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Abstract—Realization of all-digital baseband receiver process- are available [8], [10], [13], we assume that perfect edma
ing for multi-Gigabit communication requires analog-to-digital  of these parameters are available.
converters(ADCs) of sufficient rate and output resolution. A
promising architecture for this purpose is the time-interleaved t=4dT

ADC (TI-ADC), in which several “sub-ADCs” are employed A

in parallel. However, the timing mismatch between the sub-

ADCs, if left uncompensated, leads to error floors in receive _

performance. Standard linear digital mismatch compensatn = (4d+1)T

(e.g., based on the zero-forcing criterion) requires a numér of +@

taps that increases with the desired resolution. In this pagr, we Analog 4-t0-1|  Digital
show that oversampling provides a scalable (in the number of Input t=(4d+2)T MUX Ouput
sub-ADCs and in the desired resolution) approach to mismate AD

compensation, allowing elimination of mismatch-induced eor

floors at reasonable complexity. While the structure of the
interference due to mismatch is different from that due to a
dispersive channel, there is a strong analogy between the leo be
of oversampling for mismatch compensation and for channel
equalization. We illustrate the efficacy of the proposed mimatch

Compensat|on techr"ques for an OFDM receiver. F|g 1 Ideal time-intel’l'eaved ADC with 4 sub-ADCs. The Séing)instants

(d = integer, T, = sampling period) of the sub-ADCs are staggered such that
each sub-ADC operates at one-fourth of the net samplingofatfee TI-ADC

;

t= (4d+3)T

:

I. INTRODUCTION

- . » A. Contributions
The analog-to-digital converter (ADC) is a critical compo-

nent in modern digital communication receivers, enabliogtc N order to alleviate the performance floor due to mis-
effective, all-digital implementation of sophisticatedseband Match, we consider the standard technique of linear mismatc
signal processing algorithms. However, as communicatiGRMPensation (which can be implemented digitally using the
bandwidths increase, the availability of ADCs with suffidie duantized samples at the output of the TI-ADC). When the
speed and resolution becomes a concern: Gigahertz ba@¥grall TI-XADC operates at the desired sampling rate, the
widths are required for emerging ultrawideband and milim&umber of taps required scales up rapidly with the desired
ter wave [1] applications, while 8-12 bits of resolution ar&esolution. The main contribution of thIS paper is to showatth
required for providing enough dynamic range when operatifide number of taps can be reduced significantly by the use of
in multipath environments with large constellations. Teere 0Versampling. While we find through our simulation results
nology of choice at GHz speeds is “one shot’ Flash ADéhat oyersamph.ng by 25% is effective, for the special cédse o
but it becomes unattractive beyond 5 bits resolution, due $§MP!ing at twice the symbol rate, we prove that a Bezout-
exponentially (in number of bits) increasing power consumpke identity holds for mismatch compensation, so that @erf -
tion and hardware complexity [5]. An attractive alternatiga 2€ro-forcing compensation can be guaranteed using a finite
time-interleaved (T1) architecture (Refer Fig. 1.), wheeseral NuUmber of taps. This is analogous to results from fractignal
low rate, high resolution, “sub-ADCs” can be operated ispaced channel equallza_non, even th(_)ughthe detailedente
parallel to obtain a high overall rate and resolution. Hosvev €"C€ structure due to mismatch is different from that due to
an inherent problem with the TI-ADC architecture is misint€rsymbol interference. In practical terms, our resitply
match between the sub-ADCs [7]. Left uncompensated, suf}al; When the system bandwidth and the sampling rate of an
mismatch leads to error floors when TI-ADCs are employé@dividual sub-ADC are fixed, we can achieve better effectiv
in communication receivers [13]. We consider a linear modgfsolution at lower complexity by increasing the number of
for the TI-ADC mismatch by assuming that each sub-ADC RUP-ADCs beyond the minimum required.

modeled as a linear, time-invariant channel. In additiomes g Related work and Comparison

effective algorithms for estimating the mismatch paramsete | _ ) .
Digital mismatch compensation for TI-ADCs has received

