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ABSTRACT

Energy Efficient Wireless Communication using

Distributed Beamforming

by

Raghuraman Mudumbai

We consider the use of distributed beamforming to improve the energy effi-

ciency and transmission range of wireless networks. Under distributed beamform-

ing, a number of wireless transmitters collaboratively transmit a common message

signal in such way that their individual transmissions combine coherently (i.e. in

phase) at the intended receiver. In essence, a set of distributed wireless nodes

organize themselves as a virtual antenna array. As in beamforming from a con-

ventional antenna array, highly directional transmissions can be achieved using a

virtual array, and therefore substantial SNR gains can be realized compared to a

network in which each node transmits independently to the receiver.

Distributed beamforming arises naturally from information theoretic analyses

of multi-user channels and is an essential ingredient of capacity-achieving coding

strategies in several cases. However these analyses are based on baseband mod-

els of the channel and as such involve some implicit assumptions. The two most

important such assumptions are (1) synchronized carrier signals, and (2) known

phase relationship between the transmitters. The main contribution of this thesis

is a detailed analysis of the feasibility of these assumptions, and a design for a

practical wireless system based on distributed beamforming that explicitly ad-

dresses these issues. This design is based on a simple iterative procedure for
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beamsteering using receiver feedback. Carrier synchronization is achieved by us-

ing phase locked-loops to lock all the transmitters to a common reference signal

broadcast by a designated master transmitter. We show that the SNR gains from

beamforming are sensitive to the choice of PLL parameters, and examine this

dependence in detail.

The feedback procedure for beamsteering works as follows: each transmitter

independently makes a small random adjustment to its phase at each iteration,

while the receiver broadcasts one bit of feedback, indicating whether the signal-

to-noise ratio is better or worse after the adjustment. The transmitters keep the

‘good’ phase adjustments and discard the ‘bad’ ones, thus implementing a dis-

tributed ascent algorithm. We show that, for a broad class of distributions for the

random phase adjustments, this procedure leads to asymptotic phase coherence

with probability one. A simple analytical model, borrowing ideas from statistical

mechanics, is used to characterize the progress of the algorithm, and to provide

guidance on parameter choices.

One of the motivating applications for this thesis is the problem of communi-

cation in WSNs. Therefore the scalability and robustness properties of our virtual

array are important considerations. We show that the convergence time of the

beamforming algorithm is linear in the number of collaborating nodes, and also

that the SNR gains are robust to noise and fading effects in the wireless channel.
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Chapter 1

Introduction

This dissertation presents the design and analysis of a method for energy-efficient

wireless communication from a network of transmitters to a distant receiver using

distributed beamforming. Distributed beamforming refers to a form of cooper-

ative communication in which a number of transmitters agree upon a common

message, and then transmit it such that their contributions combine coherently

at the receiver. In effect the transmitters organize themselves as the elements of

a virtual antenna array; beamforming requires that the signals from each trans-

mitter combine constructively at the receiver to give a strong combined signal.

Physically the stronger signal is because of the fact that a large fraction of the

transmitted power is focused in the direction of the receiver just like in centralized

phased-array antennas.

As a result of this constructive interference, beamforming leads to a factor of

N gain in power efficiency, where N is the number of collaborating transmitters.

Thus, if the power of each transmitter is fixed, then distributed beamforming leads

to an N2 gain in received signal-to-noise ratio (SNR): a factor of N gain due to

increase in total transmit power, and a factor of N gain in power efficiency due
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to increased directivity. Such gains, if feasible, could have significant implications

for the design of wireless ad-hoc and sensor networks, which typically suffer from

severe power constraints.

1.1 Overview

Distributed transmit beamforming arises quite naturally as a key ingredient of

several classical results in network information theory. However, some of the

implicit assumptions in the traditional baseband model of the channel turn out

to be difficult to realize in practice. Specifically the two related assumptions of

synchronized carrier signals, and known phase relationships between the different

transmitters are much more challenging for a virtual array of independent trans-

mitters than for a centralized antenna array. This is because, unlike a centralized

array, each transmitter in a virtual array obtains its RF carrier signal from a sep-

arate free-running local oscillator. As a result, the transmitters have RF carrier

signals with unknown frequency and phase offsets between them. Unless these off-

sets are compensated for, methods for channel estimation and beamsteering that

are designed for centralized antenna arrays (e.g. using reciprocity) cannot directly

be used for distributed arrays. This is, perhaps, the most important difference

between centralized and distributed beamforming.

Carrier frequency synchronization can be achieved by locking all of the trans-

mitters to a common reference signal. This suggests a master-slave architecture,

where a designated master transmitter broadcasts a reference carrier signal, and

the slave transmitters lock to the reference signal using phase locked-loops (PLLs).

However because of unknown propagation delays in the master-slave channel, there

is still an unknown (but fixed) phase offset between the synchronized carrier sig-
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nals. It is possible to use other methods for frequency synchronization (such as

injection locking), but they are also subject to the same limitation of unknown

phase offsets.

In principle, if the geometry of the virtual array is known accurately, the

master-slave propagation delays of all the transmitters can be estimated, and

therefore also the unknown phase offsets. Any residual errors in positioning can

be considered as a source of phase noise [1], and along with other sources of

noise such as jitter limit the achievable SNR gains from beamforming. The effect

of these errors becomes larger when the frequency of the carrier signal is large.

Fortunately, it turns out that the SNR gains are highly robust to phase errors; even

with moderately large errors on the order of 60◦, it is possible to achieve upto 75%

of the available SNR gains from beamforming. This robustness to phase error is

what makes distributed beamforming a potentially feasible technique for wireless

networks.

However determining the geometry of the network with sufficient accuracy is

a challenging task; for instance at a frequency of 1 GHz, in order to keep the

phase errors less than 60◦, the localization error needs to be below approximately

5 cm. Traditional localization methods such as GPS are not capable of this level

of accuracy, indeed the physical dimensions of the antenna may be larger than 5

cm, which would make it impossible to regard the antenna as a point source. In

order to avoid these difficulties, we consider a calibration procedure [2], where each

transmitter measures its phase offset from the designated master-transmitter and

compensates for it explicitly. If the phase drift in the local oscillators is a random

process with memory the phase errors can build up rapidly. This requires that

the calibration process be periodically repeated to keep the carrier signals syn-

chronized. A detailed examination of this process reveals a fundamental tradeoff

3



between the synchronization overhead and the achievable beamforming gain.

While such a calibration process provides useful analytical insights, its com-

plexity motivates the search for a simpler implementation of distributed beam-

forming. In this spirit, we investigate a simple iterative procedure [3], based on

feedback from the receiver, for achieving phase coherence, and show that this

procedure provides a powerful method to satisfy the requirements for distributed

beamforming. The basic idea behind the feedback algorithm is described as fol-

lows. Each transmitter adjusts its phase randomly at each iteration, with the

receiver broadcasting one bit of feedback per iteration as to whether its SNR is

better or worse than before. If it is better, the transmitters keep the previous phase

perturbation, and if it is worse, they undo the previous phase perturbation. This

randomized ascent procedure is repeated until the transmitters converge to phase

coherence. This procedure is especially appealing because it avoids the previously

mentioned difficulties in channel estimation due to the unknown phase offsets; by

using SNR measurements, it completely removes the need for any explicit channel

estimation procedure.

It can be shown that under mild conditions, this feedback algorithm converges

asymptotically to perfect coherence with probability one, assuming that the wire-

less channels are static, and there is no noise or SNR estimation errors. When these

idealized assumptions are relaxed, the algorithm reaches a steady-state tracking

mode. If the noise and time-variations are not too large, the SNR gains in the

steady-state can be close to the ideal case. Thus, the algorithm is robust to

channel impairments, and is also scalable in the sense that the convergence time

increases no faster than linearly in the number of transmitters. When the number

of transmitters becomes large, the algorithm also admits to a statistical mechani-

cal analysis, which can be used to optimize the rate of convergence and to obtain

4



insight into its dynamics.

All these characteristics make the feedback algorithm an attractive method of

realizing a virtual antenna array in practice. Indeed, it was shown in a proof-

of-concept prototype [4] that significant SNR gains are achievable using a very

simple implementation based on these ideas.

1.2 System Model

Our goals in this dissertation, can be summarized as follows:

1. To motivate the idea of a virtual antenna array, and to show how it relates

to various aspects of the theory and practice of wireless communication

systems.

2. To study the feasibility of distributed beamforming for wireless networks,

to identify the important design parameters and determine the performance

limits in terms of achievable SNR gains from beamforming.

3. To describe an implementation of distributed beamforming using a master-

slave architecture for carrier frequency synchronization, and a 1-bit feedback

algorithm for beamsteering.

4. To develop a theoretical analysis of the feedback algorithm in order to study

its convergence and scalability, to optimize its performance, and to study

its implications for other problems in wireless network design.

We consider an idealized wireless network to focus on the issues relevant to

our goals, and avoid extraneous details. This idealized network is illustrated in

Fig. 1.1, and its salient features are described as follows.

5



receiver

Distributed array of

transmitters

Figure 1.1. Idealized communication model for distributed beamforming.

1. The network consists of a set of N transmitters. The transmitters can

communicate with each other wirelessly and also with the receiver (which

is not considered part of the network). The locations of the transmitters

is arbitrary, however the distance between any of the transmitters is small

compared to the distance of the receiver from the network.

2. The transmitters seek to cooperatively communicate a common, baseband

message signal m(t) to the receiver. The message m(t) is assumed to be

known to all the transmitters. This may be arranged by a previous round

of communication within the network.

3. The cost of “local” communication within the network, i.e. among the trans-

mitters, is assumed to be negligible compared to the cost of communication

with the receiver. Thus the cost of synchronizing the carrier signals of all the

transmitters, and the cost of broadcasting the message signal m(t) through-

out the network are all assumed to be negligible. Each transmitter has a

maximum power constraint for communication with the receiver.
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This idealized network represents the most favorable conditions for distributed

beamforming. In practice it approximates different networks to a greater or lesser

degree, and it is necessary to extend our analysis to take our simplifying assump-

tions into account. The SNR gains from beamforming have to be balanced against

the additional overheads that we have chosen to neglect here, such as the cost of

synchronization and local communication. It is also necessary to compare our

single-hop transmission scheme with a more general hybrid scheme that combines

multi-hop routing with cooperative transmission. We briefly discuss some of these

issues in Chapter 6.

1.3 Organization of this Dissertation

The rest of this dissertation is organized as followed. In Chapter 2, we present

background information on topics related to cooperative wireless communications.

Chapter 3 analyzes the requirements for distributed beamforming using a simple

master-slave architecture for synchronization, and a reciprocity-based scheme for

channel estimation and phase calibration. Chapter 4 presents a simple 1-bit feed-

back control algorithm for beamsteering, and derives an analytical model for its

convergence. The effect of impairments such as phase jitter and time-variations

on the feedback algorithm is examined, and a design for a practical implementa-

tion of distributed beamforming is presented in Chapter 5. Chapter 6 offers some

remarks on the open issues and implications for future work.
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Chapter 2

Background

Our work on collaborative beamforming was based on the idea of applying com-

munication techniques designed for multi-antenna point-to-point wireless systems

to wireless networks. The concept of virtual antenna arrays emerges naturally

from traditional information theoretic models for the communication capacity of

wireless networks. Yet these models suffer from serious limitations when applied

to such virtual arrays, and indeed most of this thesis is devoted to finding explicit

solutions to address these limitations. We now present a brief survey of areas rel-

evant to our work: antenna arrays and wireless networking, and also more recent

related work on cooperative communication in wireless networks.

2.1 Wireless Communication

Wireless communication can be properly said to have started with the invention

of the wireless telegraph in the 1890s by Marconi and other pioneers. To be

sure there were previous untethered communication systems. Even before Hertz’s

demonstration of electromagnetic waves, there were some attempts [5] to use near-
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field induction effects for communication. Of course non-electric methods such as

semaphores, and smoke-signals have been in use for a very long time. Nevertheless,

it is clear that the telegraph represented a qualitatively new capability in terms

of the amount of data, distances and the technical sophistication involved.

2.1.1 Early Wireless

Therefore wireless communication is a little more than a century old today. Within

these 100 years or so, wireless communication started out as a discrete-time digital

baseband system (the telegraph), however soon continuous-wave (CW) bandpass

systems became dominant because it provided a way to avoid interference with

other users, and also allowed continuous waveforms to be transmitted, audio being

the most important. The “killer application” for this new technology turned out

to be broadcast AM and FM radio, and later, television1.

In contrast to these early applications, the ALOHA network at the University

of Hawaii [7] represented the first implementation of a packet radio network with

a decentralized and flat architecture i.e. mobile stations directly communicating

with each other without the intervention of a Base Station. These ideas are

extremely important, because they formed the basis for the ARPAnet [8], that

has now grown to become the global Internet. For our purposes, this is especially

important, because DARPA, the US government agency behind the ARPAnet, was

encouraged by the success of the ARPAnet project to apply the same principles to

pioneer a new type of network called the Distributed Sensor Network (DSN) [9].

1From reports from that period, it is clear that broadcast radio was an unprecedented social
and cultural phenomenon, perhaps on a par with the Internet revolution of the 1990’s in terms
of its impact on society. According to an ad in Scientific American from 1922 [6]:

The air is full of wireless messages every hour of the day. . . . Famous people will
talk to you, sing for you, amuse you. You don’t have to buy a single ticket.

9



A DSN was conceived as a network of distributed, low-cost sensing nodes that

collaborate with each other but are largely autonomous.

2.1.2 Wireless Sensor Networks

The early research efforts from the DSN project, today provides the intellectual

foundation for research in sensor networks [9] but with some important modifi-

cations. Unlike the original conception of DSNs, wireless interconnection is now

considered a defining feature for sensor networks. The sensors are visualized as

miniature battery-driven computing devices; because of energy constraints, all

computing, storage/retrieval, and especially communication operations are con-

sidered expensive [10], [11]. The sensors are deployed in large numbers; even

though individual sensors are considered expendable, reliability is assured through

redundancy. Therefore scalability and robustness (to sensor failures) are consid-

ered essential features for a sensor network. We use the term Wireless Sensor

Network (WSN) to refer to a network with these characteristics.

The concept of a WSN as defined above motivates many interesting research

problems in communication theory as well as in other related areas such as dis-

tributed computing and control. Traditionally communication networks have been

designed with a focus on portability and rapid prototyping [12], using highly

suboptimal models such as the collision model for interference in multiple-access

channels. In recent years there have been a renewed effort to revisit these as-

sumptions using information theoretical insights. The WSN model has proved to

be well-suited for such theoretical inquiries, because in the idealized limit of large

networks, details such as the network topologies can be statistically modeled.

In an influential contribution [13], Gupta et al showed that per-user bandwidth
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in a non-hierarchical wireless network vanishes as network size increases i.e. flat

wireless networks do not scale. Using an information theoretic analysis, they

showed that as the network size increases2, the interference from other transmitters

also increases, leading to a decreasing per-node throughput. On the other hand,

other authors have shown [14] that if multiple nodes cooperate to control the

interference, the network becomes scalable. This can be interpreted as a form

of distributed beamforming, and its impact on scalability was investigated in

different contexts such as an ad-hoc network [15], and a relay network [16]. The

idea of controlled interference comes from the early work on the capacity of multi-

user channels (Section 2.3).

Separately, the idea of cooperative transmission [17] also emerged from the

space-time coding techniques designed for multi-antenna systems which we survey

next.

