions
that generate unbounded mutual information in the high-SNR limit.

Fig. 1. The i.i.d. fading channel.

A. The i.i.d. Fading Channel Model

The i.i.d. fading channel model can be obtained by setting � = 0
in the Gauss–Markov channel model defined by (1). To simplify no-
tations, we drop the time index n and model the channel as shown in
Fig. 1, where Y represents the output signal when the noise vanishes,
Y� represents the output signal corresponding to a given noise variance
�2. Note that the inputX satisfies the power constraint E(jXj2) = 1.

A useful property of this channel model can be seen from its channel
transition probability

pY jX(y j x) = 1

� jxj2 + �2
e
�jyj =(jxj +� )

which depends only on the amplitudes of the input and output signals.
This implies that the mutual information betweenX and Y� is the same
as the mutual information between jXj and jY�j

I(X; Y�) = I(jXj; jY�j): (12)

Hence, I(X;Y�) is completely determined by the amplitude distribu-
tion of the input signal. This property is used in later sections.

A necessary condition for an input distribution to generate un-
bounded mutual information at high SNR is given by Lapidoth and
Moser ([7, Theorem 4.3]). Using this necessary condition, one can
show that any continuous input distribution with a finite density func-
tion that is bounded around 0 (including the Gaussian distribution)
generates bounded mutual information at high SNR.

Next, we derive necessary and sufficient conditions on the input dis-
tribution of X such that

lim
�!0

I(X;Y�) = +1: (13)

B. Necessary and Sufficient Conditions

We derive necessary and sufficient conditions to characterize input
distributions that satisfy (13). To simplify this problem, we prove that
the limit of the mutual information generated by a fixed input distribu-
tion, as � ! 0, is equal to the mutual information it generates when
the noise vanishes (� = 0). In other words, the mutual information, as
a function of �, is continuous at � = 0.

Theorem 4.1: For any discrete or continuous distribution of X , we
have

lim
�!0

I(X;Y�) = I(X;Y ):

In particular

lim
�!0

I(X;Y�) = +1() I(X;Y ) = +1:

Theorem 4.1 can be proved by first demonstrating convergence in
variation: for any A � 2, we have lim�!0 PPPX;Y (A) = PPPX;Y (A),
and then apply Pinsker’s results [10, p. 13].

Theorem 4.1 states that whether a fixed input distribution leads to
unboundedmutual information at high SNR is determined bywhether it
generates infinite mutual information when the noise vanishes. Hence,
it suffices to focus on I(X;Y ) with Y = SX . As shown in Fig. 2, this
particular channel model can be reduced to a simple additive noise
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Fig. 2. Transformation to the logarithm domain.

channel model by transforming the original input and output signals
into signals on the logarithm domain. This transformation leads to some
useful necessary and sufficient conditions for input distributions that
generate unbounded mutual information at high SNR. We summarize
these conditions in the following theorem.

Theorem 4.2: Define X 0 = log jXj and Y 0 = log jY j. Let
log(0) = �1. For any discrete or continuous distribution of X , the
following assertions hold.

1) I(X;Y ) = I(X 0;Y 0). In particular

I(X;Y ) = +1() I(X 0;Y 0) = +1:

2) If Y 0 is a continuous random variable with a finite-density func-
tion, then

I(X 0;Y 0) = +1() h(Y 0) = +1:

3) IfX is a continuous random variable with a finite density func-
tion, then

h(X 0) = +1 =) I(X 0;Y 0) = +1:

Part 2) of this theorem gives a necessary and sufficient condition ap-
plicable to any continuous or discrete input distribution. However, it
is usually difficult to verify whether or not h(Y 0) = +1. Part 3) of
this theorem gives a sufficient condition for a continuous distribution to
generate unbounded mutual information, which is much easier to use.

Proof: From (12), we know that I(X;Y ) = I(jXj; jY j). Since
the mapping between (jXj; jY j) and (X 0; Y 0) is one-to-one, we also
have I(jXj; jY j) = I(X 0;Y 0). Part 1) of the theorem follows.