1This research was supported in part by the National Sciencedation a great deal of aFtentlon 'n the I'teratl:'ret [8]'[13]' S'n(.:e
under grant CCF-0729222. the exact zero-forcing equalizers are of infinite lengththwi



slowly decaying taps, truncated/least-squares soluter® where h(t) represents the interpolating function. The class
employed in [8], [9], [10]. Even then, a large number obf signals in (1) is fairly general: for example{t) could
taps were needed when the resolution requirement and/or tlemote a general bandlimited signal, witft) taken as the sinc
mismatch range is large. function, or{z[n|} could be interpreted as symbols transmitted
Oversampling was priorly used to aid in mismatch comn a linearly modulated communication system, witit)
pensation [10], [11], [12]. Specifically in [10], the misroht taken as the impulse response of a cascade of the transmit,
estimation is facilitated by the use of oversampling but thehannel and receive filters.
compensation needed 41-tap FIR filters. In [11], [12], FFT- The ADC has a time-interleaved architecture as in Fig. 1,
based compensation is proposed for higher accuracy but #ieéh L sub-ADCs indexed by integers between 0 dné- 1.
calculation of many FFTs (equal to the number of sub-ADCs¥e model the'" sub-ADC by a linear, time-invariant channel
seems expensive for a typical communication receivemggtti responseh,; (t): gain, timing and bandwidth mismatches are
In our own prior work on OFDM-specific mismatch com-special cases of this model [8]. Thus, the variationhgft)
pensation for TI-ADCs, we developed a frequency domaigith | captures the mismatch among the sub-ADCs [8]. The
approach whose complexity scales withthe number of sub- ;th g,p-ADC outputs nontrivial samples at timé@sL + 1)7,,
ADCs (regardless of the mismatch level) when the number gy integer, and outputs zeros at all other times. Assuming

subcarriers is a multiple of. high enough output resolution, we ignore quantization eois

C. Organization The digital output of the/th sub-ADC, y;[m], can then be
The paper is organized as follows. In section Il, we descrifg'tten in terms of the analog inpuf(t) as [8]

a z-domain discrete-time model for TI-ADC mismatch and 00

zero-forcing mismatch compensation. Section Ill discaisse y[m] = Z z[n|hyfm —n], mmodL =1

how oversampling can reduce the number of taps required n=—00

for mismatch compensation, including a proof that mismatch = 0, otherwise (2)

induced interference can be eliminated using finite-length _ .
filters when we oversample by a factor of two. Section IWhere mod denotes the modulo operation and the function
illustrates performance-complexity tradeoffs for an OFDNu(t). henceforth termed theub-ADC responses the convo-

receiver, and Section V contains our conclusions. lution of the sub-ADC responsk;(¢) with the interpolating
) function h(t).
o Considery;[m], def|r!ed as the convolution af[m] with
e L hi[m]. The corresponding-transforms are related &3(z) =
= ey - G, X (2)H;(z). We can now relate the transforms @fm| and
0 to obtain [2
- nal -2y 7L v ulm [2]
S o 1 L=t o
° ° Yi(2) = 7 > wpViwpz) 3)
= (kLL-nT t= (kLT =0
HE - O where we have collected terms with degréed: L for integer

k from the polynomial;(z) to obtainY;(z), and whereu;, =
Fig. 2. Linear model for mismatch in a TI-ADC and zero-fogibased mis- i27/L jg gn Lth root of unity. We now add the outputs of all
tch tiork€integer, Tp= l iod). All bols indicat . . .
match compensafiork€integer, T, =sampling period). All symbols indicate sub-ADCs and use the linearity of thetransform to obtain

discrete streams at the symbol ratg*.
the transform of the TI-ADC outpuj[m] as
Il. SYSTEM MODEL

We first elaborate on a linear mismatch model for L-1 ‘
the TI-ADC and then give details of the linear schemes Y(2) =) X(wr'2)Fy(2) 4
(based on zero-forcing equalization) employed for misimatc i=0

compensation.
A. TI-ADC model

where the termd;(z) are given in terms of{;(z) as

L—-1
We consider the problem of sampling an analog sigria) Fi(z) = 1 Z wr, U H) (wh 2) (5)
with the sampling period’,;"*. The desired digital samples, L =

denoted byz[n] = z(nT,), would be referred to asymbols _ . _
and bysymbol rate samplingwe mean sampling at the ratelf Hi(z) = 1 for all I (no mismatch, ideal transfer functions

of T;!. We assume that the values of the continuous sigrfar all sub-ADCs), thenY(z) = X(z). In general, the
z(t) can be obtained by interpolating the symbols as expression forY'(z) in (4) has a signal term¥y(z)X(z),
o and interference term§F;(z) X (wr'z)} for i # 0. We now

z(t) = Z z[n]h(t — nT)) (1) discuss conventional zero-forcing mismatch compensdtion

eliminating the interference terms.