2.2 Antennas and Antenna-Arrays

From the early days of wireless, considerable effort has been spent on designing

efficient structures for radiating electromagnetic waves i.e. antennas. Since all

time-varying currents generate radiation, any arbitrary hunk of metal acts as an

antenna when driven by an appropriate voltage or current source [18]. However a

poorly designed antenna may dissipate most of the energy supplied to it as heat

(high internal resistance), and/or it may have a large reactive impedance, so that

high voltages are required to generate any appreciable amount of radiation (large

Q-factor). In addition, for point-to-point (as opposed to broadcast) applications,

2There are actually two different but related models that have been used in the literature on
network scaling; one model keeps the network area fixed while increasing the number of nodes
i.e. increasing density, while the other model keeps density constant with increasing area. Both
models are equivalent if an appropriate power-control mechanism is added.
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it is usually desirable to have high directivity3, so that the transmitted power

is focused in the direction of the receiver. These three properties i.e. internal

resistance, Q-factor4 and directivity are the most important figures of merit for

antennas.

It is also possible to view an antenna as a current distribution in a (3D) region

of space. In this view, the overall electromagnetic fields radiated by the antenna

can be considered as a superposition of the fields due to several infinitesimally

small current elements that together constitute the antenna. It is important to

note that electromagnetic influences also propagate within the antenna itself at

the speed of light; if the driving signal varies slowly, the signal variations propagate

themselves rapidly throughout the antenna, and the current distribution becomes

almost uniform. In other words, if the spatial dimensions of an antenna are small

compared to the wavelength of the signal, the current distribution is uniform

throughout and therefore essentially trivial.

Putting these observations together leads to the concept of an antenna array:

the radiation from any antenna can be emulated using a discrete grid of small

current elements separated by distances on the order of a wavelength. This is

analogous to replacing a bandlimited continuous-time signal by a sequence of its

samples. The classical Yagi-Uda antenna [19] can be considered as the earliest

example of an antenna array. However the term “antenna array” is usually re-

served for an array of identical, regularly spaced elements, each of which can be

independently driven by a voltage or current source (unlike in a Yagi antenna).

The greatest advantage of antenna arrays is their flexibility: by adjusting the

3We are mostly concerned with terrestrial-based communication, where (assuming the earth
is flat!) all transmitters and receivers are coplanar, therefore we are interested in directivity in
the azimuthal plane only, not in elevation.

4The Q-factor is also related to the bandwidth of the antenna, however our focus in this
dissertation is on narrowband applications, where by definition, this is not an important factor.
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gain and phase lag of the current in each element, a wide range of radiation

patterns can be obtained, and the transmission can be steered electronically in

any direction without physically moving any of its parts. Furthermore because the

individual elements of the antenna are identical, the current distribution can be

specified completely using only a discrete number of currents, one for each element;

this allows us to rewrite the EM field equations as a system of linear equations

of the element currents (the Method of Moments [18]) that can be efficiently

solved on digital computers. Antenna arrays became popular during World War

II, where they were used for radar applications. In the post-war period, they

became popular for radio-astronomy, and were also adapted for problems such as

Direction of Arrival estimation (DoA) and localization using acoustic signals [20].

Antenna arrays used for such applications are sometimes referred to as “smart

antennas” or “adaptive antenna arrays” [21].

2.2.1 Distributed Antenna Arrays

So far it is not clear that there is any connection between antenna arrays and

wireless networks, and indeed these subjects had little influence on each other

until recently. Nevertheless, even though they were not thought of as networks,

distributed arrays have been used in some applications for a long time. For in-

stance, the so-called Very Large Array (VLA) is an antenna array used for radio-

astronomy [22], that consists of 27 independent dish antennas each with a diameter

of about 25 m, with the whole array mounted on railroad tracks that allows them

to be deployed over a 23 mile distance. In essence, the array looks like a giant 23

mile wide antenna. This large aperture allows the array to achieve very high an-

gular resolutions (upto 0.05 arcseconds or 0.000014◦). Distributed acoustic arrays
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i.e. an array of microphones [20] have also been used for localization applications.

In all these applications, the distributed array acts as a receiver; it is possible to

store the received signals throughout the array for offline processing. As we shall

see later, using a distributed array for transmitting is much more difficult because

the array has to be coordinated in real-time.

A key breakthrough in the use of antenna arrays came in the form of multi-

input multi-output (MIMO) systems in the 1990’s. Unlike previous multi-antenna

applications, in MIMO, both transmitter and receiver are equipped with an multi-

element antenna array, which allows them to simultaneously communicate multiple

streams of data over the same frequency band. In essence there are multiple spatial

degrees of freedom in MIMO systems over the same frequency spectrum; this not

only increases the amount of data to be sent over the same bandwidth many

times [23], but also provides diversity gains against stochastic fading i.e. when

multiple spatial channels exist, the possibility of all of them simultaneously being

in a deep fade becomes small.

Simple orthogonal “space-time” codes were developed [24] to realize these di-

versity gains in MIMO systems. Multiple spatially distributed nodes with sin-

gle antennas could also achieve diversity gains by using the space-time coding

techniques cooperatively. Under certain conditions, the benefits from coopera-

tion were shown to outweigh the additional complexity involved in coordinating

transmissions between multiple nodes [17], [25]. These analyses did not address

synchronization issues in detail because they were based on the inherently base-

band models of multi-user information theory. However it is well-known that

carrier offsets cause some performance loss, and recent research [26] has focused

on estimating these offsets and designing the receiver to degrade gracefully. The

master-slave synchronization technique discussed in Chapter 3 offers an alterna-
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tive solution to eliminate these offsets at the transmitters. We briefly comment

on this possibility in Chapter 6.

2.2.2 MIMO Beamforming

Space-time diversity techniques exploit the statistical independence of the MIMO

spatial channels; if the transmitter knows the channel gains to the receiver, it is

possible to direct the transmissions from each antenna to minimize the interference

between the MIMO spatial channels [27]. This is a generalization of the idea of

beamsteering in phased-array antennas where the transmission is focused in a

desired direction in space using the known geometry of the array. In the presence

of multi-path fading, array geometry alone is no longer sufficient to determine

the channel gains to a receiver. The most straightforward solution in this case,

is to use training symbols to estimate the channel gains; this requires a feedback

mechanism for the receiver to send its estimates of the channel gains back to

the transmitter. This raises the important issue of the impact on capacity, of

imperfections in the feedback channel. Such imperfections can be modeled in

many different ways, such as quantized feedback where the channel information

is conveyed using only a finite number of bits, or statistical feedback where only

the fading averages such as the mean or covariance of the channel is known at

the transmitter. It has been shown [28], [29] that gains from beamforming are

substantial even with such limitations on channel knowledge. Similarly we find

that significant SNR gains can be realized from distributed beamforming even in

the presence of moderately large phase errors.

One ingenious method for channel estimation is to use the reciprocity property

of electromagnetic channels [30] to estimate the forward-link channel indirectly us-
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ing measurements on the reverse link and vice-versa. This requires that the same

frequency band is used for both forward and reverse links i.e. time-division du-

plexing, however the same concept has also been extended to wideband frequency-

division duplexed systems [31]. All of these techniques make it unnecessary to

know the geometry of the antenna array, and are therefore of particular value in

designing distributed arrays. We consider a reciprocity-based channel estimation

procedure in Chapter 3, and an iterative feedback-based procedure in Chapter 4.

2.3 Information Theory of Multi-user Channels

In 1948, Shannon published a landmark paper [32] introducing the new mathemat-

ical area of information theory. Before this time, communication system design

was mainly guided by intuition and rules of thumb and theory seriously lagged

behind engineering practice. One of Shannon’s subtler contributions was in his

model of a communication system, which is divided into a source (modeled as a

random process), a channel (a probabilistic medium) and a receiver (a decision

device) (see Fig. 2.1). Today this model is considered so obvious that it is taken

for granted. Very soon it was extended to other cases such as the multi-user [33]

and stochastic channels [34] which are highly relevant to wireless communication

systems with fading and interference.

Encoder Decoder
Channel
P(Y|X)

Estimate of
message

Received
signal, YSignal, Xmessage

Figure 2.1. Shannon’s model of a generic communication system.

The basic multi-user channel is illustrated in Fig. 2.2, and its relationship
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to Fig. 2.1 is clear. While this model yields elegant theoretical insights, many

objections can be raised against it. The main objection is that the above models

are not reasonable representations of real multi-user channels, the most important

one being the wireless channel. For instance, consider the Gaussian relay channel

[35] shown in Fig. 2.3. This channel has played a very important role in the

development of multi-user information theory. Its importance comes from the fact

that it combines all three of the fundamental modes of communication in networks:

direct transmission to receiver, multi-hop routing, and distributed coding.

The relay channel of Fig. 2.3 is fundamentally a baseband model, where the

received signal is a fixed linear combination of the transmitted baseband signals

from the source and the relay with additive noise as the only impairment. In fact

this particular multiple-access scheme can be considered as a distributed beam-

forming scheme. The capacity-achieving schemes for WSNs surveyed in Section

2.1.2 are simply extensions of this relay channel to the whole network.

Encoder 1

Decoder

Channel
P(Y|X1,X2)

Estimates of
messages X

1 
,X

2

Received
signal, Y

Signal, X
1

Message 1

Encoder 2
Signal, X

2
Message 2

Figure 2.2. Multiple-access communication channel.

Unfortunately in a real multiple-access wireless network, the presence of ad-

ditional inputs does not merely cause interference between the baseband signals,

it can also introduce memory and time-variations into the channel. As we shall

see later, the main source of these effects is the possibility of unsynchronized
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carrier signals and unknown phase offsets between the different inputs. As we

demonstrate in this dissertation, when carefully designed, however, a real wireless

network can be made to mimic the theoretical multiple-access channels of Figs.

2.2 and 2.3.

Encoder 1
Signal, X

1
Message 1

+ +

Relay

Encoder

Signal, X
2

Received signal

Noise 1 Noise 2

Figure 2.3. The Gaussian relay channel.

2.4 Recent Work

Following the pioneering work of [17], the idea of virtual antenna arrays and

distributed beamforming has been studied extensively in recent years [36]. Beam-

forming continues to be the basis for several studies in network information the-

ory [37], [38]. In [39], the statistics of the antenna pattern from a distributed

array is examined; in particular their characterization of the sidelobes of the an-

tenna pattern gives information about the interference from the distributed array,

and thus complements the work described in this dissertation (which focuses ex-

clusively on the mainlobe). A method of synchronization suitable for coherent

communication was described in [40], where each transmitter separately synchro-

nizes with the receiver so that it is phase aligned with all of the other transmitters.

This is similar to the so-called “closed-loop” synchronization described in [39], and
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can be considered as a special case of the master-slave synchronization presented

in Chapter 3.

On another note, our feedback procedure for beamsteering can be considered

as a distributed implementation of a stochastic approximation algorithm. This is

a well-known class of mathematical algorithms [41], where a randomized search

procedure is used to find the roots or extrema of a function that is difficult to

characterize analytically. This technique was first used by Robbins-Monro [42] in

1952, and has since been recognized as a powerful technique with applications in

many areas. In closely related work, a stochastic gradient algorithm was recently

proposed [43] for downlink beamforming from a cellular Base Station. Other au-

thors [44] have developed interesting variations on our algorithm for beamsteering

to optimize its performance under specific conditions.

19



Chapter 3

A Master-Slave Architecture for

Synchronization

We consider the communication system illustrated in Fig. 1.1, where a cluster of

energy-constrained wireless transmitter nodes communicating with a distant re-

ceiver. The main assumption is that local communication among the cooperating

transmitters is inexpensive compared to transmitting to the receiver.

In a traditional (centralized) multi-antenna transmitter, one way to perform

beamforming is by exploiting reciprocity to estimate the complex channel gains to

each antenna element. These channel gains are computed in a centralized manner

with reference to a RF carrier signal supplied by a local oscillator. However, in

a distributed setting, each transmitter has separate RF carrier signals supplied

by separate local oscillator circuits. These carrier signals are not synchronized a

priori. In the absence of carrier synchronization, it is not possible to estimate and

pre-compensate the channel phase responses so as to assure phase coherence of all

signals at the receiver. Accordingly, we consider a master-slave architecture, where

a designated master transmitter coordinates the calibration and synchronization
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of the carrier signals of the other slave transmitters, so that reciprocity can be

used to estimate the channel gains to the receiver.

In this way, the transmitters use cheap local communication between the mas-

ter and the slave transmitters to emulate a centralized antenna array, and to avoid

the need for coordinating with the distant receiver. In Chapter 4, we show that

by allowing a limited amount of coordination with the receiver in the form of 1-bit

SNR feedback, we can use an alternative method of beamsteering that eliminates

the need for explicit phase calibration and channel estimation, and is therefore

simpler to implement in practical networks. In this chapter, we consider the more

direct reciprocity-based method to gain insight into the synchronization process

and to characterize the achievable gains from beamforming.

The achievable SNR gains are primarily limited by the residual phase errors

from the synchronization process. We examine the different possible sources of

phase error in detail. We observe that phase noise in practical oscillators causes

them to drift out of synchronization, therefore, it is necessary for the master trans-

mitter to resynchronize the slaves periodically. This, combined with the duplexing

constraints of the wireless channel (i.e. it is not possible to transmit and receive

on the same frequency simultaneously), reveals a fundamental tradeoff between

synchronization overhead and beamforming gain. We quantify this tradeoff using

a stochastic model for the internal phase noise of oscillators.

To get an idea about the effect of phase errors, consider the simple example of

two equal amplitude signals from two transmitters combining at the receiver with

relative phase error of δ. The resulting signal amplitude is given by
∣

∣1 + ejδ
∣

∣ =

2 cos
(

δ
2

)

. Even a significant phase error of δ = 30◦ gives a signal amplitude of

1.93, which is 96% of the maximum possible amplitude of 2.0 corresponding to

the zero phase error case. More generally, we show that it is possible to achieve
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SNR of up to 70% of the maximum with moderately large phase errors on the

order of 60◦.

3.1 Analysis of Beamforming Gain

We consider a cluster of N transmitters, communicating a common (baseband)

message signal m(t) to a distant receiver,

We start by assuming that all of the transmitters modulate a common mes-

sage signal m(t), with a carrier signal at frequency fc. Each transmitter derives

its carrier signal from a separate local oscillator, therefore, the carrier signals of

the different transmitters are not initially synchronized to each other. Therefore,

an explicit synchronization process is necessary to get carrier signals at frequency

fc. Before we present our algorithm for carrier synchronization, we show using

a simple analysis that beamforming gains are robust to moderately large phase

errors. For this section we assume that the synchronization algorithm allows

each transmitter to obtain synchronized carrier signals at frequency fc and an

estimate of their own channel gain to the receiver. Using this the transmitters

can cooperatively transmit the message m(t) by beamforming, just like a central-

ized antenna array. The resulting received signal r(t) is the superposition of the

channel-attenuated transmissions of all the transmitters and additive noise n(t):

r(t) = ℜ
(

m(t)ej2πfct
∑

i

∣

∣gihi
∣

∣ejφi(t)
)

+ n(t) (3.1)

where gi is the pre-amplification and φi(t) is the cumulative phase error from

the synchronization process for slave i. Under a constraint on the total transmit

power, the optimum |gi| ≡ |hi|.

The phase errors have two effects on the received signal: a reduction in the
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average SNR, and a time-dependent fluctuation of the received phase. The lat-

ter effect may cause limitations in the coherent demodulation of digital signals.

However, there are several methods, e.g. differential modulation, available to deal

with these fluctuations provided the time-variations are not too rapid. We concen-

trate on the first effect i.e. the reduction in average SNR. This is appropriate for

power-limited sensor networks, where the feasible communication range is limited

by SNR. For simplicity of notation, we suppress the time-dependence of φi(t) in

this section.