Taking the logarithm of both sides of the equation jY j = jSkXj, we
get

log jY j = log jSj + log jXj: (14)

Let S0 = log jSj. We can rewrite (14) as

Y 0 = S0 +X 0:

Simple calculations show that h(S0) = h(jSj) � E log jSj is finite,
therefore,

h(Y 0 j X 0) = h(Y 0 �X 0 j X 0) = h(S0 j X 0) = h(S0)

is also finite. Since I(X 0;Y 0) = h(Y 0)� h(Y 0 j X 0), we see that

I(X 0;Y 0) = +1() h(Y 0) = +1:

This proves part 2).
Next, we prove part 3). If X is a continuous random variable, so is

X 0. Therefore,

I(X 0;Y 0)=h(X 0)�h(X 0 j Y 0)=h(X 0)� h(X 0 � Y 0 j Y 0)

=h(X 0)� h(�S0 j Y 0)� h(X 0)�h(�S0):

Since h(�S0) is finite, part 3) of the theorem follows immediately.

C. An Example of a “Good” Continuous Input Distribution

We can apply part 3) of Theorem 4.2 to obtain continuous input dis-
tributions that generate unbounded mutual information at high SNR.
An example of such a distribution is given by

pjXj(a) =
c

a log(1=(c a))[log log(1=(c a))]
; if 0 < a < e�3=c2

0; else

Fig. 3. An example of continuous input distributions.

where c1 = log 3 and c2 = 0:0164 are chosen such that

1

0

pjXj(a)da = 1 and
1

0

a2pjXj(a)da = 1:

A plot of this density function is given in Fig. 3. Simple calculations
show that h(X 0) = h(log(jXj)) = +1. From part 3) of Theorem
4.2, it follows that I(X;Y ) = I(X 0;Y 0) = +1.

V. DISCRETE INPUT DISTRIBUTIONS

It is difficult to apply directly the necessary and sufficient conditions
for unboundedmutual information in Theorem 4.2 to discrete input dis-
tributions, which are of more interest in practice. Instead, we provide
in this section an example of a class of discrete distributions that pro-
vides unbounded mutual information, and analyze a simple receiver
to show that the rate of growth of mutual information with SNR is

([log log SNR]u), where 0 < u < 1 ranges over the members of the
class. As u ! 1, this approaches the O(log log SNR) rate of growth
of capacity for the memoryless channel.

Since I(X;Y�) = I(jXj; jY�j), in this section, we drop the magni-
tude notation and denote jXj by X and jY�j by Y� , respectively.

A. Signal Constructions

Consider a discrete input distribution of X having mass points at
xi = �L�i, each with probability pi, i = 2; 3; . . .. Here L > 1 is a
fixed constant, � is a scalar constant such that the energy constraint is
satisfied: 1

i=2 pix
2
i = 1. In addition, we assume that

H(X) = �

1

i=2

pi log pi = +1:

An example of such a distribution with L = 2, pi = t
i(log i)

, where
t is a normalization constant, is plotted in Fig. 4. Note that if one ap-
proximates this discrete distribution by a continuous distribution, the
density function of the approximation looks like the one in Fig. 3.

Similar signal constructions were first studied by Taricco and Elia
[8], where the number of mass points was finite and only the uniform
distribution was used. In [8], the parameterL approaches infinity as the
SNR grows, while in this work, we fix L and let the number of mass
points equal infinity.



3394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

Fig. 4. An example of discrete input distributions.

For any L > 1, the signals constructed above lead to unbounded
mutual information. For brevity, we prove it only for a particular choice
of L that satisfies

P jSj =2 [L�1=3; L1=3] < �=2 (15)

for a fixed 0 < � < 1. Similar proofs also work for other values of L.

B. A Lower Bound for I(X;Y�) Based on a Simple Receiver

We derive a lower bound for I(X;Y�) based on a simple receiver
structure. Given a fixed noise level �, the receiver chooses a positive
integer N , which can be interpreted as the resolution parameter, and
pretends that one of the input signals from the set fx2; . . . ; xNg was
sent.

In other words, define

XN =
X; ifX 2 fx2; . . . ; xNg

0; else.

Based on the received signal Y� , the receiver tries to estimate XN ac-
cording to some decision rule which we describe later. Since Y� !
X ! XN forms a Markov chain, from the data processing inequality
[42, p. 32], it follows that I(X;Y�) � I(XN ; Y�). As the receiver im-
proves its resolutionN , I(XN ;Y�) becomes a tighter lower bound for
I(X;Y�). The main result is summarized in the following theorem.

