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Abstract—Mostly digital architectures for communication

transceivers rely on the use of accurate analog-to-digital con-

verters (ADCs), which becomes a bottleneck in scaling to multi-

Gigabit speeds. A promising workaround is to employ slower,

power-efficient sub-ADCs in a time-interleaved ADC (TI-ADC)

architecture. While mismatch between sub-ADCs can lead to

performance floors, recent work shows that this can be mitigated

using joint channel and mismatch compensation algorithms. In

this paper, we investigate the scalability and convergence of a

recently proposed iterative channel and mismatch estimation

algorithm, and derive rules of thumb relating the required length

of training to the number of sub-ADCs.

I. INTRODUCTION

In the past decade, the adoption of a mostly digital architec-
ture significantly contributed to the wide-spread deployment
of wireless LAN and cellular systems. However, when we
try to extend the same advantage to future communication
systems operating at multi-Gigabit speeds, we are limited
by the difficulty of realizing fast analog-to-digital converters
(ADCs) that provide sufficient precision (8-10 bits) with a low
power consumption (< 100 mW) [1], [2], [3]. One approach to
this bottleneck is to employ a time-interleaved architecture (see
Fig. 1), where several low-rate “sub-ADCs” are interleaved
in parallel to implement a fast ADC [4]. By virtue of their
relatively lower speeds, the sub-ADCs can be realized using
power-efficient architectures (e.g., pipelined, successive ap-
proximation), instead of the power-hungry flash architectures
typically required for high-speed ADCs. However, an inherent
limitation of the time-interleaved ADC (TI-ADC) architecture
is the mismatch between the sub-ADCs [5], [6], which, if
left uncompensated, can lead to error floors. Several schemes
have been proposed for dedicated mismatch calibration in
TI-ADCs [4], [5], [9]-[13]. Furthermore, for communication
links, channel and mismatch estimation can be done jointly,
leveraging the training already available on the link [7], [8].
In this paper, we investigate the scalability of joint channel
and mismatch compensation as the number of sub-ADCs
increases, with a view to characterizing the convergence rate
of a previously proposed iterative algorithm as a function of
the choice of training sequence (most importantly, the training
sequence length) and the number of sub-ADCs.

Contributions: We consider an iterative algorithm for joint
channel and mismatch estimation proposed in [8], which had
been empirically observed to provide exponential convergence.
In this paper, we provide an analytical approximation to the
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Fig. 1: A time-interleaved ADC: four sub-ADCs interleaved to
achieve an overall sampling rate of 1/T0 (d takes integer values). Red
and green indicate the analog and digital components respectively.

convergence rate based on the observation that the channel
estimates in successive iterations are well approximated as pro-
ceeding along a straight line (in N -dimensional space, where
N is the number of channel taps), see Figure 2, which shows
that the straight line approximation improves as the training
sequence length M increases. The expressions that we obtain
agree closely with the empirically observed convergence rates.
While the convergence rate does depend on the specific choice
of training sequence, it is mostly affected by the length M
of the training sequence relative to the number L of sub-
ADCs. In particular, they imply that the training sequence
length must scale linearly with the number of sub-ADCs in
order to keep the number of iterations (which dominates the
complexity of our iterative algorithm) the same. For random
training sequences, the convergence rate can be approximated
by 20 log10(M/L) dB/iteration, which is reasonably close to
the observed rates for M/L ≤ 8.

Organization: We organize the rest of the paper as follows.
First, in section II, we set the stage by giving models of the
communication system and the time-interleaved ADC with
mismatches, and also briefly describe the iterative algorithm in
[8] for jointly estimating the channel and mismatches. Then,
in section III, we give formulae obtained for the convergence
rate of this iterative algorithm when we used the argument
that the channel estimates progress along a straight line. We
present simulation results in Section IV to verify the analytical
formulae. Later, in section V, we illustrate all the steps of the
derivation, and finally conclude the paper in section VI.
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Fig. 2: Approximately linear trajectories of the channel estimate

with iterations of joint estimation algorithm: Trajectories for
several randomly generated channels (length N = 20 taps) are plotted
in the two-dimensional plane containing the true channel (indicated
by black diamond), the initial channel estimate, and the channel
estimate after the first iteration. M denotes the training sequence
length and L = 8 ADCs are interleaved. Other simulation parameters
are given in Section IV.

II. JOINT CHANNEL AND MISMATCH ESTIMATION

The received signal is given by

r(t) =
M−1�

k=0

b[k]h(t− kT ) + n(t), (1)

where {b[k]} is the training sequence of length M , 1/T is the
symbol rate, and the “channel impulse response” h(t) includes
the effect of transmit, channel and receive filters. We assume
Nyquist sampling using the TI-ADC, so that the sampling
interval for each sub-ADC is LT , where L is the number
of sub-ADCs. For simplicity, we consider only the in-phase
baseband signal (the analysis extends in a straightforward
manner to include the quadrature part).