n=—oo



B. Zero-forcing mismatch compensation Since the matrixA(z) contains information about the mis-
match responsegH;(z)}, it characterizes the TI-ADC, hence
we refer to it as thesystem matrixOnce we obtain{¢(z)}

from (11), we can find~;(z) by obtaining the inverse relation

First consider a single sub-ADCL(= 1) with non-ideal
response, in which casé(z) = Hy(z)X (z). In this case, the
zero-forcing equalizer is given b§o(z) = [Ho(z)]~!. For L
interleaved sub-ADCs, zero-forcing mismatch compenﬂati&O @)

(which also addresses non-idealities in the sub-ADC teansf Lt Ik Lk

functions) can be achieved usinf equalizers in parallel, Gi(z) = ZU’L Pr(wr™"2) (13)
{Gi(#)}, as shown in Fig. 2. These equalizers operate on k=0

the TI-ADC outputy[m] such that thé™ equalizer output is We now illustrate, through a running example, how linear
calculated only for discrete time indices of the fokth+1 for  equalizers can be obtained when there is timing mismatch
integerk. Thus, in practice, the., parallel equalizers can beamong the sub-ADCs.

implemented as a single filter with periodically time-vayi 1) Running ExampleWithout loss of generality, we as-

coefficients with period.. Owing to the similarity between symeT, = 1 and consider the sub-ADC respongg(t), as
the structures of the TI-ADC and the equalizer, we can U2t + 6,), where the functiorh(t) is chosen to be

(4) for relating the equalizer outptlf’(z) to the equalizer

input Y (z) as 10(1 — [¢]), <3

L—-1 2
Y'(2) =Y o()Y (wh2) (6) h(t)=q 10(jt| —2), $<|f]<2 (14)
k=0 0, otherwise
wheregy(z) is defined in terms of the equalizer filtef&:(z)}  we considerZ = 2 (two sub-ADCs) ands, = 1/10,5; =
as —1/10. Hence, the timing mismatch (relative 19) is =10%.
1 L=t The z-domain responses of the sub-ADCs can be written as
bk (2) = 7 > wy T G (wiz) (1)
1=0 Ho(2)=9—z'42-2°"Hi(z) =942 " —2+2> (15)

We now substitute the expression foz) from (4) in (6) t0 e can now obtair, and F; using (15) in (5) and then find
simplify Y () as the system matrixd. We solve forg in (11) and then use the
obtained values ofy and ¢; in (13) to give expressions for

L—1L-1 . :
/ ; the zero-forcing equalizers as
Y'(2) = Fi(wi*2)gp(2) X (wi"F2)  (8) 94
i=0 k=0 _ 3 _ 2 1 _ 3 2 _ 1
- . Go(2) = 2;;(2_ 42_ ;—9221_ )’Gl(z) =26 i(z4 i—; 2 _) (16)
We now collect the terms of the fordi (w;,“z) in (8). Since, 20 =28 =T92% — 1 20 =28 =T792% — 1

wr® = w§ ™9L we can restrict the range of to integers in

From (16), it can be seen thdf,(z) and G1(z) possess
[0, L —1]. The R. H. S of (8) can now be rearranged as

an infinite power series expansion. This implies that the
L—1 corresponding time-domain functiogs[n] and g;[n] cannot

Y'(2) = Zx(wL%) Z Fi(w*2)¢r(z)  (9) be implemented as FIR filters. It is easy to see that this
a=0 (4,k)ESa observation holds in general. For finite-length mismatch

responseq h;[n]}, the z-transforms{ H;(z)}, and hence the

entries of the matrix4(z), are finite-length polynomials. The
satisfy (: + k) mod L = «. Clearly, eachS, has only one ! be(z) n gt poty !

| ¢ which i £ N | th (:i;olutiong to (11), when it exists, is, in general, rational
element, which 1o — k. Now, we can replace the secon unction.Consequently, the zero-forcing choices®@f(z) are
summation in (9) by a single summation oveas

rational functions with infinite-length time domain resges
/ L-1 in general. In the next section, we show that, under certain
Y'(2) = ZX(wLaz)ZFa_k(kaz)m(z) (10) conditions, we can obtain FIR equalizers for mismatch
a=0 k compensation by the use of oversampling.

where the seb,, includes all0 < k,i < L—1 that additionally

where we have used the fact thBf = F; noqr. FOr zero-
forcing the interference termSX (wy“2)} (for i # 0) in the [1l. OVERSAMPLING FORSCALABLE MISMATCH
expression forY/(z) of (10) and to consequently obtain an COMPENSATION

undistorted signal ternX (z) (except for an integer delay),

we need to satisfy the following system of equationg(n) = . ) . .
{(6o(2),--+ & lez)}t gsy q 8(n) L = 1. We consider a rational oversampling ratio pfq,
0=t PL where p and ¢ are relatively prime positive integers such