We model the channel coefficients hi, i = 1...N , as independent circularly

symmetric complex normal random variables with zero mean and unit variance,

as denoted by hi ∼ CN(0, 1). This can be considered as an extreme case of a

non-LoS multipath wireless channel. We also assume that the phase errors φi are

independent and identically distributed random variables for all the transmitters

i.

Equation (3.1) motivates as our figure of merit, the beamforming gain defined

as the normalized received power PR, given that the total transmit power is PT =

1:

PR =
1

N

∥

∥

∥

∥

∥

N
∑

i=1

∣

∣hi
∣

∣

2
ejφi

∥

∥

∥

∥

∥

2

(3.2)

Proposition 1: 1
N
PR →

(

βφ
)2

a.s. as N → ∞, where βφ = E[cosφi] and a.s.

denotes almost sure convergence. In other words, when the total transmit power

is kept a constant, the received signal power increases linearly with N as N → ∞.

Note that when there are no phase errors, i.e. fφ(φi) = δ(0), then 1
N
PR →

1 a.s.

Proposition 2: For finite N , E[PR] = 1+(N − 1)
(

βφ
)2

. Thus, even for finite
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N , the expected value of the received signal power increases linearly with N . (βφ

is defined as in Proposition 1, i.e. βφ = E[cosφi].)

In the absence of phase errors, Proposition 2 gives that E[PR] = N .

Proposition 3: When N is large enough for the central limit theorem to

apply,

PR ≈ X2
c +X2

s (3.3)

where Xc ∼ N(mc, σ
2
c ), Xs ∼ N(0, σ2

s), and the parameters mc, σ
2
c , and σ2

s , are

given as follows:

mc =
√
NE[cos(φi)]

σ2
c = 2E[cos2(φi)] − E[cos(φi)]

2

σ2
s = 2E[sin2(φi)] (3.4)

The variance of the received signal power is then

Var[PR] = 4σ2
cm

2
c + 2σ4

c + 2σ4
s (3.5)

which increases linearly with N .

When there are no phase errors, (3.5) reduces to Var[PR] = 4N .

(Refer to Appendix A for a proof of these results.)

Proposition 2 implies that as long as the distribution of phase errors is such

that βφ ≡ E
(

cosφi
)

is close to 1, large gains can still be realized using distributed

beamforming.

We now present some numerical results comparing the above analytical model

with Monte-Carlo simulations performed using SIMULINK. We assume that the
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transmitters transmit a binary pulse train modulated by BPSK, with a bit-rate

small compared to the carrier frequency:

m(t) =
∑

k

p(t− kT )sk (3.6)

where {sk} is the BPSK symbol stream, and p(t) is the transmitted pulse. The

average power of the pulse p(t), t = 0..T is normalized to 1
N

and E[|sk|2] = 1 so

that the total power transmitted by all the transmitters is PT = 1. Further we

assume that the phases φi are distributed uniformly in the range (−∆π,∆π).

Fig. 3.1(a) shows the variation of average beamforming gain normalized to the

maximum possible: i.e. E(PR)
N

against the phase error parameter ∆. We find that

beamforming gains of more than 70% of the maximum are possible with phase

errors as large as of 60◦. In other words, the term βφ decreases very slowly with

the parameter ∆, which leads to the key conclusion that the beamforming gains

are robust to moderately large phase errors.

While Fig. 3.1(a) shows the average beamforming gain, the actual beamform-

ing gain is a random variable. We now look at the variation of the SNR with the

phase errors uniformly distributed as above. Histograms of PR, calculated using

the Normal approximations as in Proposition 3, are shown in Fig. 3.1(b) where

∆ = 0.1 and N = 10 : 10 : 40.

The histograms in Fig. 3.1(b) show increased averaging for larger numbers of

transmitters. This is expressed quantitatively in Proposition 3, which shows that

while the mean of PR is proportional to N , the standard deviation is proportional

to
√
N i.e. the fractional deviation

√
Var(PR)

E[PR]
decreases with increasing N . This

means that the probability of an outage event e.g. where the received SNR is

smaller than 70% of its mean, decreases with increasing N , showing that beam-

forming has the effect of mitigating fading. This is true for perfect and imperfect
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Figure 3.1. Variation of beamforming gain with number of transmitters.

synchronization. Of course, the existence of phase errors can only increase the

variance over that of an ideal, error free system.

3.2 A Protocol for Synchronization

In this section, we present a protocol for achieving carrier phase synchronization

based on a master-slave architecture. This is a multi-step process, and each step

contributes to the overall phase error φi(t) that limits the beamforming gain. We

now look at each step of the synchronization in detail.

The idea behind the protocol is illustrated in Fig. 3.2. The master transmitter

has a local oscillator which generates a sinusoid c0(t):

c0(t) = ℜ
(

c̃0(t)
)

, where c̃0(t) = ej(2πfct+γ0) (3.7)

that serves as the reference signal for the network. The master transmitter broad-

casts c0(t) to all the slaves. Consistent with the assumption of inexpensive local

communication, we ignore the receiver noise in this channel. After reception and
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Figure 3.2. Master-Slave architecture for carrier synchronization.

amplification, the slave transmitter i receives the signal broadcast by the master

as:

ci,0(t) = ℜ
(

c̃i,0(t)
)

, where c̃i,0(t) = Ai,0e
j(2πfct+γ0−γi) (3.8)

where γi is the phase shift between the master and slave. Ai,0 is the amplitude of

the received signal, its precise value is unimportant to the phase synchronization

process (as the PLL is only sensitive to its phase). We set the term Ai,0 to unity,

and the constant γ0 to zero for simplicity.

The transmitter i uses this signal ci,0(t) from (3.8) as input to a second-order

phase locked-loop, driven by a VCO with a quiescent frequency close to fc. From

PLL theory [45], we can show that the steady-state phase error between VCO

output and ci,0(t) is zero, and therefore, the steady-state VCO output can be

used as a carrier signal consistent across all transmitters - provided that the offset

γi can be corrected for.
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The phase offset γi is the total phase shift between the master transmitters’

reference oscillator signal c0(t), and the input signal at the slave transmitters’

PLL to which the slave VCO is synchronized in steady-state. One contribution

to γi is from the phase response of the RF amplifiers at the master and slave

transmitter. These offsets are fixed and precisely known, and therefore, can be

corrected for. However, the propagation delay of the wireless channel between

master and slave also contributes to γi. This contribution can be characterized

by an effective channel length di as γi = 2πfcdi

c
.

Unfortunately, for the high-frequency RF carriers typical of wireless networks,

even a small uncertainty in channel length di causes substantial phase uncertainty

e.g. at fc = 1.0 GHz, the wavelength of the transmission is 30 cm, and an un-

certainty of 15 cm in the channel length causes an uncertainty of 180◦ in γi. If

left uncorrected this is disastrous for distributed beamforming, because a 180◦

offset would change constructive interference between transmitters into destruc-

tive interference. In centralized antenna arrays, the array elements are arranged

in a known geometry, and therefore, the offset for each element can be precisely

computed. This is not a reasonable assumption for ad-hoc and sensor networks

considered in this dissertation. Thus it is necessary to develop methods to explic-

itly measure and correct for this unknown offset. Fortunately, if the transmitters

are not moving relative to each other, this offset stays roughly constant for sig-

nificant time intervals, and therefore, frequent recalibration is not required. In

Section 3.2.1, we describe a protocol for performing this calibration, based on

each slave transmitter transmitting their frequency-locked carrier signal ci,0(t)

back to the master transmitter. We now sketch the process of channel estimation,

and the algorithm for distributed beamforming assuming that slave i has an esti-

mate γ̂i = γi +φei of its phase offset, where φei is the estimation error in the phase
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calibration. Slave i then has the calibrated carrier signal ci(t), which it uses to

perform channel estimation and beamforming:

ci(t) = ℜ
(

c̃i(t)
)

where c̃i(t) = c̃i,0(t)e
jγ̂i

= ej2πfct+jφe
i (3.9)

So far the synchronization process has been coordinated within the network

by the master transmitter without requiring any interaction with the receiver. In

order for the transmitters to beamform towards the receiver, some information

about the direction of the receiver, or more precisely the channel response to the

receiver is required. Using channel reciprocity allows us to achieve this with only

a minimum interaction with the receiver. Specifically the receiver broadcasts an

unmodulated carrier signal g(t):

g(t) = ℜ(g̃(t)) = ℜ
(

ej2πfc,0t+φ0
)

(3.10)

Each transmitter independently demodulates its received signal gi(t) = ℜ
(

hig̃(t)
)

using ci(t) to obtain an estimate ĥi of its own complex channel gain hi to the

receiver (for a narrowband message signal, the linear time-invariant channel to

receiver is represented as a scalar complex gain). More precisely, the channel

estimate ĥi is obtained by the transmitter i by demodulating the received carrier

signal gi(t) using ci(t), and sampling the result at some fixed time th. Note that

while the transmitter nodes have a mutually consistent carrier signal, the receiver’s

carrier has not been explicitly synchronized to the master transmitter’s reference

carrier, and therefore, would not be at the same frequency as the transmitters.

Letting fc,0 = fc + ∆f we have:

ĥi = hi· ej(φ0−φe
i +φh) (3.11)
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where φh = 2π∆f th. We observe that the term φ0 is just a constant scaling

term and adds no relative phase errors between transmitters. Similarly the term

φh adds no relative phase error so long as the sampling term th is identical for

all transmitters. If the sampling times are off due to timing errors τi, we get an

effective phase noise: φhi = 2π∆fτi. Therefore, we rewrite (3.11) as:

ĥi = C·hi· ej(−φ
e
i +φ

h
i ) (3.12)

where C is a (complex) scaling constant that has no impact on the beamforming

process. For simplicity, we take C = 1.
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Figure 3.3. The Time-Division Duplexing constraint.

The transmitters now use the synchronized carrier signal ci(t), and the channel

estimate ĥi to modulate the message signal for beamforming. The slave transmit-

ters obtain their carrier signal from the VCO that is synchronized to the reference

signal from the master transmitter, however, it is not possible for the slave trans-

mitters to receive a synchronization signal from the master transmitter, while they

30



are transmitting. Therefore, the VCOs of the slave transmitters need to operate

in an open-loop mode (shown as switch position S2 in Fig. 3.4), while the slave

transmitters are transmitting. While in the open-loop mode, the slave’s carrier

signals obtained from the VCO undergoes uncompensated phase drift because

of internal oscillator noise, and over time, the different slave carriers drift out of

phase. This motivates the time-division duplexed mode of operation shown in Fig.

3.3, where the master transmitter periodically transmits a reference carrier signal

to resynchronize the slave carriers, to keep the total phase error bounded. The

phase noise can be considered as a cyclostationary random process with period

T = T1 + T2, and we analyze it in detail in Section 3.3. The noisy carrier signal

used by the slave transmitter i for modulation can be written as:

coi (t) = ℜ
(

c̃oi (t)
)

where c̃oi (t) = c̃i(t)e
jφd

i (t)

= ej2πfct+jφe
i +jφ

d
i (t) (3.13)

φdi (t) represents the uncompensated VCO drift when slave i is transmitting. Af-

ter modulation by the carrier signal coi (t), slave transmitter i applies a complex

amplification ĥ∗i to compensate for the channel, and transmits the signal:

si(t) = ℜ
(

s̃i(t)
)

where s̃i(t) = ĥ∗im(t)c̃oi (t) (3.14)

The received signal at the receiver is then given by:

r(t) = ℜ
(

∑

i

his̃i(t) + n(t)
)

= ℜ
(

m(t)
∑

i

hiĥ
∗
i c̃
o
i (t)

)

= ℜ
(

m(t)
∑

i

∣

∣hi
∣

∣

2
ej2πfct−jφh

i +j2φe
i +jφ

d
i (t)

)

(3.15)
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Comparing (3.15) with (3.1), we have for the total carrier phase error

φi(t) = −φhi + 2φei + φdi (t) (3.16)

Equation (3.16) shows the different contributions to the total phase error in the

received signal at the receiver. In Section 3.3 we look at the phase error in de-

tail; we argue that the dominant component is the drift term φdi (t), and show

quantitatively how it affects the total beamforming gains.

3.2.1 Closed-Loop Method for Carrier Phase Calibration

In this section, we propose a flexible method for carrier phase calibration, where

the master transmitter measures the round-trip phase offset, and uses it to esti-

mate the unknown phase offset γi from (3.8) for each slave, assuming symmetry in

the forward and reverse channels to the slave nodes. The flexibility of this method

comes at the price of complexity, and the necessity of synchronizing each of the

slaves individually. However, the calibration process has to be repeated only when

the RF channel between the master and slave transmitter changes, therefore, the

overhead from this process is small.

Remark: In the ideal case where the relative positions of the master and slave

transmitters as well as any multi-path scatterers do not change, the calibration

process has to be performed only once (at startup time). In practice, wireless

channels are not perfectly static: mobile scatterers and physical changes in the

medium may change the channel phase response even when the transmitters are

stationary. Therefore, it makes sense to recalibrate the slave transmitters period-

ically to track the channel changes. Fortunately, the channel variations are slow

compared to the channel transmission times, and the robustness benefits of this

periodic recalibration (e.g. every 100 seconds) outweigh the small extra overhead.
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Figure 3.4. Round-trip phase calibration.

Fig. 3.4 illustrates the process of round-trip phase offset estimation. The basic

idea is for the slave transmitter i to transmit back to the master transmitter the

(uncompensated) VCO signal ci,0(t) represented in (3.8). The symmetry of the

forward and reverse master-slave channels imply that the signal ci,1 at the master

transmitter can be written as:

ci,1(t) = Ai,1· ℜ
(

ej(2πflt+γ0−2γi)
)

(3.17)

where Ai,1 is the received signal amplitude at the master transmitter (Ai,1 is equal

to Ai,0 by symmetry, but the actual value is not relevant to the phase noise,

therefore, Ai,1 is set to unity for the discussion). Estimating the phase difference

between ci,1(t) from (3.17) and c0(t) from (3.7) gives:

∆φi =
(

2γimod 2π
)

(3.18)
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Given a measured value of ∆φ, we have the estimated value of the offset γi:

γ̂i =
∆φ

2
(3.19)

Remark: There is one subtlety that needs to be noted here: the round-trip

measurement of phase offset as in (3.19) leaves a 180◦ ambiguity in γi. In other

words, by measuring ∆φi we cannot distinguish between γi and γi + 180◦. While

it is possible to resolve this ambiguity by exchanging another set of messages

between master and slave i, it turns out that a 180◦ phase difference does not

affect the beamforming process. The reason is that the same carrier ci(t) is used

by slave i for both channel estimation and distributed beamforming, and as (3.16)

shows, the two ambiguities cancel each other.

3.2.2 Discussion

The time-division duplexing requirement for the master-slave link is the most

important constraint of the synchronization protocol of Section 3.2. Other au-

thors [46] have considered using two frequencies to avoid this problem, with one

frequency f1 reserved for the master-slave link and the slave transmitters beam-

forming to the receiver on a completely different frequency f2. In such schemes,

the slave transmitters use a frequency dividing PLL to obtain a carrier signal at

frequency f2 as f2 = m
n
f1, where m and n are integers. Under this scheme the

slave PLLs do not need to be open-loop while transmitting, therefore, an inter-

esting question is whether such a frequency division duplexed (FDD) architecture

can eliminate the problem of uncompensated carrier drift.