Theorem 5.1: For arbitrarily fixed �, L, and �, let Nmax(�) be the
largest N such that

P j�W j > 
L�N < �=2; (16)

where 
 = �(L2=3�L1=3)=2. Then for anyN � Nmax(�), we have

I(X;Y�) � I(XN ; Y�) � (1� �)H(XN)� 1: (17)

In particular, for any � < 1

lim
�!0

I(X;Y�) = +1:

Proof: First, we introduce some notation. For each integer 2 �
i � N , define a decision interval Ai that contains xi as

Ai = xi L
�1=3 � 
L�N ; xi L

1=3 + 
L�N :

An illustration of decision intervals is given in Fig. 5.

Fig. 5. Illustration of decision intervals.

Define a random variable E as

E =
1; if jSj 2 [L�1=3; L1=3] and j�W j � 
L�N

0; else.

Note that for any N � Nmax(�)

P (E = 0) �P (j S j=2 [L�1=3; L1=3]) + PPP (j �W j> 
L�N)

� �=2 + �=2 = �:

First, we have

H(XN j Y�)

� H(XN ; E j Y�) = H(E j Y�) +H(XN j E;Y�)

� 1 +H(XN j E; Y�)

= 1 + P (E = 1)H(XN j E = 1; Y�)

+ P (E = 0)H(XN j E = 0; Y�)

� 1 +H(XN j E = 1; Y�) + P (E = 0)H(XN j E = 0; Y�)

� 1 +H(XN j E = 1; Y�) + �H(XN j E = 0)

= 1 +H(XN j E = 1; Y�) + �H(XN): (18)

It is important to realize that under the assumption that E = 1, for
any possible transmitted signal XN = xi, i = 2; . . . ; N , we must
have Y� 2 Ai. Since the decision intervals fAi; i = 2; . . . ; Ng are
nonoverlapping, it follows that when conditioned on Y� and E = 1,
XN is uniquely determined. Hence, H(XN j E = 1; Y�) = 0. Sub-
stituting this into the last equality of (18), we get

H(XN j Y�) � 1 + �H(XN): (19)

Finally, we obtain

I(XN ; Y�) =H(XN)�H(XN j Y�)

�H(XN)� �H(XN)� 1

= (1� �)H(XN)� 1:

This proves the second inequality in (17). As � ! 0, we have
Nmax(�)!1. Therefore, by lettingN !1, the right-hand side of
(17) converges to (1� �)H(X)� 1 = +1, assuming that � < 1.

C. Growth Rate of I(X;Y�) as a Function of �

For some particular choices of the distribution fpi; i = 2; . . .g, we
study how fast the mutual information I(X;Y�) grows as a function
of �. Here we fix �, L, and �.

Lemma 5.1: Nmax(�) grows in the order of O(log(1=�2)).
Proof: By solving

P j�W j > 
L�N =
1


L =�

2ae�a da = e�
 L =� < �=2

we obtain

N <
log(1=�2)

2 logL
�

log log(2=�)� 2 log 


2 logL
= O(log(1=�2)):

Theorem 5.2: Let pi = t
i(log i)

, where 0 < u < 1 and t is a
constant such that 1

i=2 pi = 1. The mutual information I(X;Y�)
grows in the order of 
([log log (1=�2)]1�u).
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Proof: First, we compute H(XN)

H(XN) � �

N

i=2

pi log pi = t

N

i=2

1

i(log i)u

+t(1 + u)

N

i=2

log log i

i(log i)1+u
� (t log t)

N

i=2

1

i(log i)1+u
:

Since the last two terms in the last equality both converge asN !1,
the growth rate ofH(XN) is determined by the growth rate of the first
term.