A(2)p(z) = 27 4(1,0,---,0)} ., (11) thatp > g¢. From (1), them™ output sample of they/q-
- oversampling TI-ADC can be obtained as

For ease of exposition, we first consider oversampling for

where the(a, k)™ entry of theL x L matrix A(z) of (11) is
given by m| = xnh(<m—n)T) 17
Aa e = Fap(wiFz) (12) ylm] = > 2ln] » o (17)

wyg, = n



In order to find the output-transform, we first consider thewhere we used the faet;, = w for ¢ = 1. For zero-forcing

following discrete signals: equalization, we consider filters {G;(z)} as in (6) such that
glm] = ylgm] successive outputs are obtained from different filters atjrey
_ _ z[m/p], m modp =0 in succession. _Usmg (22) in (6), the output of the equalizer
z[m] 0, otherwise can be written in the-domain as
=~ mT, , L-1L-1 ‘
i) = #(75°) a8 V'(2) = 303 Fiwba)on(2) X (22 (24)

i=0 k=0
The equalizer output in (24) refers to a discrete signal atew
the symbol sampling rate. To obtain the “symbols” we down-
sample (by 2) the signal represented By(z) in (24) and
then, give conditions for zero-forcing the interferencems.
The transform of the down-sampled version is given by [2]

Clearly, y[m] and z[m] represent the down-sampled (by
and up-sampled (by) versions ofy[m] andxz[m] respectively.
Now, it can be deduced from (18) thgftn] is a convolution of
z[m] andh[m] or equivalently, the correspondingtransforms
are related a¥’(z) = H(z)X(z). In (18), we use the-
transform properties related to up/down sampling[2] tcagbt

B , L—-1L-1

Y(z) = 261 1 X (whzP/)H (whz'/9) o) Yal2) = % ; kZ_O(Fi(wku)%(U) + Fi(—w*u)r(—u))
k=0 i

X (w?F2) (25)

wherew, = ¢/?7/4. Note that whem = ¢ = 1, the expression
for Y (z) in (19) reduces toX () H(z), which agrees with the Where u = /z. We realize that the functiongy(u) and
discussion in section II.A. ¢x(—u) are dependent on each other. To obtain an uncon-

We now consider the general case bfinterleaved sub- strained zero-forcing problem formulation, we define two
ADCs. As in (18), we can define, for eatha discrete signal transformed variablesy, . (u) and ¢y, (u) as

hi[m] that is obtained by sampling the corresponding sub- o B Rt e
ADC responseh(t) at p times the symbol rate. If thé" %’“’6(“) = o1 (u)+dr(—u), 20k,0(u) = u™ (¢r(u) ¢k((21g)))

sub-ADC were to obtain all the samples, that is at the rate . - . :

of pT,!/q, the outputz-transform is obtained from (19) byatL:le ?bkth(eu)pogzr ;ke”a S) e(:):)ﬁ;:o&:fifg)t' g)iﬁ?ggr:gegf
replacingH(z_) by H(z). In the time_z-interleaved architecture,the exr;;nsion and ;[(Flus, can be chosen independent of each
we use (19) in (3) and (4) to obtain other. Now, the zero-forcing conditions (with a delay
—1L-1 _ for the 2-times oversampling case are given by (11) with
Y(z)=> > XurHtrpl0F,  (z1/9) (20) ¢ = {Go.e, - PL1.0,P0.0,- - » P11} and in this case,

0 i=0 the L x 2L system matrix4(z) has its entries as

Q

=
Il

p=q= 1 case in (4), the cogﬁicignt@i7k(zl/q) vary over u2 Yics Fo(wfu), L<k<2L-1
two variables(i, k) and are defined in terms of the sub-ADC ok 27)

responseq Hi(z)} as whereu = /z. The functionsF; . and F; , are defined as
1 = G kL in (26) by replacingp, by F;. The setS,, for an integera,
Fip(z) = — > wm Hy (wh ) (21) is defined asS, = {i : (2i) mod L = a}. After solving the
= equation (11) using (27), the solutiahcan be used in (13)
We now analyze the special case of oversampling by t@ obtain the equalizer§G;(z)}. We now revisit the running
to obtain useful insights regarding the length of the zerexample to show how oversampling can help to simplify the
forcing equalizers. The analysis also applies to othemite equalizer design.
oversampling factors, but in practice, we would probably be 1) Running ExampleWe consider the same case lof= 2

interested in rational oversampling factors between 1 and ?#gg%%so Ibgattgss'lyr:gestﬁgpfgecnreetsZ%Ts?(lalggsraartﬁpllz é"";,[ ttlvr\r/]i(éz

wherew = e'i% | Compared to the expression obtained for the 4 { Sies. , Fie(whu), 0<k<L-1
a,k = o