Unfortunately, the frequency divider introduces a phase ambiguity of integer

multiples of 2π
n

in the derived carrier signal. While it may appear that a constant

phase ambiguity can be estimated and corrected for in a one-time calibration
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process, closer analysis shows that such phase ambiguities may also occur during

the dynamical operation of the PLL, e.g. due to cycle slips [45]. Therefore,

periodic recalibration is still necessary even with a FDD architecture, and we

conjecture that a fundamental tradeoff between the synchronization overhead and

the achievable beamforming gain still applies in this case. One specific form of

this tradeoff in a FDD synchronization scheme is examined in Chapter 5.

3.3 Analysis of Phase Error

So far, we have described a protocol for carrier synchronization and beamforming,

while enumerating the different sources of phase errors φei , φ
h
i and φdi (t). Of the

three different sources of error, φei and φhi are constant calibration errors, whereas

φdi (t) is a time-varying noise term that arises from oscillator drift. Theoretically,

we could perform carrier phase calibration and channel estimation several times

independently and reduce the error terms φei and φhi to arbitrarily small levels.

However, the drift term φdi (t) represents an irreducible phase error. Therefore,

we consider this as the dominant cause of performance degradation and we now

develop a stochastic model to characterize it.

The previous discussion in Section 3.2 motivated the time-division duplexed

(TDD) mode of operation as shown in Fig. 3.3, where the slave transmitters

alternate between sync and transmit timeslots. The timeslots T1 where the slave

transmitter synchronize to the master is a synchronization overhead, therefore, it is

desirable to keep it small relative to the useful timeslots T2. T1 is determined by the

settling time of the slave PLL, and T2 is determined by the maximum admissible

phase error, and the statistics of oscillator phase noise. By tolerating larger phase

error, we are able to make T2 higher and thereby reduce the synchronization
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overhead. We show in Section 3.1 that the SNR gains from beamforming are

robust to moderately large phase errors. In the remainder of this section, we offer

a quantitative analysis of this tradeoff using a stochastic model for oscillator phase

noise.

Consider the PLL of the slave transmitter as shown in Fig. 3.4. We use a loop-

filter with one pole to obtain a second-order PLL with the closed-loop transfer

function [45]:

H(s) =
s2

s2 + 2ξωns+ ω2
n

(3.20)

where ωn is the natural frequency and ξ is the damping ratio of the loop. By

standard PLL theory, the steady state phase error of a second-order PLL is zero,

and if we require a 90◦ phase margin, then we need a damping ratio of at least

ξ = 1.0, and the settling time (defined as the time required for the phase error

to decrease to less than a given small fraction, say ρ = 1% of the initial error)

is Ts ≈ 4
ωn

. Since the synchronization timeslot T1 ≥ Ts, in order to minimize

overhead we want to make Ts as small as possible. However, we observe that

the loop has a low-pass frequency response with approximate bandwidth of ωn,

therefore, increasing ωn also increases the phase noise. At the end of the sync

timeslot, the loop-filter output is sampled and the VCO input is held to this value

for the duration of the transmit timeslot. The phase error process in the transmit

timeslot determines the achievable beamforming gain.

3.3.1 PLL Phase Noise as a Stochastic Process

In order to study this more quantitatively, we assume that the PLL input signal

from the master transmitter (in the synchronization timeslot) is noiseless, and the

only source of phase error is internal phase noise φdi (t) in the slave transmitters’
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local oscillator signal:

ci(t) = ℜ
(

ej2πfct+jφd
i (t)

)

(3.21)

(We also assume that the PLL phase drift is always small enough to allow the use

of a linearized model.)

The traditional way to measure phase noise is by specifying its root-mean

squared frequency deviation and Allan variance [45]. However, these measures

are most useful if the noise process is stationary in time. In our case the drift

process φdi (t) is not stationary; in the transmit timeslot, the dominant phase noise

contribution is from a random residual frequency offset that causes the phase error

to increase linearly in time until the next sync timeslot (see Fig. 3.5). Therefore,

the statistics are more appropriately modeled as cyclostationary with the period

T = T1 + T2. We use a more fundamental approach to model this process.

Figure 3.5. Simulation of oscillator phase drift.

In our model, the phase error in the oscillator in closed-loop (i.e. in the sync

timeslot) consists of two components: a decaying transient of the initial phase
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offset, and a phase noise internal to the oscillator. The phase error in the free-

running oscillator (i.e. in the transmit timeslot) has those two components and an

additonal linear phase drift. The linear drift arises because the VCO frequency

set by the sample-and-hold (see Fig. 3.4) may have a small but non-zero offset

from the reference frequency fl. The oscillator internal phase noise is modeled

as a wideband (white) Gaussian noise process with spectral density Np. While

phase noise in practical oscillators may also have other types of spectral densities

e.g. flicker noise and random-walk noise, white Gaussian phase noise represents

a worst case in terms of large instantaneous frequency deviations, because of the

power in the high frequencies. Let Np be the normalized spectral density defined

such that the total power of the phase noise is Npωn. In other words, a white

Gaussian phase noise with spectral density Np will have the same power in a

system of bandwidth ωn as the oscillator’s total internal phase noise.

Since the phase error process φdi (t) is a zero-mean Gaussian process at all

times, therefore, we characterize its statistics by computing its variance at the

key time instants labelled A, B and C in Fig. 3.3. Let the random phase values

at these instants be denoted as φA, φB and φC , and their standard deviations as

σA, σB and σC respectively. By the cyclostationarity of φdi (t), we have σC ≡ σA.

Using the linearity of the PLL’s phase response, we can write the phase at time B

as the superposition of the deterministic decay of the initial error φA, to a small

fraction ρ of its starting value (e.g. ρ = 1%), and a noise term:

φB = ρφA + ψ1 (3.22)

φB is small by design, and its variance can be written as:

σ2
B = ρ2σ2

A +Npωn (3.23)

In addition to the small phase error, at time instant B, the VCO input is sampled
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to set the VCO frequency for the transmit timeslot. The sampled value has a

random offset ∆f from the reference carrier frequency, and this offset consists of

a transient term and a noise term:

∆f = ρωnφA + ωnψ3

Therefore σ2
f = ρ2ω2

nσ
2
A + ω3

nNp (3.24)

We have for the evolution of the phase between time instants B and C:

φC = ∆f T2 + φB + ψ2 (3.25)

Of the three terms in (3.25), the frequency offset is the dominant term because it

causes a phase drift that grows with time. The phase φB is small by design, and

ψ2 represents a stationary term, and we can safely neglect both terms compared

to the linear drift. This is also illustrated in the simulation shown in Fig. 3.5.

Thus we have:

σ2
C ≡ σ2

A = σ2
fT

2
2 (3.26)

Combining (3.24), (3.23) and (3.26), we get:

σ2
A =

Npω
3
nT

2
2

1 − ρ2ω2
nT

2
2

(3.27)

Fig. 3.5 shows a simulation of the phase error over time with T1 = 150µsec,

T2 = 0.85 ms, ωn = 100 kHz, ρ = 1% and Np = 7 × 10−11Hz−1 or −101 dBc/Hz.

The VCO in this simulation has a quiescent frequency that is 1 kHz offset from

the reference carrier signal. The spectral density of phase noise is chosen conserva-

tively compared to typical numbers reported e.g. −110 dBc/Hz in [47]. For these

numbers, we get σA ≈ 24◦ from (3.27). Since the phase error is a Gaussian variable

with standard deviation smaller than 24◦ at all times, βφ = E(cosφi) ≥ 0.91, and

by Proposition 1, we can see that average beamforming gains of at least 91% are
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achievable. This is an average number and occasionally, phase errors larger than

this can occur as seen in Fig. 3.5, where phase error becomes almost 35◦ at one

point. Even with this large phase error, the resulting beamforming gain is 81%

of the maximum. This confirms the results of Section 3.1, that beamforming gain

is robust to phase errors and demonstrates the basic feasibility of the distributed

beamforming algorithm.

3.3.2 Cramer-Rao Bounds for Synchronization Error

So far in this analysis we have limited ourselves arbitrarily to a second-order PLL

because it is the most commonly used device in practice. However, we can also

derive fundamental limits on the size of the frequency and phase offsets, by viewing

the PLL as a frequency and phase estimator. The PLL uses the (noisy) oscillator

signal in the sync timeslot to form estimates f̂l and φ̂. It uses the estimate φ̂ to

drive the phase difference with the PLL input to zero, and f̂l to tune the VCO’s

input to the frequency of the reference, and the sample-and-hold element keeps

the VCO tuned to that estimate in the transmit timeslot. The Cramer-Rao lower

bound for the variance of these offsets has been computed in previous work on

frequency estimation [48]:

σ̂2
f
.
= Var(f̂l) =

3Np

π2T 3
1

σ̂2
φ
.
= Var(φ̂) =

2Np

T1

(3.28)

Using the same values used in Fig. 3.5, we find σ̂f = 2.5 Hz, and σ̂φ ≪ 1◦.

Since σ̂f is substantially smaller than the PLL’s root-mean squared frequency

offset σf = 418 Hz, we conclude that there is significant suboptimality in using an

analog PLL. Thus, performance can be further improved by using optimal digital

processing.
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Chapter 4

A Feedback Control Algorithm for

Beamsteering

In this chapter, we present a simple iterative procedure, based on feedback from

the receiver, for achieving phase coherence, and show that this procedure provides

a powerful method to satisfy the requirements for distributed beamforming. The

basic idea is as follows. Each transmitter adjusts its phase randomly at each

iteration, with the receiver broadcasting one bit of feedback per iteration as to

whether its SNR is better or worse than before. If it is better, the transmitters keep

the previous phase perturbation, and if it is worse, they undo the previous phase

perturbation. This randomized ascent procedure is repeated until the transmitters

converge to phase coherence.

This feedback-based approach presupposes carrier frequency synchronization

i.e. all transmitters are assumed to modulate their transmissions with RF carriers

at the same frequency. This can be achieved using a master-slave synchroniza-

tion process similar to Section 3.2. However the feedback scheme automatically

compensates for unknown transmitter phase offsets as well as unknown channel
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gains, thereby obviating the need for explicit calibration and channel estimation

procedures. This makes it substantially less complex than the reciprocity-based

scheme of Chapter 3, and therefore easier to implement in practice. Any imperfec-

tions in the carrier synchronization process have an effect on the performance of

the beamforming procedure. We postpone considerations of the synchronization

process, as well as other impairments such as noise and channel time-variations to

Chapter 5. In this chapter, we focus on gaining an understanding of the properties

of the feedback algorithm under ideal conditions of frequency-synchronized carrier

signals, constant channel gains and transmitter phase offsets, and error-free SNR

estimation and feedback.

As shown in Fig. 4.1, we consider a system of N transmitters transmitting a

RF carrier signal at frequency fc modulated by a common narrowband message

signal m(t) to the receiver. Therefore the baseband signal of transmitter i can be

written as si(t) = Aejθim(t). Our goal is to adjust the complex gains Aejθi at the

transmitters so as to achieve phase coherence at the receiver; we normalize the

power constraint by setting A = 1.

The RF carrier signals of all the transmitters are frequency synchronized by

assumption, however they still have unknown phase offsets between them, e.g.

because of unknown propagation delays in the master-slave channels. The effect

of these phase offsets is that the phase of the baseband signal transmitted from

transmitter i gets rotated by an unknown amount γi.

We denote the complex channel gain of transmitter i to the receiver as hi =

aie
jψi , where ai ≥ 0 represents the attenuation and ψi the phase response of the

wireless channel. The received signal at the receiver is just a superposition of the

signal received from each transmitter. The received signal due to transmitter i is

given by si(t) e
jγi hi = aie

j(θi+γi+ψi) m(t). We ignore distortions in the message
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Figure 4.1. Beamsteering using receiver feedback.

due to small timing mismatches1 between the transmitters, which allows us to

ignore the presence of the message in what follows.

The net complex gain at the receiver is therefore given by

Y =
N

∑

i=1

aie
j(θi+γi+ψi) =

N
∑

i=1

aie
jΦi (4.1)

where Y ≥ 0 is the amplitude, or received signal strength (RSS), and Φi = θi +

γi + ψi is the phase at the receiver corresponding to the signal from transmitter

i. Note that the RSS only depends on the unknown γi and ψi through the sum

γi+ψi; nevertheless we write them separately to emphasize their different physical

origins.

Our objective is to adapt the transmitter phases {θi} so as to maximize Y .

1Note that this requirement of time synchronization is unrelated to the phase synchronization
required for beamforming; timing errors cause some ISI and message signal distortion, but do
not affect the beamforming gain.
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This happens if the received carrier phases Φi are all equal:

Y =
∣

∣

N
∑

i=1

aie
jΦi

∣

∣ ≤ Yopt ≡
(

N
∑

i=1

ai
)

, with equality if and only if Φi = Φj (4.2)

The purpose of the feedback control algorithm is to allow transmitter i to dynam-

ically compute the optimal value of θi in (4.2), without requiring knowledge of

either ψi or γi.

4.1 Description of Algorithm

The adaptation is performed in time-slotted fashion, with each transmitter adapt-

ing its phase in a time slot in response to feedback from the receiver. Such coarse

time synchronization can be achieved by using the timing of the feedback broad-

cast by the receiver, assuming that the spread of propagation delays between the

receiver and the transmitters is small compared to the time slot duration. At the

beginning of slot n, let θi[n] denote the best known carrier phase at transmitter i.

At each time-slot n, each transmitter i applies a random phase perturbation δi[n]

to θi[n] in order to probe for a potentially better phase. The transmitted probe

phase in slot n is then given by

θ
(p)
i [n] = θi[n] + δi[n]

where δi[n] is a random phase perturbation. The corresponding RSS Y [n] =
∣

∣

∑

i aie
jΦi[n]

∣

∣, where Φi[n] = θ
(p)
i [n] + γi + ψi. The receiver measures Y [n], and

broadcasts one bit of feedback indicating whether Y [n] is bigger or smaller than

its record of the highest observed signal strength so far, which we denote by

Ybest[n] = max
k≤n

Y [k]
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If the feedback from the receiver indicates an improvement in RSS, then the

transmitters keep their random phase perturbations, otherwise they undo their

perturbations. Thus, the best known phases at the transmitters are updated as

follows:

θi[n+ 1] =















θi[n] + δi[n] Y [n] > Ybest[n]

θi[n] otherwise.

(4.3)

Simultaneously, the receiver also updates its record of the highest RSS so far as

follows:

Ybest[n+ 1] = max
(

Ybest[n], Y [n]
)

(4.4)

The preceding procedure is repeated over multiple time slots. Equations (4.3)

and (4.4) ensure that we retain phase perturbations that increase RSS, while dis-

carding unfavorable ones. This distributed ascent procedure eventually converges

to a set of transmit phases that satisfy (4.2), and achieve distributed beamforming.

Fig. 4.2 shows the convergence to beamforming with N = 10 transmitters.
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Figure 4.2. Convergence of feedback control algorithm.

The random perturbation δi[n] is chosen independently across transmitters

from a probability distribution δi[n] ∼ gn(δi), where the density function gn(δi)
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is a parameter of the protocol. We show in Section 4.2 that the behavior of the

algorithm is well-characterized by the variance of the distribution gn(δi) and de-

pends only weakly on the actual distribution. The two-point distribution Pr(δi =

±δ0) = 0.5 permits a particularly simple baseband implementation of the phase

shifts [4], and is therefore of great practical interest. In general, the distribution

gn(δi) can be adapted dynamically in time e.g. through the parameter δ0 for the

two-point distribution.

It follows from (4.3) that if the algorithm were to be terminated at time-slot

n, the best achievable signal strength using the feedback information received so

far, is equal to Ybest[n], which corresponds to transmitter i transmitting with the

phase θi[n].