Because
N

2

1

x(log x)u
dx =

1

1� u
(logN)1�u �

1

1� u
(log 2)1�u

we have

H(XN) =
t

1� u
(logN)1�u +O(1); as N !1: (20)

From Theorem 5.1 and Lemma 5.1, it follows that

I(X;Y�) � I XN (�); Y� � (1� �)H XN (�) � 1

= (1� �)
t

1� u
logNmax(�)

1�u

+O(1)

=O log log 1=�2
1�u

; as � ! 0:

From Theorem 5.2, we see that the growth rate of log log(1=�2)
(corresponding to u = 0) is not achieved because fpi = t=(i log i)g is
not a valid probability distribution. Furthermore, the following theorem
(due to Lapidoth) shows that no fixed input distribution can achieve the
optimal growth rate of log log(1=�2). This theorem is valid for general
fading processes.

Theorem 5.3 (Lapidoth): Let the fading process fSkg be stationary,
of finite differential entropy rate; and of unit second moment. Let the
input process fXkg be such that the law ofXk does not depend on the
time index k and has unit second moment. Then

lim
� !0

lim sup
n!1 I(X1; . . . ; Xn;Y1; Y2; . . . ; Yn)=n

log log(1=�2)
= 0: (21)

Proof: By Lemma 4.5 in Lapidoth–Moser [7] it suffices to prove
that

lim
� !0

I(X1;Y1)

log log(1=�2)
= 0:

Consequently, we shall drop indices and prove

lim
� !0

I(X;SX + �W )

log log(1=�2)
= 0:

Define for any a > 0 such that P (jXj > a) > 0

E =

0; ifX = 0

1; if 0 < jXj � a

2; if jXj > a:

(22)

Let Y�=SX+�W . We can now expand I(X;SX+�W )=I(X;Y�)
as

I(X;Y�) = I(X;E;Y�)

= I(E;Y�) + I(X;Y� j E)

� log 3 + I(X;Y� j E = 1)P (E = 1)

+ I(X;Y� j E = 2)P (E = 2) (23)

where we have used the fact that I(X;Y� j E = 0) = 0, because
conditioned on E = 0, the input X is deterministic.

We next study the term I(X;Y� j E = 2) and show that it is
bounded in the noise variance. That is, we shall show that

I(X;SX + �W j E = 2) < I(X;SX j E = 2) <1: (24)

Note that sinceX is of unit secondmoment, it follows that, conditioned
on jXj > a, the second moment of X is at most 1=Pr(jXj � a).
Consequently, we have

I(X;SX j E = 2)

=h(SX j E = 2)� h(SX j X;E = 2)

� log �eEEE[jSXj2 j E = 2] �EEEXjE=2[log jXj
2 + h(S)]

� log �eEEE[jSj2]
1

Pr(jXj � a)
�log jaj2�h(S) <1: (25)

Hence, we obtain (24).
We next consider the term I(X;Y� j E = 1). We note that, condi-

tioned onE = 1, the inputX is upper-bounded by a. In particular, the
input’s conditional second moment is upper-bounded by a2 and hence
finite. Consequently (see Lapidoth–Moser [7, Theorem 4.2]) it follows
that

lim sup
� !0

I(X;Y� j E = 1)

log log(1=�2)
� 1:

We thus conclude that

lim
� !0

I(X;SX + �W )

log log(1=�2)
� P (E = 1) = P (0 < jXj � a):

The theorem now follows because a can be chosen as close to zero as
we wish and in this way guaranteeing that P (0 < jXj � a) is as close
to zero as desired.

VI. CONCLUSION

In this correspondence, we derive explicit bounds of mutual infor-
mation with i.i.d. Gaussian input for Gauss–Markov fading channels.
Our results imply that it may not be appropriate to apply standard code
designs for the AWGN channel to fading channels. Intuitively, how-
ever, we would still expect Gaussian input to work well at moderate
SNR and/or slow fading. The regime where this would happen can
be roughly characterized based on our bounds, which show that the
high-SNR limit of mutual information for Gaussian input is� log(1�
�2), up to an additive constant independent of � or SNR. This implies
that log(SNR) growth in mutual information can occur if � ! 1 as
SNR gets large, with � � 1�k=SNR for some k > 0. This is also the
regime in which the block-fading channel model [1], for which con-
ventional signal constellations are known to work well [2], [5], [6], is
a good approximation for the continuously varying channel.