Gain and timing mismatches are the dominant sources of er-
ror in TI-ADC architectures. Gain mismatch is a linear effect,
while timing mismatch is nonlinear. However, as shown in our
prior work [8], timing mismatch can be well approximated as
linear in deriving the iterative algorithm for joint channel and
mismatch estimation investigated here (and described shortly).
However, we restrict attention in our analysis to gain mismatch
in this paper, in order to obtain detailed insight into the

progress of the algorithm. In this setting, the received samples
are given by [7]:

r[m] = (1 + gi)
m�

k=m−(N−1)

b[k]h[m− k] + n[m], (2)

where i = m mod L = i (corresponding to the samples
collected by sub-ADC i, i = 0, 1, ..., L−1), gi denotes the gain
mismatch for the ith sub-ADC (with respect to unity gain), and
{h[m]} denotes the channel coefficients expressed at symbol
rate, assumed to be non-zero only when m ∈ {0, · · · , N −1}.

We now express (2) in vector notation:

ri = (1 + gi)Aih + n, (3)

where ri, h and ni represent the vectors of received
samples, channel and noise. The matrix Ai depending on the
training sequence can be readily defined using (2). Given the
vectors of received samples in (3), the goal is to estimate
the channel vector h, and the L mismatch parameters, {gi}.
Neglecting correlations (if any) among the noise samples n,
the maximum likelihood (ML) estimates satisfy:

(ĥ, {ĝ0, · · · , ĝL−1}) = arg min
L−1�

i=0

||ri−(1+gi)Aih||2 (4)

We now review the alternating minimization strategy pro-
posed in [8] to solve the joint estimation problem in (4).
Given the mismatch estimates g(n)

i
at the nth iteration, the

ML channel estimate for (4) is the solution to
�

L−1�

i=0

(1 + g(n)
i

)At

i
Ai

�
h(n) =

L−1�

i=0

At

i
ri, (5)

where n = 0, 1, 2, · · · . On the other hand, given the channel
estimates, the ML estimate for the mismatch parameters g(n)

i

progress as follows:

1 + g(n)
i

=
(ri,Aih(n−1))
||Aih(n−1)||2

, (6)

The algorithm is initialized by setting the initial mismatch
estimates to zero: g(0)

i
= 0. We note that there is a scale

ambiguity in (4): if (h, {gi}) are solutions, then so are
(xh, {gi/x}). We therefore scale the gain estimates 1 + g(n)

i

by a constant to set the mean mismatch to zero.

III. CONVERGENCE RATE

In (5), the complexity of each iteration depends dominantly
on inverting an N ×N matrix, hence the overall complexity
of the algorithm scales with the number of iterations. Thus, a
scalable design for a TI-ADC architecture must maintain the
convergence rate as the number of sub-ADCs, L, increases. We
therefore focus on characterizing the convergence rate, defined
as

αn =
||h− hn||

||h− hn+1||
, (7)



(expressed on a logarithmic scale as 20 log10(αn)
dB/iteration).

After ignoring noise, our analysis relies on the interesting
behavior depicted in Fig. 2, where the channel estimates
h(n) progress along a straight line joining the initial channel
estimate h(0) and the true channel vector h. Our results
(derived in Section V) indicate that the convergence rate, α,
depends on the norms and the inner products of the vectors
ui = Aih and vi = Aih0. Further, given the vectors ui

and vi, the asymptotic convergence rate (as iteration number
n gets large) is independent of n and weakly depends on the
mismatches. In the limit of small mismatches (tending to zero),
the asymptotic convergence rate is given by,

α =
�

L−1
i=0 σi�

L−1
i=0 ρi(κi − κ)

(8)

where the terms ρi, σi and κi are defined as follows:

ρi = (Aih, Ai(h−h0)), σi = ||Ai(h−h0)||2, κi =
ρi

||Aih||2 ,

(9)
and κ is a weighted average of κi:

κ =
1
L

L−1�

i=0

(1 + gi)κi (10)

The formula in (8) enables us to compute convergence rates
as a function of the training sequence and the initial channel
estimate h(0). However, it can be simplified to provide the
following compact rule of thumb by exploiting the random-
like properties of long pseudo-random sequences:

αr =
M

L
(11)

The preceding formula indicates that we need to increase the
training sequence length M linearly with the sub-ADC number
L in order to maintain a given convergence rate.