Ybest[n] ≡
∣

∣

∑

i

aie
Φi[n]

∣

∣where Φi[n] = θi[n] + γi + ψi (4.5)

4.1.1 Asymptotic Coherence

We now show that the feedback control protocol outlined in Section 4.1 asymptot-

ically achieves phase coherence for any initial values of the phases Φi. We define

some notation first.

Let Φ̄ denote the vector of the received phase angles Φi. We define the function

RSS(Φ̄) to be the received signal strength corresponding to received phase Φ̄:

RSS(Φ̄)
.
=

∣

∣

∑

i

aie
jΦi

∣

∣ (4.6)

Phase coherence means Φi = Φj = Φconst, where Φconst is an arbitrary phase

constant. In order to remove this ambiguity2, it is convenient to work with the

2This is a form of degeneracy that can be eliminated by a slight modification of the feedback
algorithm. Under this modification one previously designated transmitter acts as a reference and
does not make any phase adjustments; this forces other transmitters to synchronize themselves

46



rotated phase values

φi = Φi − Φ0 (4.7)

where Φ0 is a constant chosen such that the phase of the total received signal is

zero. This is just a convenient shift of the receiver’s phase reference and as (4.6)

shows, such a shift has no impact on the received signal strength, i.e. RSS(φ̄) ≡

RSS(Φ̄).

We interpret the feedback control algorithm as a discrete-time vector random

process φ̄[n] where φ̄[n] is a N -dimensional vector of phases φi[n] constrained by

the condition that the total phase of the received signal is zero as defined in (4.7).

This random process is a Markov process because the phase perturbations δ̄[n] are

chosen independently at each time-slot n. However we will not need the Markov

property, and therefore the following results are valid even when the δ̄[n] are not

independent across time-slots.

Let Ω be the sample space and let F1 ⊂ F2 ⊂ . . . be a sequence of σ-algebras,

such that Fn includes all the events upto time-slot n i.e. all events of the form

{ω : ω ∈ Ω, δ̄1 ∈ A1, δ̄2 ∈ A2, . . . δ̄n ∈ An}, where Ai ⊂ (−π, π]. The probability

measure of the random process φ̄ is defined on the class of σ-algebras Fi. The

sequence Ybest[n] as defined in (4.5) is then a sequence of random variables with

respect to this probability measure.

We now provide an argument that shows (under certain conditions on the

probability density function gn(δi)), that {Ybest[n]} converges almost surely to the

constant Yopt for arbitrary starting phases φ̄. It is easy to show that Ybest[n] → Yopt

is equivalent to φ̄[n] → 0. The following proposition will be needed to establish

the convergence.

to this reference. Simulation results indicate little effect on the convergence rates until the
phases are near coherence, at which point the convergence of the modified algorithm is slightly
slower.
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Proposition 1: Consider a distribution gn(δi) that has non-zero support (i.e.

gn(δi) > glb > 0 for some glb) in an interval (−δ0, δ0). Given any φ̄ 6= 0̄, and

RSS(φ̄) < Yopt− ν, where ν > 0 is arbitrary, there exist constants ǫ > 0 and ρ > 0

such that Pr
(

RSS(φ̄+ δ̄) − RSS(φ̄) > ǫ
)

> ρ, where ǫ and ρ depend only on ν.

Proof. For the class of distributions gn(δi) that we consider, the probability of

choosing δi in any finite interval I ⊂ (−δ0, δ0) is non-zero. One example of such a

class of distributions is gn(δi) ∼ uniform[−δ0, δ0].

Recall that the phase reference is chosen such that the total received signal
∑

i aie
jφi has zero phase. First we sort all the phases φi in the vector φ̄ in the de-

scending order of |φi| to get the sorted phases φ̃i satisfying |φ̃1| > |φ̃2| > ... > |φ̃N |,

and the corresponding sorted channel gains ãi. We use the condition RSS(φ̄) <

Yopt − ν to get:

cos(φ̃1)
∑

i

ãi <
∑

i

ãi cos(φ̃i) ≤ Yopt − ν

φ̃1 >
∑

i

ãi cos(φ̃i) ≤ Yopt − ν

φ̃1 > φν
.
= arccos

(Yopt − ν
∑

i ãi

)

(4.8)

Now we choose a phase perturbation δ1 that decreases |φ̃1|. This makes the

most mis-aligned phase in φ̄ closer to the received signal phase, and thus increases

the magnitude of the received signal. Without loss of generality we assume φ̃1 > 0,

then we need to choose a δ1 < 0. Consider δ1 ∈ (−δ0,− δ0
2
). This is an interval

in which gn(δ1) is non-zero, therefore there is a non-zero probability ρ1 > 0 of

choosing such a δ1. We have:

ã1 cos(φ̃1 + δ1) − ã1 cos(φ̃1) > 2ǫ, where ǫ
.
=
ã1δ0

4
sin(φ̃ν −

δ0

2
) (4.9)

We observe that ǫ and ρ1 depend only on ν and not on φ̄.
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The perturbation δ1 by itself will achieve a non-zero increase in total received

signal, provided that the other phases φ̃i do not get too mis-aligned by their

respective δi:

RSS(φ̄+ δ̄) − RSS(φ̄) =
∑

i

ãi
(

cos(φ̃i + δi) − cos(φ̃i)
)

= ã1

(

cos(φ̃1 + δ1) − cos(φ̃1)
)

+
∑

i>1

ãi
(

cos(φ̃i + δi) − cos(φ̃i)
)

> 2ǫ+
∑

i>1

ãi
(

cos(φ̃i + δi) − cos(φ̃i)
)

(4.10)

We note that since RSS(φ̄) is continuous in each of the phases φ̃i, we can

always find a ǫi > 0 to satisfy:

∣

∣

∣
ãi

(

cos(φ̃i + δi) − cos(φ̃i)
)

∣

∣

∣
<

ǫ

N − 1
,∀|δi| < ǫi (4.11)

In particular the choice ǫi
.
= ǫ

ãi(N−1)
, satisfies (4.11), and this choice of ǫi is

independent of φ̄. With the δi’s chosen to satisfy (4.11), we have:

− ǫ <
∑

i>1

ãi
(

cos(φ̃i + δi) − cos(φ̃i)
)

< ǫ (4.12)

Since gn(δi) has non-zero support in each of the non-zero intervals (−ǫi, ǫi), the

probability ρi of choosing δi to satisfy (4.11) is non-zero, i.e. ρi > 0, which is inde-

pendent of φ̄. Finally, we recall that each of the δi are chosen independently, and

therefore with probability ρ =
∏

i ρi > 0, it is possible to find δ1 to satisfy (4.9)

and δi, i > 1 to satisfy (4.11). For δ̄ chosen as above, RSS(φ̄ + δ̄) − RSS(φ̄) > ǫ,

and therefore Proposition 1 follows. �

Theorem 1: For the class of distributions gn(δi) considered in Proposition 1,

starting from an arbitrary φ̄, the feedback algorithm converges to perfect coherence

of the received signals almost surely, i.e. Ybest[k] → Yopt or equivalently φ̄[k] → 0̄

(i.e. φi[k] → 0,∀i) with probability 1.
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Remark: Proposition 1 provides a sufficient condition for asymptotic conver-

gence. The conditions of Proposition 1 are satisfied, for instance, by using a fixed

uniform distribution δi ∼ uniform[−δ0, δ0]. However the fixed two-valued distribu-

tion δi = ±δ0 does not satisfy these conditions. Convergence can still be assured

by using a two-point distribution that varies in time.

Proof. We wish to show that the sequence Ybest[k] = RSS(φ̄[n]) → Yopt given

an arbitrary φ̄[1] = φ̄ 6= 0. Let G = RSS(φ̄), and ν > 0 be an arbitrary constant.

We now show that with large enough k, Ybest[k] exceeds Yopt − ν for arbitrarily

small ν.

Let Dν,k
.
= {ω ∈ Ω : Yopt − Ybest[k] ≤ ν}. Since the sequence Ybest[k] is non-

decreasing, we have Dν,j ⊂ Dν,k whenever j < k. Therefore we have

Eν,k .
=

∞
⋂

j=k

Dν,j ≡ Dν,k (4.13)

We start with Ybest[1] = G. Assume ν1
.
= (Yopt − G) − ν > 0 (otherwise the

following proof is trivial). We write Ybest[k] = Ybest[1]+
∑k−1

i=1 xi, where the random

variable xi represents the increment in Ybest in time-slot i. We then have:

Dν,k ≡ {ω ∈ Ω :
k−1
∑

i=1

xi > ν1}. (4.14)

Define Fǫ,k ≡ {ω ∈ Ω : xk > ǫ}. From Proposition 1, we have Pr(Fǫ,k|Dc
ν,k) >

ρ, for some ρ, ǫ > 0. We note that Ybest[k + 1] > Yopt − ν if (but not only if) both

Ybest[k] > Yopt − ν − ǫ and xk > ǫ are satisfied. More specifically:

Dν,k+1 ⊃ Dν,k

⋃

(

Dν−ǫ,k
⋂

Fǫ,k

⋂

Dc
ν,k

)

(4.15)

In terms of probabilities, we have:

Pr(Dν,k+1) > Pr(Dν,k) + ρPr
(

Dν−ǫ,k
⋂

Dc
ν,k

)

(4.16)
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Equation (4.16) can be extended recursively over m time-slots to give:

Pr(Dν,k+m) > Pr(Dν,k) + ρm Pr
(

Dν−mǫ,k
⋂

Dc
ν,k

)

(4.17)

If we set m
.
= M = ⌈ν1

ǫ
⌉, Dν−Mǫ,k becomes the sure event and (4.17) simplifies to:

Pr(Dν,k+M) > Pr(Dν,k) + ρM Pr(Dc
ν,k) (4.18)

Let pj = Pr(Dν,jM). From (4.18) we have pj+1 > ρM + (1 − ρM)pj > 1 − (1 −

ρM)j, and therefore limj→∞ pj = 1. Since Pr(Dν,k) ≥ Pr(Dν,M⌈ k
M

⌉) ≡ p⌈ k
M

⌉, we

have:

lim
k→∞

Pr
(

Eν,k
)

= lim
k→∞

Pr
(

Dν,k

)

= 1 (4.19)

Since (4.19) holds for arbitrary ν, by the definition of almost sure convergence

(Ch. II in [49]), we have proved that Ybest[k] → Yopt almost surely. �

4.2 Analytical Model for Algorithm Dynamics

The analysis in Section 4.1.1 shows that the feedback control algorithm of Section

4.1 asymptotically converges for a large class of distributions gn(δi); however it

provides no insight into the rates of convergence. We now derive an analytical

model that accurately predicts the average convergence rate of Ybest[n]. We then

use this analytical model, to optimize gn(δi) for fast convergence.

Recall that φi[n] as defined in (4.7) satisfies ∠
(
∑

i aie
jφi

)

= 0. Initially all

the received phases φi[1] are completely unknown, and therefore are randomly

distributed in the interval (−π, π]. We now derive a statistical description of

the phases for the case of equal channel gains, setting ai ≡ 1. Physically this

corresponds to Line-of-Sight channels to a distant receiver. It is possible to extend
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the same analysis to channel gains that vary across transmitters, however to obtain

insight into the algorithm dynamics, we restrict the statistical analysis to the Line-

of-Sight case.

4.2.1 Statistical Model

The most complete description of the feedback algorithm is given by the statistics

of the random vector process φ̄[n]. The update equation (4.3) can be thought

of as a stochastic approximation procedure, therefore we might consider using

the standard “mean ODE” approach that is used for such problems [41]. Our

analytical model is based on similar ideas, however we depart from the standard

“mean ODE” approach by focusing on the dynamics of Ybest[n] rather than the

full phase vector φ̄[n]. This is possible by taking advantage of some important

regularities observed in the behavior of the feedback algorithm in large networks,

which enables a statistical characterization of the phase angles φi[n], in analogy

with methods employed in statistical mechanics. Specifically, we use a heuristic

application of the Gibbs conditioning principle [50] to approximate the phases

{φi[n]} as iid, with distribution parameterized by the received signal strength

Ybest[n] =
∑N

i=1 cos (φi[n]).

For random variables X1, ..., XN and a function f , let us denote the empirical

average of {f(X)} as follows: Ê[f(X)] = 1
N

∑N
i=1 f(Xi). The Gibbs conditioning

principle can now be stated as follows.

Gibbs conditioning principle (see [50] and references therein): Suppose that

{Xi, i = 1, ..., N} are iid random variables with marginal distribution p(x). Then,

conditioned on Ê[f(X)] = a, the {Xi} are approximately iid with marginal dis-
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tribution q(x), where

q = arg min
p′

D(p′||p) subject to Ep′ [f(X)] = a (4.20)

where Ep′ [·] denotes expectation with respect to p′. That is, q(x) is the distribution

closest to p(x) in terms of information-theoretic divergence, subject to the given

constraint.

Remark: The “approximately iid” property can be elaborated as follows: subject

to the conditioning, X1, ..., XK can be modeled as iid with distribution q(x), where

K = K(N) must grow slower than N [50].

Gibbs distribution: The variational problem (4.20) can be rewritten using La-

grange multipliers as:

q = arg min
p′

(

∫

p′(x) log
(p′(x)

p(x)

)

dx− η
(

∫

p′(x)f(x)dx− a
)

)

(4.21)

Solving (4.21), we obtain that the density for the conditional distribution q is

given by

q(x) =
eηf(x)

Z(η)
p(x) (4.22)

where η is a Lagrange multiplier chosen so that the constraint in (4.20) is satisfied

with equality and

Z(η) =

∫

eηf(x)p(x)dx

is a normalization constant.

Using the statistical mechanics framework in our setting, the phases {φi} are

approximated as iid at each iteration of the algorithm, and our goal is to estimate

the empirical distribution fn(φ) of φi[n] at the n’th step of the algorithm, as a

function of the received signal strength at that step. It is convenient to define a

normalized version of the received signal strength which can be interpreted as an
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empirical average:

zbest[n] = Ê[cosφ[n]] =
1

N

N
∑

i=1

cosφi[n] (4.23)

We first show that a heuristic application of the Gibbs conditioning principle yields

results that exhibit remarkably close agreement with simulations. This is what is

used as a basis for algorithm optimization later in this section. A rigorous analysis

based on deriving large deviations principles for the evolution of the algorithm is

left as an open problem, but we offer some comment on the salient technical issues.

Iteration 1: The initial phases {φi[1]} are iid, uniform over (−π, π]. When we

apply iid phase perturbations {δi[1]}, the resulting phases remain iid, uniform over

(−π, π]. When we hit a normalized RSS zbest[2] higher than the initial value zbest[1],

we obtain the next set of phases {φi[2]} which satisfy Ê[cos(φ[2])] = zbest[2].

Using the Gibbs conditioning principle, we obtain from (4.22) that {φi[2]} are

approximately iid with marginal density

f2(φ) =
eη cosφ

Z2(η)
f1(φ) , − π < φ ≤ π (4.24)

where

f1(φ) =
1

2π
, − π < φ ≤ π

and

Z2(η) =
1

2π

∫ π

−π
eη cosφ dφ = I0(η)

Recall that

Ik(x) =
1

2π

∫ π

−π
cos(kφ) ex cosφ dφ (4.25)

where Ik(x) is the modified Bessel function of the first kind and order k.