We propose a family of fixed input distributions with mutual infor-
mation growth rate of O((log log SNR)1�u), u > 0 at high SNR for
memoryless fading (� = 0). These input distributions have the at-
tractive feature that a fixed constellation, when scaled appropriately,
can be employed for a wide range of SNR. Clearly, these constella-
tions also give unbounded mutual information at high SNR for the
Gauss–Markov model with memory (� > 0) as well, since the use
of channel memory at the receiver can only increase the mutual infor-
mation. We also show that no fixed input distribution can achieve the
optimal mutual information growth rate of log log SNR. Further inves-
tigation is needed on optimizing the choice of constellation for channels
with memory (and on determining the rate of growth of capacity for
such channels) in the high-SNR limit. In particular, while information
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can only be conveyed via amplitude for the noncoherent memoryless
fading channel, information can be carried by the phase as well when
the channel has memory.
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Joint Transmitter and Receiver Optimization in Additive
Cyclostationary Noise

Joon Ho Cho, Member, IEEE

Abstract—A joint optimization of transmitter and receiver is considered
for strictly band-limited linear modulations in additive cyclostationary
noise. Under the assumptions that the period of the cyclostationarity
of the noise is the same as the inverse of the symbol transmission rate
and that the noise has a positive-definite autocorrelation function, the
optimum transmitter and receiver waveforms that jointly minimize the
mean-squared error at the output of the linear receiver are derived with the
data sequence modeled as a wide-sense stationary (WSS) colored random
process and the channel modeled as a linear time-invariant system with
a general frequency-selective impulse response. Numerical results show
that this joint optimization technique leads to a significant performance
improvement over the systems with receiver-only optimization and the
systems with no transmitter and receiver optimizations.

Index Terms—Cyclostationary noise, joint transmitter and receiver op-
timization, minimum mean-squared error (MMSE).

I. INTRODUCTION

One of the classical problems in information theory is the problem
of jointly optimizing the transmitter and the receiver of a communi-
cation system. Among many different approaches to this fundamental
problem is the joint optimization of transmitter and receiver waveforms
to minimize the mean-squared error (MSE) at the output of a linear re-
ceiver. In [1], Berger and Tufts solved the joint optimization problem
for pulse amplitude modulation with a wide-sense stationary (WSS)
data symbol sequence, a frequency-selective channel, and a WSS ad-
ditive colored noise. One of many unintuitive results obtained in their
work and the work followed [2]–[4] is that the spectrum of the optimum
waveform pair has nonzero values only on a generalized Nyquist in-
terval [3]. Later in [5], Graef extended this work by replacing the WSS
data symbol sequence with a wide-sense cyclostationary (WSCS) se-
quence.

After these problems with a single-input/single-output (SISO)
channel were studied, more general joint optimization with a mul-
tiple-input/multiple-output (MIMO) channel attracted a lot of interest.
It is worth noting that, unlike an SISO channel, there are two types
of MIMO channels because we can either allow the coordination of
transmitters or not. In [6], Yang and Roy solved the joint optimization
problem with a fully coordinated MIMO system. By allowing the
coordination of transmitters, they were able to show that the MIMO
problem can be divided into separate SISO joint optimization prob-
lems. In [7] and [8], Golden et al. tackled the other type of MIMO
problemswith noncoordinating transmitters. They successfully derived
the optimum zero-forcing solution for symmetrically cross-coupled
two-user channels. However, it was shown that the optimum minimum
mean-squared error (MMSE) solution is not analytically obtainable

Manuscript received July 30, 2003; revised August 23, 2004. This work was
supported in part by the Ministry of Information and Communication, Korea,
under the ITRC program supervised by the IITA. The material in this corre-
spondence was presented in part at the IEEE International Symposium on In-
formation Theory, Yokohama, Japan, June 2003.

The author was with the Department of Electrical and Computer Engi-
neering, University of Massachusetts, Amherst, MA USA. He is now with
the Department of Electronic and Electrical Engineering, Pohang University
of Science and Technology (POSTECH), Kyungbuk 790-784, Korea (e-mail:
jcho@postech.ac.kr).

Communicated by V. V. Veeravalli, Associate Editor for Detection and Esti-
mation.

Digital Object Identifier 10.1109/TIT.2004.838342

0018-9448/04$20.00 © 2004 IEEE