Next, we present simulation results comparing our analytical
results (8) and (11) with empirically observed convergence
rates, followed by a sketch of the derivations of these analytical
results.

IV. SIMULATION RESULTS

We consider a maximal length pseudo-random sequence
p[n] with generator polynomial z8 + z6 + z5 + z4 + 1 as the
training sequence. This sequence repeats every 255 symbols.
For training length M < 255, we truncate the sequence to M
symbols. For transmission, we use antipodal signaling so that
the transmitted signal is (−1)p[n] shaped by the transmit filter.

Fig. 3 plots the convergence rate as a function of the number
of sub-ADCs, L. As the length of training sequence, M ,
increases, the convergence rates improve for a fixed L. The an-
alytical estimates obtained using the straight-line progression
approximation agree closely with the observed convergence
rates (averaged over 50 randomly generated channel and
mismatch sets). The analytical results deviate from simulations

at large L (i.e., small M/L), which is consistent with Fig. 2,
which shows that approximating the algorithm’s progression
as a straight line is less accurate for smaller M/L. Next, fixing
the training sequence length M = 256, we see from Fig. 4
that the convergence rate agrees closely with the formula in
(11) for relatively large L, when M/L ≤ 8.
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Fig. 3: Mean convergence rate of alternating minimization:
Training sequence length M increases as we move away from origin
as 32, 64, 128 and 256.
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Fig. 4: Simple formula for convergence rate : Mean conver-
gence rate is well approximated as 20 log10(M/L) dB/iteration
when M/L ≤ 8 for a pseudo-random training sequence of length
M = 256.

V. SKETCH OF DERIVATIONS

In this section, we sketch the derivations of the convergence
rate formulae (8) and (11) in Section III. We introduce the
more compact notation g̃i = 1+gi, and refer to g̃i as the gain
of the ith sub-ADC.



A. Straight line progression

The straight line progression motivated by Fig. 2 is mathe-
matically expressed as:

h(n) = βnh0 + (1− βn)h (12)

where n denotes the iteration number.
The gain estimates can be written using (6) as follows (recall

that we ignore noise in our analysis):

ˆ̃gi = g̃ifi(βn−1) (13)

where fi(βn−1) is given by

fi(βn−1) =
(Aih,Aihn−1)

(Aihn−1,Aihn−1)
(14)

Under the straight line approximation, the channel estimate
at the nth iteration, given the gain estimates in (13), depends
only on a single scalar parameter βn. We can now use (12) to
recast the channel estimation problem in terms of βn:

βn = arg min
L−1�

i=0

||ri − ˆ̃giAi(βnh0 + (1− βn)h)||2 (15)

We now evaluate (15) using ri from (3) (neglecting noise) and
ˆ̃gi from (13) to obtain

βn = arg min
L−1�

i=0

||ui − βnvi||2 (16)

where the vectors ui and vi are given by

ui = g̃i(1− fi(βn−1))Aih (17)
vi = g̃ifi(βn−1)Ai(h0 − h) (18)

The solution to (15) can be obtained in terms of the vectors
ui and vi as follows:

βn =
�

L−1
i=0 �(vH

i
ui)�

L−1
i=0 ||vi||2

(19)

Using the definition of convergence rate in (7) and of βn in
(12), we obtain the convergence rate α as

α =
βn−1

βn

(20)

We now use the expression for βn from (19) in (20) to
obtain an expanded expression for α :

α = βn−1

�
L−1
i=0 ||vi||2�

L−1
i=0 �(vH

i
ui)

(21)

Using the expressions for vectors u and v from (17), we
can rewrite α as

α = βn−1

�
L−1
i=0 σig̃2

i
f2

i
(βn−1)�

L−1
i=0 ρig̃2

i
fi(βn−1)[1− fi(βn−1)]

(22)

where the scalars σi and ρi are defined as in (9).

B. Asymptotics of the convergence rate
While the iterative algorithm only takes a few steps to

converge in a well-designed system, it is useful to compute the
asymptotic convergence rate (i.e., the limit of α for large n) in
order to provide simplified rules of thumb. From the expression
for convergence rate in (22), we see that the iteration number is
buried in βn−1. If the algorithm converges, βn−1 → 0, hence
we evaluate the limit of α as βn−1 → 0. We first consider the
following limits:

lim
βn−1→0

fi(βn−1), lim
βn−1→0

1− fi(βn−1)
βn−1

(23)

where fi(βn−1) is defined in (14) in terms of hn−1. We can
rewrite fi(βn−1) as a function of βn−1 by using the expression
for hn−1 from (12):

fi(βn−1) =
βci + (1− β)e

β2e0 + (1− β)2e + 2β(1− β)ci

(24)

where we have dropped the subscript of β for simplicity, and
where the scalars ei, e0

i
, ci are defined as:

ei = ||Aih||2, e0
i

= ||Aih0||2, ci = (Aih,Aih0)
(25)