Iteration n: Suppose that the phases {φi[n]} are approximately iid with marginal

density fn, and that the phase perturbations being applied are iid with marginal
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Figure 4.3. Approximation of fn+1 with exp-cosine distribution.

density gn. When we hit a normalized RSS zbest[n + 1] > zbest[n], we obtain

φi[n + 1] = φi[n] + δi[n] which are approximately iid with density fn ∗ gn (the

convolution is circular over (−π, π]), subject to the conditioning Ê[cosφ[n+1]] =

zbest[n+ 1]. Applying the Gibbs conditioning principle, we obtain that

fn+1(φ) =
eη cosφ

Zn+1(η)
(fn ∗ gn) (φ) , − π < φ ≤ π (4.26)

where

Zn+1(η) =

∫ π

−π
eη cosφ (fn ∗ gn)(φ)dφ

When the phase perturbations are small, fn ∗ gn ≈ fn. In this case, repeated

applications of (4.26) preserve the “exp-cosine” form (4.24). For the other extreme

case where the phase perturbations are arbitrarily large, fn ∗ gn is approximately

uniform in (−π, pi], and once again fn+1 follows the exp-cosine form. In between

these two extremes, fn+1 is well-approximated by the exp-cosine as shown in

Fig. 4.3. This leads us to the following convenient approximation which we use

henceforth.
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Approximation by exp-cosine density: At the nth step of the algorithm, the

phases {φi[n]} are approximately iid with density given by

fn(φ) =
eηn cosφ

I0(ηn)
, − π < φ ≤ π (4.27)

where ηn is chosen so that

E[cos(φ[n])] =

∫ π

−π
cosφ fn(φ) dφ = zbest[n] (4.28)

From (4.25), it follows that ηn satisfies

I1(ηn)

I0(ηn)
= zbest[n] =

Ybest[n]

N
(4.29)

Equation (4.27) is found to approximate the distribution of the {φi} extremely

well for most reasonable distributions for the phase perturbations {δi} gn(δi). This

is illustrated in Fig. 4.4, where the exp-cosine distribution is shown to closely fit a

histogram of phases φi obtained by a Monte-Carlo sstribution is shown to closely

fit a histogram of phases φi obtained by a Monte-Carlo simulation of the beam-

formingalgorithm. Also shown for comparison is a best-fit Gaussian distribution

for the same data. The simulation used N = 3000, gn(δ) = uniform[−12◦, 12◦] for

all iterations, and the histogram corresponds to zbest = 0.63.

Discussion of open issues: The setting required for the Gibbs conditioning

principle is satisfied exactly at iteration 1, when the phases are iid, uniform over

(−π, π]. Moreover, the phases after the conditioning are also approximately iid,

in that subsets of phases of size k, where k grows more slowly than N , are asymp-

totically iid. Does this weak notion of iid phases suffice for applying the Gibbs

conditioning principle again at iteration 2, and so forth? We may be helped by

the fact that, in any given iteration, the role of the random variables Xi is played

not by φi, but by the perturbed phases φi + δi, where the {δi} are truly iid. Ad-
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Figure 4.4. Exp-cosine distribution with histogram from simulation.

dressing these questions rigorously appears to require a detailed, problem-specific,

large deviations analysis that is beyond the scope of this work.

4.2.2 Dynamical Evolution

We define the averaged sequence y[n] recursively, as the conditional expectation

of Ybest[n] given Ybest[n− 1]:

y[1] = 0 (4.30)

y[n+ 1] = Eδ̄[n]

[

Ybest[n+ 1]
∣

∣

∣
Ybest[n] = y[n]

]

= y[n] + h(y[n]) (4.31)

where h(y) is defined as the expected increase in RSS: h(y)
.
= E

[

Ybest[n+1]|Ybest =

y
]

− y. Equation (4.31) is a discrete time version of the mean ODE for Ybest[n]:

dy(t)

dt
= h(y) (4.32)

Note that y[n] is a deterministic, monotonically increasing function of time.

From (4.31) we have:

Ybest[n+ 1] =















RSS(φ̄[n] + δ̄[n]) if RSS(φ̄[n] + δ̄[n]) > y[n]

y[n] otherwise.

(4.33)
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We now express RSS(φ̄+ δ̄) as a sum of iid terms from each transmitter, and

invoke the Central Limit Theorem (CLT).

RSS(φ̄+ δ̄) =
∣

∣

∣

∑

i

aie
jφi+jδi

∣

∣

∣
(4.34)

=
∣

∣

∣

∑

i

ai
(

cosφi cos δi − sinφi sin δi
)

+ j
∑

i

ai
(

cosφi sin δi + sinφi cos δi
)

∣

∣

∣

=
∣

∣

∣

(

CδRSS(φ̄) + x1

)

+ jx2

∣

∣

∣
=

∣

∣

∣

(

Cδy[n] + x1

)

+ jx2

∣

∣

∣
, (4.35)

where Cδ
.
= Eδ

(

cos δi
)

, (4.36)

x1 =
∑

i

ai

(

cosφi
(

cos δi − Cδ
)

− sinφi sin δi

)

, (4.37)

x2 =
∑

i

ai

(

cosφi sin δi + sinφi cos δi

)

(4.38)

where we omitted the time-index n from φ̄[n] and δ̄[n] for convenience. The

random variables x1, x2 are illustrated in Fig. 4.5.

Figure 4.5. Effect of phase perturbations on the total received signal.

Both x1 and x2 as defined in (4.35) are linear combinations of iid random

variables, sin δi and cos δi. Therefore as the number of transmitters N increases,

these random variables can be well-modeled as Gaussian, as per the CLT [51].

More precisely, the random variables x1√
N

and x2√
N

converge in distribution to zero

mean, uncorrelated Gaussian random variables. The variances of x1, x2 are given
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by:

σ2
1
.
= Var(x1) =

1

2

∑

i

a2
i

(

(1 − C2
δ ) − cos(2φi)(C

2
δ − C2δ)

)

σ2
2
.
= Var(x2) =

1

2

∑

i

a2
i

(

(1 − C2
δ ) + cos(2φi)(C

2
δ − C2δ)

)

where C2δ
.
= Eδ

(

cos(2δi)
)

(4.39)

With these simplifications, the statistics of y[n+1] only depends on the density

function gn(δi) through Cδ and C2δ. We now specialize to the Line-of-Sight case

of ai = 1, and apply the statistical distribution to write

∑

i

cos(2φi) = NE [cos(2φi)] = N
I2(ηn)

I0(ηn)
(4.40)

where we used k = 2 in (4.25), and ηn is related to y[n] as I1(ηn)
I0(ηn)

= y[n]
N

. Using

(4.40) in (4.39), we have:

σ2
1 =

N

2

(

(1 − C2
δ ) −

I2(ηn)

I0(ηn)
(C2

δ − C2δ)
)

σ2
2 =

N

2

(

(1 − C2
δ ) +

I2(ηn)

I0(ηn)
(C2

δ − C2δ)
)

(4.41)

We have the following proposition.

Proposition 3: Assuming that the CLT applies for random variable x1, the

expected value of the received signal strength is given by:

y[n+ 1] ≥ y[n]
(

1 − p(1 − Cδ)
)

+
σ1√
2π
e
− (y[n](1−Cδ))2

2σ2
1 (4.42)

where p = Q
(y[n](1 − Cδ)

σ1

)

(4.43)

where the bound in (4.42) is asymptotically exact for large N .

Proof. First we observe that the small imaginary component x2 of the per-

turbation mostly rotates the received signal, with most of the increase in y[n+ 1]
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coming from x1 (see Fig. 4.5).

RSS(φ̄+ δ̄) =
∣

∣Cδy[n] + x1 + jx2

∣

∣

≥
(

Cδy[n] + x1

)

(4.44)

Defining p as the probability that Ybest[n+ 1] > y[n], (4.42), (4.43) readily follow

from (4.44), (4.33) using Gaussian statistics. The bound in (4.44) is asymptotically

exact in the sense that if y[n]
N

is kept fixed while N becomes large, then
∣

∣(Cδy[n] +

x1) + jx2

∣

∣ = Cδ + x1(1 + O( 1√
N

)). To see this, consider

∣

∣(Cδy[n]+x1)+jx2

∣

∣ ≤ Cδy[n]+x1+
x2

2

2Cδy[n]
= Cδy[n]+

√
N

( x1√
N

+
1√
N

x2
1 + x2

2

2Cδy[n]

)

(4.45)

We note that the x1 term in the parantheses in (4.45) is of the order of σ1√
N

which

is independent of N (for constant y[n]
N

), whereas the last term decreases as 1√
N

. �

Using (4.42) in (4.31), we have:

h(y) = σ1f(x), where x =
(y(1 − Cδ)

σ1

)

and f(x)
.
=

1√
2π
e−

x2

2 − xQ(x) (4.46)

Proposition 3 allows us to iteratively compute the function y[n] for all time-

slots n, using the expression in (4.41) for σ1. Next we use the analytical model

to get insight into the convergence of the algorithm, and also to optimize the

distribution gn(δi) of the phase perturbations to maximize the convergence rate.

We now compare the averaged function y[n] obtained from the analytical model

with realizations of Ybest[n] obtained by simulation of the feedback algorithm. Fig.

4.6 plots both y[n] and an instance of Ybest[n] for a network of N = 100 transmit-

ters, for two different choices of the distribution gn(δi): a uniform distribution in

[− π
30
, π

30
] and a two-point distribution choosing ± π

30
with equal probability. The
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(a) gn(δi) ∼ uniform(−6◦, 6◦)
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Figure 4.6. Evolution of received RSS, from analytical model and simulation.

close match with the simulation data in both cases provides validation for the

analytical model.

We observe from Fig. 4.6, that the received signal grows rapidly in the be-

ginning, but after y[n] gets to within about 25% of Yopt, the rate of convergence

becomes slower.

4.3 Performance Analysis and Optimization

We now use the analytical model to optimize the convergence rate of the feedback

algorithm and to study its scalability properties with the number of transmitters

N . We show that the convergence rate depends only weakly on the distribution

gn(δi), and near-optimal performance can be achieved with a simple one-parameter

family of distributions. We also show the following scalability results:

- The expected received signal strength at any time, always increases when

more transmitters are added.

- The number of timeslots required for the expected signal strength to reach
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a given level of convergence (e.g. 80% of Yopt) always increases with more

transmitters, but increases no faster than linearly in the number of trans-

mitters.

We note that beamforming with a centralized antenna array of N elements, re-

quires O(N) bits or training symbols to learn N unknown channel gains. Surpris-

ingly the average time to convergence of our simple 1-bit feedback algorithm also

scales as O(N) provided that the distribution gn(δi) of the phase perturbations is

chosen optimally.

4.3.1 Optimizing the Random Perturbations

In Fig. 4.6, we used the same distribution for the perturbations for all iterations

of the algorithm. However this choice is not optimal: intuition suggests that it

is best to choose larger perturbations initially to speed up the convergence and

make the distribution narrower when the phase angles are closer to coherence. We

now use the analytical model to dynamically choose the distribution gn(δi) as a

function of y[n].

The general problem of choosing a distribution is a problem in calculus of

variations. Fortunately, it is possible to restrict ourselves to a family of distribu-

tions without losing optimality, because the analytical model only depends on the

distribution through the two parameters Cδ, C2δ. Furthermore the parameters Cδ,

C2δ are “highly correlated” i.e. determine each other to a large extent. To see this,

recall from (4.36) and (4.39) the definitions of Cδ and C2δ as the expected values

of cos(δi) and cos(2δi) respectively. We are interested in δi corresponding to small

random perturbations i.e. δi ≪ π
2
. For such small values of δi, cos(δi) and cos(2δi)
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are very well approximated by the first two terms of the Taylor series:

cos δ ≈ 1 − δ2

2
and cos(2δ) ≈ 1 − 2δ2, if |δ| ≪ π

2
(4.47)

Equation (4.47) indicates that both Cδ and C2δ are essentially determined by the

second moment of δi. More precisely we can bound C2δ as:

C2δ = E [cos(2δi)] = E
[

2 cos2 δi − 1
]

≥ 2C2
δ − 1 (4.48)

where we used Jensen’s Inequality to get E [cos2 δi] ≥ (E [cos δi])
2 = C2

δ . Equation

(4.47) indicates that the bound in (4.48) is tight for distributions of interest.

Therefore in practice we can get near-optimal results even if we restrict ourselves to

a convenient one-parameter family of distributions e.g. the uniform distribution in

δi ∈ (−δ0, δ0] or the two-point distribution δi ∈ {±δ0}. The two-point distribution,

in fact achieves the lower-bound in (4.48), and gives the slowest convergence rate

of all distributions with the same Cδ.

Fig. 4.7(a) shows plots of the (Cδ, C2δ) pair from a simulation with N = 100

over 1500 time-slots, where at each time-slot the expected convergence rate (i.e.

h(y[n])) was optimized numerically (1) over the family of uniform distributions

uniform(−δ0, δ0) corresponding to different choices of δ0, and (2) over a general

distribution specified by two parameters p and δ0 as Pr(δ = 0) = 1 − p, Pr(δ =

±δ0) = p
2
. The lower bound from (4.48) is also shown. It is clear from these

plots that a simple one-parameter distribution is sufficient for near-optimal per-

formance, as expected from (4.47).

Fig. 4.7(b) shows the convergence of y[n] with gn(δi) = uniform(−δ0, δ0) for

different fixed values of δ0. In addition Fig. 4.7(b) also shows y[n] and δ0 when the

parameter δ0 is chosen dynamically to optimize the convergence rate at each time-

slot n as given by Proposition 3. This confirms our intuition that at the initial

63



0.9 0.95 1

0.7

0.9

1

C
2

δ

C
δ

lower bound
optimum uniform
optimum dist

(a) Optimum C2δ as a function of Cδ

0 200 800 1000
0

50

100

timeslots

R
S

S

0

45

δ
0
 i
n

 d
e

g
re

e
s

optimum (predicted)
optimum (simulation)

δ
0
=15

°
 

δ
0
=5

°
 

(b) Comparison of convergence rate with

optimum and fixed gn(δi)

Figure 4.7. Optimizing the convergence rate of beamforming algorithm.

stages of the algorithm, it is preferable to use larger perturbations (corresponding

to large δ0), and when y[n] gets closer to Yopt, it is optimum to use narrower

distributions (corresponding to smaller δ0). In all cases, the convergence rate

decreases with time, with near linear increase in RSS observed in the initial stage.

4.3.2 Scalability Results

We now establish the scalability of the algorithm for large N .

Theorem 2: We consider the convergence rate of the algorithm with N1

and N2 transmitters, where N2 > N1, and a common sequence of distributions

gn(δi[n]) is used in both cases. If y1[n] and y2[n] represent the expected received

signal magnitude at timeslot n with N1 and N2 transmitters, then the following
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holds for all n:

y2[n] ≥ y1[n] (4.49)

and
y1[n]

N1

≥ y2[n]

N2

(4.50)

Proof. We offer a proof by induction. From (4.30), we have y2[1] = 0 ≡ y1[1],

and y1[1]
N1

= y2[1]
N2

. To prove (4.49), we need to show that y2[n+ 1] ≥ y1[n+ 1] given

y2[n] ≥ y1[n].

We write y1[n + 1] = F1(y1[n])
.
= y1[n] + h1(y1[n]), y2[n + 1] = F2(y2[n])

.
=

y2[n] + h2(y2[n]) where F1(y), h1(y) and F2(y), h2(y) are defined as in (4.46) for

N1 and N2 transmitters respectively. Note that F1(y1[n]) (F2(y2[n])) depends on

the time index nespectively. Note that F1(y1[n]) (F2(y2[n])) depends on the time

index n not only through y1[n] (y2[n]), but also through the distribution gn(δi).

We have suppressed this additional time-dependence to keep the notation simple.

By their definition, the functions F1(y) and F2(y) are monotonically increasing in

y; furthermore F1(y) > F2(y), ∀y > 0. To see this we observe from the definition

of the variable x1 in (4.37) that for the same value of y, the variance σ1 of x1 is

larger for larger N , and h(y) in (4.46) increases with σ1.

We are now ready to complete the proof of (4.49) by induction. Given that

y2[n] > y1[n], we have:

y2[n+ 1] ≡ F2

(

y2[n]
)

> F1

(

y2[n]
)

> F1

(

y1[n]
)

≡ y1[n+ 1] (4.51)

This completes the proof of (4.49).

Now we assume y1[n]
N1

≥ y2[n]
N2

, or y1 ≥ y2N1

N2
. Using Proposition 3 and the

definition of h(y) from (4.31), we have:

h(y)

N
= E

[

|Cδ
y

N
+
x1

N
+ j

x2

N
|
]

− y

N
(4.52)
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In (4.41), we note that ηn is determined by y
N

, and therefore if both gn(δi) and

y
N

are fixed, the variances of x1

N
, x2

N
both decrease as 1

N
. Therefore h(y)

N
decreases

with increasing N for a fixed y
N

i.e. h1(y)
N1

>
h2(yN2/N1)

N2
. We have

y1[n+ 1]

N1

≡ F1(y1[n])

N1

≥
F1(

y2[n]N1

N2
)

N1

=
y2[n]

N2

+
h1(

y2[n]N1

N2
)

N1

>
y2[n]

N2

+
h2(y2[n])

N2

≡ y2[n+ 1]

N2

(4.53)

This proves (4.50). �

Corollary: The scalability relations (4.49) and (4.50) also hold when the

transmitters use optimized distributions gn(δi) in both cases.

Proof. Let ỹ1[n] and ỹ2[n] be the expected received signal magnitudes using

the respective optimized distributions. We apply Theorem 2 to the case where

we use the distribution gn(δi) optimized for N1 transmitters in both cases. By

definition ỹ2[n] ≥ y2[n], and ỹ1[n] = y1[n], therefore ỹ2[n] ≥ ỹ1[n],∀n. This proves

(4.49). Using the same argument for the distribution gn(δi) optimized for N2

transmitters, we can prove (4.50). �

We now consider the time to convergence of the algorithm. We define TN(α) as

the number of timeslots required for y[n] to exceed a given fraction, say α = 75%

of the maximum RSS, which equals Yopt ≡ N with N transmitters. Theorem 2

shows that TN(α) monotonically increases with N . We now show that when the

feedback algorithm is appropriately optimized, TN(α) increases with N no faster

than linearly. We need the following proposition.
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Proposition 4: The expected RSS increment h(y) as defined in (4.31), under

an optimum choice of the distribution gn(δi), can be lower-bounded as h(y) >

h0(
y
N

), where h0(.) is strictly positive and independent of N .

Proof. First we use (4.48) and (4.41) to get a lower-bound for the variance σ2
1.

We have:

C2
δ − C2δ ≤ (1 − C2

δ ) (4.54)

and therefore σ2
1 ≥ N

(1 − C2
δ )

2

(

1 − I2(η)

I0(η)

)

(4.55)

or σ1 ≥
N(1 − C2

δ )

2σ1

(

1 − I2(η)

I0(η)

)

(4.56)

We note that the above bounds are achievable; in particular, the two-point distri-

bution Pr(δi = ±δ0) = 0.5 achieves the bound in (4.56). We now rewrite (4.56) as

σ1 ≥ x
2α

(1 + Cδ)(1 − I2(η)
I0(η)

), where we used the definition of x in (4.46). Therefore

we have

h(y) = σ1f(x) ≥ 1

2α

(

1 − I2(η)

I0(η)

)

(

xf(x)(1 + Cδ)
)

= h1(α)(1 + Cδ)h2(x) ≥ h1(α)h2(x) (4.57)

where h1(α)
.
=

1

2α

(

1 − I2(η)

I0(η)

)

depends only on α, (4.58)

and h2(x)
.
= xf(x) =

x√
2π
e−

x2

2 − x2Q(x) depends only on x (4.59)

It is easily shown that the function h2(x) attains its maximum value hm, at xm

that satisfies:

1√
2π
e−

x2
m
2 = 2xmQ(xm) (4.60)

Solving (4.60) gives xm ≈ 0.6120 and hm = maxx∈R+ h2(x) = h2(xm) ≈ 0.1012.

We now show that a distribution gn(δi) that achieves x = y(1−Cδ)
σ1

= xm exists for

any α = y
N

and N . We show this by finding a suitable two-valued distribution for
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any α and N . Using (4.56), we have:

x =

√

1 − Cδ

1 + Cδ

α
√
N

√

1 − I2(η)
I0(η)

(4.61)

We can show that the RHS of (4.61) equals xm for the two-valued distribution

with the parameter:

δ0 = 2 arctan
( xm

α
√
N

√

1 − I2(η)

I0(η)

)

(4.62)

Thus we have shown that it is possible to choose a distribution gn(δi) that

satisfies h(y) > h0(α) ≡ hmh1(α), which proves the proposition. �

Theorem 3: The number of timeslots required for the feedback algorithm to

achieve the fractional level of convergence α satisfies the following:

TN(α) < N × tα, where tα is a constant independent of N (4.63)

Proof. It is more convenient to work with continuous time functions, therefore

we first define the function fc(t) as the piece-wise linear interpolation of y[n]
N

i.e.

fc(t) = y[t]
N
, ∀ t ∈ N. The function fc(t) is to be interpreted as representing the

expected level of convergence over time.

We note that fc(t) is a monotonically increasing function of time t, with the

range [0, 1). Therefore the inverse function T̃N(α) : [0, 1) → R
+ of fc(t) exists.

Also T̃N(α) is piece-wise linear and continuous at all points in its domain. Al-

though it is not differentiable in the countable set of points {y[n]}, the one-sided

derivative dT̃N (α)
dα+

.
= lim∆α→0+

T̃N (α+∆α)−T̃N (α)
∆α

exists everywhere in the domain. We

can then use Proposition 4 to show:

dT̃N(α)

dα+
<

N

h0(α)
(4.64)
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Figure 4.8. Scalability of beamforming algorithm with number of transmitters.

Therefore we have:

T̃N(α) = 1 +

∫ α

0

dT̃N(α)

dα+
dα

< 1 +N

∫ α

0

1

h0(α)
dα (4.65)

The integral in (4.65) does not depend on N; we denote this integral by t̃α. Thus

we have:

TN(α) ≡ ⌈T̃N(α)⌉ < 1 + T̃N(α)

< 2 +Nt̃α < N(t̃α + 2) (4.66)

which proves the theorem with tα = t̃α + 2. �

Theorem 3 is illustrated by the results in Fig. 4.8, where the number of

timeslots required to get within a certain fraction of convergence is plotted against

number of transmittersN for a fixed distribution (Fig. 4.8(a)) as well as optimized

distributions (Fig. 4.8(b)). These results show that the feedback algorithm is

highly scalable with number of transmitters.
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Chapter 5

Time-Varying Channels and Other

Practical Considerations

The 1-bit feedback algorithm has many attractive features such as simplicity and

scalability that make it suitable for real-world networks. In this chapter, we dis-

cuss some issues that are relevant for a practical implementation of the algorithm.

One of the prerequisites for the algorithm is carrier frequency synchronization,

and a stable phase relationship between the transmitters. In Section 5.1, we

describe a master-slave architecture similar to Chapter 3 to achieve carrier fre-

quency synchronization; since the feedback algorithm obviates the need for any

calibration procedure to estimate the transmitter phase offsets, it is possible to use

different frequencies for the reference carrier signal and for beamforming, which

substantially simplifies the isolation issues.

The residual phase noise from the master-slave synchronization process, as

well as other effects such as channel noise, errors in SNR estimation and channel

time-variations all cause some degradation in the beamforming gains. In Section

5.2, we modify the feedback algorithm to dynamically track channel variations in
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the presence of noise.

If the channel noise is small and time-variations slow enough that the phase

gain can be considered static over several time-slots, the statistical model of Chap-

ter 4 can be expected to provide a good approximation of the rate of convergence

of the algorithm when the network first starts tracking. In a sense this is the

initial transient behavior of the algorithm. To model the steady-state behavior

we extend the statistical analysis of Chapter 4 to take time-variations and other

channel impairments into account. We present the derivation of this model and

some results on the steady-state beamforming gain in Section 5.3.

These analytical insights were confirmed in a recent experimental prototype for

beamforming based on the feedback algorithm. Some results from this prototype

are summarized in Section 5.4.

5.1 Carrier Frequency Synchronization

Fig. 5.1 shows the carrier frequency synchronization process for the slave trans-

mitter. The elimination of the phase calibration step leads to two important

simplifications compared to Fig. 3.4. First the synchronization process and the

beamforming process are free to use different carrier frequencies i.e. they are

frequency division duplexed rather than time-division duplexed. Second the use

of the frequency dividers makes it possible to use much smaller frequencies at

the phase comparator. This in turn allows the use of the cheaper charge-pump

“digital” PLLs.

For instance, let the master transmitter broadcast a reference carrier at f1 =

1000 MHz. If we use frequency divider ratios of M1 = 200 and M2 = 199, then

the synchronized VCO signal has the frequency of 995 MHz. This gives a comfort-
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Figure 5.1. Carrier synchronization process in slave transmitter.

able guard interval of 5 MHz between the master-slave synchronization and the

beamforming frequencies thereby avoiding isolation issues. The phase compara-

tor frequency is 5 MHz, which is small enough to enable the use of inexpensive

charge-pump type PLLs using digital comparators. The main design parameter

in the synchronization process is the low-pass loop filter of the slave PLLs. In the

case of a charge-pump PLL, the filtering function is provided by the impedance

that is driven by the charge-pump, as illustrated in Fig. 5.2 [52]. Unlike the TDD

system of Section 3.3, the VCO never operates in open-loop mode, therefore PLL

phase error can be reduced to a very small value. Indeed since the PLL is only

required to lock to a reference carrier signal i.e. a pure sinusoid, it is tempting to

conclude that the phase error can be made arbitrarily small. This is however not

the case.

We note that because of the frequency multiplier in Fig. 5.1, the loop phase

noise gets multiplied by a factor of M2 in the slave’s carrier signal. Therefore noise

suppression in the loop is of crucial importance. This suggests a small bandwidth

for the loop filter.
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We consider a second-order PLL as in Section 3.3, with the closed-loop transfer

function given by (3.20) i.e. H(s) = s2

s2+2ξωns+ω2
n
. The cross-over frequency of of

this loop is given by ωc = KV COIPR
2π

, where KV CO is the sensitivity of the VCO

(Hz/V), and IP is the charge-pump current. The resistance R cannot be made

arbitrarily small without reducing the damping ratio ξ and therefore the phase

margin. Furthermore the charge-pump undergoes a polarity change each cycle

from a current of −IP to IP and back [45], and this leads to a frequency excursion

or ripple of size ∆ω = ωc. Supressing this ripple requires adding an extra pole

(capacitor C3 in Fig. 5.2) to the second-order loop, which causes a further loss of

phase margin. We find that the phase noise in the synchronized carrier cannot be

reduced below a certain point.

In general there appears to be a fundamental tradeoff between the loop band-

width and the achievable SNR from beamforming. A more detailed analysis of

the nature of this tradeoff is beyond our scope here.
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5.2 Tracking a Time-Varying Channel

In Chapter 4, we derived an analytical model for the convergence of the synchro-

nization when the wireless channels from each transmitter to the receiver is static

i.e. constant in time. For such channels, the 1-bit algorithm can be shown to

converge asymptotically to perfect coherence with probability 1. Once converged,

the transmitters can use the optimal value θbest,i obtained from the algorithm

to maintain coherent transmission in subsequent timeslots. However in practical

cases, the channel phase responses change in time e.g. due to Doppler effects from

moving scatterers. For such channels, the channel variations cause the transmit-

ted signals to lose coherence over time: even when the transmitters use the same

phase rotation θbest,i, the received phase Φbest,i[n] = γi + θbest,i[n] + ψi[n] will not

remain the same, because of the change in the channel phase response ψi[n]. As

a result, the received signal strength Ybest[n] =
∣

∣

∑N
i=1 aie

jΦbest,i[n]
∣

∣ decreases on

average. Fortunately, the 1-bit algorithm can be easily adapted to dynamically

adjust the transmitted phase θbest,i[n]. We now present this modified algorithm.

1. At each timeslot n, each transmitter keeps a record θbest,i[n] of the best

known value of its phase rotation, and the receiver keeps an estimate Zbest[n]

of the best achievable RSS. Unlike the static case, Zbest[n] is only an estimate

of the best achievable RSS Ybest[n] that changes randomly because of channel

variations.

2. At timeslot n+ 1, each transmitter generates a random phase perturbation

δi from some probability distribution fδ(δi), and transmits its message signal

with an incremental phase rotation δi: θi[n+ 1] = θbest,i[n] + δi. This results
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in the received phase:

Φi[n+ 1] = Φbest,i[n] + δi + ∆i[n] (5.1)

where Φbest,i[n]
.
= γi + θbest,i[n] + ψi[n] and ∆i[n] is the channel drift i.e.

ψi[n+ 1] = ψi[n] + ∆i[n].

3. The BS measures the received signal strength, Y [n+ 1] =
∣

∣

∑N
i=1 aie

jΦi[n+1]
∣

∣

and generates a single bit of feedback that is set to ‘1’ if the received sig-

nal strength in the current timeslot is better than the estimated best RSS

Zbest[n], and ‘0’ otherwise. The BS then broadcasts this bit of feedback to

all transmitters.

4. If the feedback bit is ‘1’, the BS updates its value of Zbest[n+1] with the new

measured RSS, and the transmitters update the phase rotations θbest,i[n+1]

to retain the perturbations δi; otherwise the BS discounts its estimated best

RSS Zbest[n] by a factor ρ < 1 to reflect the expected deterioration due to

channel variation, and the transmitters discard the perturbations δi.

5. The process is repeated in the next timeslot.
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The received phases change due to both the update process and the channel drifts.

The update process can be written mathematically as:

Zbest[n+ 1] =















Y [n+ 1], Y [n+ 1] > Zbest[n]

ρ Zbest[n], otherwise.

(5.2)

θbest,i[n+ 1] =















θbest,i[n] + δi[n], Y [n+ 1] > Zbest[n]

θbest,i[n], otherwise.

Φbest,i[n+ 1] =















Φbest,i[n] + ∆i[n] + δi[n], Y [n+ 1] > Zbest[n]

Φbest,i[n] + ∆i[n], otherwise.

5.3 Modeling the Tracking Performance

Unlike the static case, this tracking version of the 1-bit feedback algorithm does

not converge to a fixed Ybest[n], but rather to a dynamic steady state. Intuitively,

if at any time the received phases Φi[n] become more highly coherent, it becomes

harder to find ‘favorable’ perturbations δi, and therefore, the overall tendency for

the RSS is to decrease because of the channel drifts. The steady state balances

the tendency of the channel drifts ∆i to drive the phases away from coherence,

and this is partly compensated by the random perturbations δi with feedback.

To quantitatively analyze this, we model the drift process ∆i[n] as iid across

transmitters, and stationary and uncorrelated in time with a distribution f∆(∆i).