We can now employ expansions in terms of β to evaluate the
desired limits as follows (details are omitted due to lack of
space):

lim
β→0

fi(β) = 1

lim
β→0

1− fi(β)
β

=
ci − ei

ei

� κi (26)

We now obtain the asymptotic convergence rate by evaluating
the limit of (22) as βn−1 tends to zero:

α =
�

L−1
i=0 σig̃2

i�
L−1
i=0 ρig̃2

i
κi

(27)

C. Accounting for gain scaling
We now modify the asymptotic convergence rate estimate to

account for the scaling step in our algorithm, where the gain
mismatches are scaled such that the mean mismatch is zero.
We use (13) to obtain the modified gain mismatch estimates
as,

modified ˆ̃gi =
g̃ifi(β)

1
L

�
L−1
i=0 g̃ifi(β)

(28)

Comparing (28) with (13), we observe that they are identical
except that in the former, fi(β) is scaled by an additional
factor, G, given by,

G =
1
L

L−1�

i=0

g̃ifi(β) (29)

We can simplify (29) by using fi(β) from (24) and the fact
that the true mismatches have zero-mean:



G = 1− βκ + o(β), where κ =
1
L

L−1�

i=0

κi
ˆ̃gi (30)

We now re-evaluate the limits in (26) taking into account
that fi(β) are scaled by G:

lim
β→0

fi(β) = 1, lim
β→0

1− fi(β)
β

= κi − κ (31)

Hence, the asymptotic convergence rate gets modified to:

α =
�

L−1
i=0 σig̃2

i�
L−1
i=0 ρig̃2

i
(κi − κ)

(32)

D. First order approximation w.r.t mismatches

In practice, the mismatches are small, and the gains {g̃i}
are in a small range around unity. From (32), we understand
that these cause second order variations in the convergence
rate. Ignoring these, we can simplify the expression for the
convergence rate as follows:

α =
�

L−1
i=0 σi�

L−1
i=0 ρi(κi − κ)

(33)

E. Long pseudo-random training sequence and channel

We now use the random-like properties of long pseudo-
random sequences to simplify (8) to (11). For large N and
M/L� N , the matrix At

i
Ai has M/L non-zero eigenvalues

all of which lie close to N . Then, we can rewrite ρi in (9) as,

ρi = N

M/L�

i=1

(htai)(at

i
(h− h0)) (34)

where {ai} represent orthonormal eigenvectors of At

i
Ai.

The random variables htai (and similarly, at

i
(h − h0)) are

zero-mean and independent across i. Also, since a randomly
chosen channel vector, say h, looks random w.r.t an orthonor-
mal basis, say {ai}, we have E[(htai)2] = ||h||2/N . This
implies,

E[ρ2
i
] =

M

L
· ||h||2 · ||h− h0||2 (35)

We now estimate the terms κi and σi in the expression (33)
for the convergence rate, using the approximation ||Aix||2 ≈
M

L
||x||2. This yields

κi ≈
ρi

M

L
||h||2

, σi ≈
M

L
||h− h0||2 (36)

For small mismatches, we can approximate κ by the mean
of κi, which implies the convergence rate to be,

α ≈ M ||h− h0||2
�

L−1
k=0 ρ2

k
− (PL−1

k=0 ρi)2

L

· M

L
||h||2 (37)

Using (35) and neglecting the negative term in the denomina-
tor, we obtain the result in (11).

VI. CONCLUSIONS

We have studied an iterative algorithm (with exponential
convergence) for jointly estimating the channel and time-
interleaved ADC mismatches in a communication receiver.
Based on the interesting observation that the progression of
channel estimates is well approximated as a straight line
joining the initial estimate and the true channel, we were able
to derive closed form expressions for the convergence rate.
A key insight is that the training sequence length must scale
linearly with the number of sub-ADCs in order to maintain the
convergence rate. As a concrete example, consider a sampling
rate of 2 Gsamples/s obtained using a TI-ADC with 32 sub-
ADCs, each sampling at 62.5 Msamples/s (easily realized
using a power-efficient architecture). For a nominal channel
delay spread of 10 ns (e.g., for an indoor 60 GHz channel),
we have N = 20 channel coefficients. From the results
in this paper, a pseudo-random training sequence of length
M = 128 results in a convergence rate of approximately
20 log(M/L) = 13.3 dB/iteration, implying that 3 iterations
of the algorithm could lower the mean-squared error in the
channel estimates by 40 dB, which should be adequate to
support constellations as large as 16QAM without significant
error floors.
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