As in Section 4.2.2, we restrict purselves to the Line-of-Sight case where all the

transmitters have equal attenuations to the receiver i.e. ai = 1. Much of the

analysis of Section 4.2 can now be extended for the time-varying case. In partic-

ular, the typicality argument of Section 4.2.1 can be used in this case also, and

therefore the empirical distribution of the phases φi[n] at any instant is still given
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by (4.27) for large N . (Here φi
.
= Φbest,i − Φ0, Φ0 is defined as in (4.7) as the

“centered” value of the phases Φbest,i.) As before we can write the aggregate effect

of the phase perturbations, and channel drift as an increase or decrease in the

magnitude Ybest[n] of the received signal, and a rotation of its phase, and we can

write an expression similar to (4.35):

Y [n+ 1] =
∣

∣

∣
CδC∆Ybest[n] + z1 + jz2

∣

∣

∣
(5.3)

where C∆
.
= E

(

cos ∆i

)

. This also suggests a natural choice for the discounting

factor as ρ = C∆. This choice would make Zbest[n] = E
(

Ybest[n]
)

in the absence

of the perturbations δi. As before z1 and z2 are uncorrelated, zero mean random

variables whose distributions are approximately Gaussian because of the Central

Limit Theorem, and their variances can be shown to be respectively:

σ2
11 =

N

2

(

(

1 − C2
δC

2
∆

)

−
(

C2
δC

2
∆ − C2δC2∆

)

E
(

cos(2Φbest,i)
)

)

(5.4)

σ2
22 =

N

2

(

(

1 − C2
δC

2
∆

)

+
(

C2
δC

2
∆ − C2δC2∆

)

E
(

cos(2Φbest,i)
)

)

(5.5)

where C2∆
.
= E

(

cos(2∆i)
)

. From (5.2) and (5.3), we observe that Ybest[n] is a

Markov process, and its transition probability function is defined by:

fM
(

y2

∣

∣y1

) .
= f

(

Ybest[n+ 1] = y2

∣

∣Ybest[n] = y1

)

(5.6)

The transition probability function fM(y2|y1) can be expressed in terms of the

known Gaussian densities of z1 and z2. From fM(y2|y1), we can calculate the

steady-state probability density fss(y) of the Markov chain as the solution to the

eigenvalue problem:

fss(y) =

∫ ∞

y1=−∞
fM(y|y1)fss(y1)dy1 (5.7)
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Fig. 5.3 compares the steady-state distribution fss(y) computed by solving (5.7),

with a histogram of Ybest[n] obtained from a simulation of the 1-bit algorithm with

channel time-variations (after discarding the initial “transient” samples). The

simulation parameters are N = 40, channel drift f∆(∆i) ∼ uniform[− π
25
, π

25
],

phase perturbations gn(δi) ∼ uniform[−π
7
, π

7
]. The excellent agreement between

fss(y) and the histogram shows that the analytical model accurately predicts the

behaviour of the algorithm.
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Figure 5.3. Steady-state distribution of RSS.

The above analysis of the tracking algorithm as a Markov process can be used

to choose the distribution gn(δi) optimally to maximize the average steady state

RSS. This analysis is beyond the scope of the present analysis, but we can make

a few general remarks.

1. In order to get good tracking performance, the perturbations δi need to be

at least as large as the channel drifts ∆i on average.

2. The perturbations δi should not be too large on average, to avoid large

fluctuations in the RSS.
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(a) Block diagram of a transmitter (b) Block diagram of the receiver

Figure 5.4. Baseband functionality for 1-bit algorithm.

3. The effect of phase jitter (i.e. fluctuations in the phase γi) is similar to

channel variations. If we apply the above steady state analysis to the exper-

imental results of Section 5.4, the steady state beamforming gain correspond

to a rms phase jitter of about 10◦. This is consistent with a visual observa-

tion of the RF carrier signals on an oscilloscope.

5.4 Proof-of-Concept Prototype

We now summarize some results from a recent experimental prototype [4] de-

veloped to investigate the performance of the feedback algorithm in a practical

situation. This prototype was designed by Ben Wild of UC Berkeley, and its

design is illustrated in Fig. 5.4.

The experiment consisted of mounting N = 3 beamformer nodes across from

a receiver node. Fig. 5.5(a) shows the setup. First, each transmitter was turned

on and the other 2 were turned off, in order to measure their individual received

power levels. After this calibration, all of the beamformer nodes were switched on,

and the algorithm was started. After convergence we measured the received power

and compared this with the theoretical value we were expecting. This allowed us
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Transmitters ON Received Power (µW )

1 120

2 85

3 280

1, 2 and 3 1230

Table 5.1. Received power measurements.

to measure the beamforming gain. Table 5.1 shows the results for one case.

If the beamforming was ideal, the theoretical received power would have been

1370µW while the actual received power was 1230µW . Thus the results were

within 90% of the theoretical limit. We also ran the algorithm while the beam-

former nodes BPSK modulated the carrier with a known 10 kbps sequence. The

modulation did not affect the convergence time or the beamforming gain as ex-

pected. The convergence of the algorithm took approximately 60 iterations. With

a 200 Hz feedback rate that corresponded to approximately 300 ms. A typical

realization of the received power is shown in Fig. 5.5(b).
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(a) Photograph of experimental

setup

(b) Received power over time

Figure 5.5. Experimental demonstration of distributed beamforming.
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Chapter 6

Conclusions and Future Work

In previous chapters, we motivated the idea of communication using beamforming

from a distributed antenna array. We showed that the problem of carrier synchro-

nization was central to its implementation, and presented a solution based on a

master-slave architecture. We also presented a feedback algorithm that allows a

simple practical implementation and analyzed its properties by theory and sim-

ulations. Our main conclusion is that the idea of a distributed antenna array

for wireless communication in general, and the technique of collaborative beam-

forming in particular, offer attractive performance gains compared to conventional

methods; and furthermore these gains can be realized in practice using a master-

slave architecture for synchronization combined with a iterative adaptation pro-

cedure. The adaptation procedure has the virtue of requiring minimal feedback

from the receiver, and is also scalable and completely decentralized. Finally, the

performance of the beamsteering algorithm can be accurately characterized partly

by borrowing the elegant mathematical techniques of statistical physics.

We now offer some observations on other implications of this research for future

work.
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6.1 Open Technical Issues

Our analysis of the feedback algorithm for beamforming leaves several interesting

open problems related to both analysis and design. We now summarize some of

these problems.

1. The analytical model presented in Chapter 4 for the convergence of the

feedback algorithm was based on the received phase angles following the

“exp-cosine” distribution. We justified this distribution using the Gibbs con-

ditioning principle. Unfortunately the version of the Gibbs principle from

the literature requires the phases to be conditionally independent, which is

not strictly satisfied under the feedback algorithm. An important open prob-

lem is making this argument rigorous, either by relaxing the independence

assumption, or by generalizing the Gibbs principle.

2. Our feedback algorithm for beamforming is simple by design; it depends

on the transmitters making random phase adjustments independent of each

other, and also independently over time, and the receiver broadcasting just

one bit of feedback. This simple design immediately suggests some possible

improvements such as multiple bits of feedback from the receiver, coordi-

nated phase adjustments across the transmitters, or using the past history

of phase adjustments to pick the phase adjustments more optimally.

The last mentioned possibility is especially appealing because it preserves

the decentralized nature of the algorithm. A similar idea called Polyak

averaging is well-known in the stochastic approximation literature (see [41],

Ch. 11); such averaging is known to give near-optimum convergence rates

in many cases, however it does not exceed the performance of a suitably
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optimized un-averaged algorithm. A detailed investigation of this idea for

the beamforming algorithm is an important subject for future work.

3. The master-slave carrier synchronization process has an important effect on

performance of the beamforming algorithm. Our analysis of the tradeoffs

involved in the PLL design in Sections 3.3 and 5.1 only scratches the surface

of the underlying issues. One open question is the relative advantages of

charge-pump and multiplier type PLLs for the overall phase error. On a

more basic level, we would like to determine the fundamental limits on the

achievable synchronization error using any PLL.

4. In Section 5.3, we extended the statistical analysis of Section 4.2 to the

modified feedback algorithm for time-varying channels, and showed that it

predicts the distribution of the steady-state fluctuations of the RSS accu-

rately. Some authors [44] have suggested that the steady-state RSS distribu-

tion may be asymptotically Gaussian. Deriving these and other properties

of the steady-state of the tracking algorithm is an interesting open problem.

A related problem is generalizing the analysis to model impairments such as

SNR estimation error, quantization and channel noise, errors in the feedback

channel, and phase jitter from the master-slave synchronization process.

6.2 Connection with Stochastic Approximation

We observe that the feedback algorithm is a distributed version of the well-known

class of stochastic approximation (SA) algorithms [41]. This class of algorithms is

extremely versatile, and there exists a considerable literature on understanding its

convergence properties. With the use of the statistical model of Section 4.2.1, a
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mean-ODE can be obtained for the beamforming algorithm (as in (4.32)) similar

to any other SA algorithm, and therefore results from the SA literature can be

applied to the beamforming problem.

For instance in Section 5.3 we extended the statistical analysis of Section 4.2.1

to the case of time-varying channels. Other authors have exploited the similarity

with SA, to reveal additional interesting properties, such as an asymptotic analytic

form for the steady-state distribution [44] in a time-varying channel. This may

also provide the analytical tools to explore interesting generalizations of the basic

feedback algorithm such as the effect of multi-bit feedback, correlated adaptations

over time and across transmitters, and the tradeoff between fast tracking and SNR

fluctuations in the steady-state.

The connection with SA also suggests the possibility of using the technique

of 1-bit feedback to other problems in distributed computing in WSNs. This is

similar to the recent work [53] in using iterative techniques to compute medians

and quantiles in WSNs.

6.3 Implications for Cooperative Communication

The feedback algorithm can also be generalized to other problems such as beam-

forming in the presence of interferers; rather than adapting the transmit phases

to increase SNR at the receiver, we can also impose additional constraints on in-

terference at other nodes. This would of course require feedback from other nodes

as well as the intended receiver. The feedback algorithm may also lose some of

its attractive properties in more complicated cases such as the property of almost

sure convergence from arbitrary starting points.

An interesting extreme case of this generalization is the problem of commu-
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nicating from one virtual array to another, as in a MIMO wireless system [27];

instead of focusing one message stream in the direction of a single receiver, this in-

volves simultaneously directing multiple streams of data to multiple destinations.

Of course local communication and carrier synchronization would be required sep-

arately in both the transmit and receive arrays. Also the transmitters would in

general, need to adapt their amplification as well as their phase. The 1-bit feed-

back could be based on the combined mutual information over all the streams

given a set of transmit weights. It would be of great interest to explore the con-

vergence properties of such an algorithm, which could potentially bring some of

the popular information theoretic relaying techniques [16] into practical wireless

networks. A more modest goal may be to adapt the master-slave synchronization

method for the implementation of simpler techniques such as cooperative space-

time coding [17] for diversity in fading channels; it is well-known that the lack of

carrier synchronization [26] reduces the benefits from cooperation offered by such

techniques.

6.4 The Limits of Information Theory

We have seen that information theoretic models of wireless networks naturally give

rise to cooperative communication techniques. However the inherently baseband

character of the models neglects important aspects of wireless communication

systems. In this dissertation, we have demonstrated that one specific form of

cooperative communication i.e. collaborative beamforming can indeed be imple-

mented in practice with large achievable SNR gains with a careful design of the

RF carrier signal. However we focused on a highly simplified model (Fig. 1.1),

that allows us to neglect the overheads of local communication, synchronization
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and channel estimation.

6.4.1 Synchronization Overheads

There still remains the question of how these overheads impact the optimality of

cooperative schemes. The existing literature on cooperative communication pro-

vides a partial answer; for instance Sendonaris et al [17] have shown that coopera-

tive diversity schemes can improve outage rates in fading channels even including

the costs of inter-user communication. However this only counts the overhead of

message-sharing, and neglects carrier synchronization issues. Unfortunately this

limitation is also shared by most of the other related literature [37].

As shown in Chapter 3, carrier frequency synchronization can be established

with little overhead using a master-slave architecture; it only requires one master

node to broadcast a reference tone for all collaborating transmitters to lock to1.

The reference signal carries no information and therefore occupies zero bandwidth.

Beamsteering using the 1-bit feedback algorithm is simple to implement as shown

in Section 5.4. However it does require a finite number of time-slots for the SNR

gains to be realized. This can be thought of as a training overhead, and becomes

proportionally smaller as the length of the message to be transmitted becomes

large. A more detailed accounting of the synchronization overheads is beyond our

scope, and we leave it as an open problem for future work.

1There is some additional cost associated with the complexity of the PLL and other com-
ponents required for locking to the reference signal. We confine our discussion here strictly to
overheads in communication resources such as bandwidth and power.
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6.4.2 Benefits for Multi-Hop Networks

So far we have focused on the benefits of the SNR gain from beamforming; in

multi-hop wireless networks, beamforming offers other advantages that would fur-

ther discount the cost of the overheads. One advantage follows directly from the

SNR gain: because of increased communication range, shorter routes (i.e. fewer

hops) may be possible with beamforming. Another advantage is interference mit-

igation: beamforming results in highly directive transmissions, which leaves a

smaller proportion of the transmitted energy as interference.

From this discussion it is clear that a joint design of network routing protocols

and the physical layer communication link is necessary to realize the full benefits

of distributed beamforming. This is at odds with the layered protocol model that

most modern communication networks are based on. However, there has been

an increasing appreciation of the costs of “layering” [54], especially for wireless

channels, and the idea of cross-layer design [55] has been extensively studied for

wireless network design.

For example, a two-step strategy was recently proposed [15] that uses broadcast

to a set of relays followed by beamforming to the destination. To fully evaluate

the optimality of such a strategy, the overheads involved in synchronizing the

relays and beamsteering to the receiver need to be estimated. These is already

some work in the literature to address such questions; a cross-layer scheme was

recently proposed [56] that simultaneously specifies a MAC protocol for propaga-

tion of the message signal, and a PHY transmission scheme based on distributed

beamforming.

Any comprehensive information theory for wireless networks has to include

the entire spectrum of possible communication methods such as direct transmis-
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sion, multi-hop routing and cooperative relaying, including combinations of these

methods. Existing multi-user information theory is inherently a baseband theory;

explicit consideration of the overheads of cooperation may be one way to fix what

has been called [12] an “unconsummated union” between information theory and

networks.
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Appendix A

Proofs for Chapter 3:

Proof of Proposition 1: We can rewrite (3.2) as follows:

PR = N
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Invoking the law of large numbers, and the fact that the {
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The expectation on the RHS of (A.2) simplifies as follows
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We have assumed that φi is symmetrically distributed around 0, and hence E[sinφi] =

0. Equation (A.3) results because hi ∼ CN(0, 1) and hence
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since continuous functions of variables which are converging almost surely also

converge almost surely, and the desired result follows. �

Proof of Proposition 2: The expected value of PR can be written as
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where we have used the fact that the {hi}, {φi} are i.i.d. and that the {φi} are

symmetrically distributed around 0. �

Proof of Proposition 3: We once again begin with the definition for PR.
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where α = E[
∣

∣hi
∣

∣

2
cos(φi)] = E[cos(φi)]. Invoking the central limit theorem, as
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N gets large, the first term in (A.7) tends to a Gaussian random variable with

mean 0 and variance σ2
c ≡ Var[

∣

∣hi
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2
cos(φi)]. Similarly, the second term tends

to a Gaussian random variable with mean 0 and variance σ2
s ≡ Var[
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∣

2
sin(φi)].

Since the last term in (A.7) is real and constant, it only shifts the mean of the

first Gaussian random variable, so we can write
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where Xc ∼ N(
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c ), and Xs ∼ N(0, σ2
s). Making use of the fact that
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= 2E[cos2(φi)] − E[cos(φi)]
2

and similarly, σ2
s = 2E[sin2(φi)] (A.9)

Letting mc ≡
√
Nα, we have that PR = X2

c + X2
s , as given. The variance of PR

follows from standard calculations for moments of Gaussian random variables. �
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