A. Oversampling by 2 the symbol rate, are given by
Substitutingp = 2,¢ = 1 in (20), we obtain the following 2*Ho(z) = —2% — 427 + 2 4 62° + 92* + 42° — 2* — 42
expression for the TI-ADC output: PAHi(2) = 42" — 254 42° 492" +62° + 22— 42— 1 (28)
L—-1 . .
To determine the system matrik, we calculateF, and F;
— 21,2 )
Y(z) = Z X(w™2%)Fi(z) (22)  sing (23) and determing, of (27) for the allowed values of
_ =0 a = {0,1}. We obtainSy = {0,1} andS; is empty. Now, we
where F;(z) is now defined as can write the system of equations from (11) using (27)

LS i b(2)¢o.e + zc(2) oo = 2412
Fi(z) = — B (0! 23 0,e 0,0
(2) =1 ; w Hy(w'2) (23) o) e 20N = 0 9



where we replaced with /z. The functiong)(z) andc(z) in  parameterqd;} relative to the sampling period,, for each

(29) are given as(z) = —z%+234+922—z andc(z) = —423+ case on Y-axis, are chosen 46.6,0.8,—0.7,0.8}, scaled

422 + 62 — 4. Due to the greater number of variables, severhy the corresponding relative mismatch value. We observed
solutions are possible the two equations in (29) and we are common zeros between the determinants and thus, the
particularly interested in polynomial solutions. For tleeend existence of a finite length equalizer is guaranteed.

equation, we have a trivial solutiot .(u) = ¢1,0(u) = 0.
For the first equation, the application of the standard Bezou
identity to polynomials with no common zerdgz) andc(z),

implies the existence of polynomial solutions for bath,. e EARE B U B AR
andgy . These solutions can be found by using the extend 5% s o @ o ® oh 0 0® 0 :
Euclidean algorithm [3]. The obtained solutions are used giw oo ax N |
(13) to obtain finite length equalizets,(z) and G, (z). z¢

The existence of finite length equalizers can be generaliz &£ ©00 ek 000 1

for a two-times oversampling TI-ADC withl. sub-ADCs.
From (27), we can decompose tliex 2L matrix A into two

* First effective TI-ADC
O Second effective TI-AD

L x L matricesB andC, such thatB consists of the firsf. = ! o o5 : is 2
Roots of the determinant of system matrix
columns of A and C' has the next. columns. Now, we can
rewrite (11) used withA obtained from (27) as Fig. 3. Zeros of the determinants of the matrid@andC (corresponding to
_ the two effective TI-ADCs in 2x oversampling) as a functidireative timing
d t
B(z)@b(z) + O(Z)?C(Z) =2z %1,0,--- aO)Lxl (30)  mismatch. The zeros are all real and there are no zerdstaf’ beyond the
depicted range. We ignored any common zeros &t 0.
where ¢,(z) = {doe(2). - .6r1.(2)} and ¢ (z) =
{b0,0(2), -+ ,dr-1,0(2)}. We now state the following lemm

regarding the existence of finite length zero-forcing eigeas T R

expressed in terms of the matricBsand C'. x ] x ]
Let det denote the determinant of a matrix (this is

polynomial when the matrix has polynomial entries).

Lemma 1. Finite length zero-forcing equalizers exist f w w

mismatch compensation in the two-times oversampling ¢ i i

when the polynomialdet B and det C, corresponding to the — No compensation o compensation
two effective system matricé8 and C, have no zeros ir wy| e e 107} |-+ Pre-FET (5 taps)

——Pre-FFT (21 taps)

common. ——Post-FFT

——No mismatch

——Modified-FFT

—=—No mismatch

Proof: We first realize that (30) is a system of line
equations ing, (z) and ¢ (z). The coefficient matrix/’ = T e S R S S s R O
— =< . . . . Eb/No (in dB) Eb/No (in dB)
[B(z) C(z)] is a L x 2L matrix with polynomial entries @ ®)

We can form the augmented matrliX, by appending the _ ' _
column vector on the R. H. S of (30) to the matrix. Fig. 4. BERin a 64-QAM, 128-subcarrier OFDM system emplgyénsloppy

. . . . TI-ADC with 10% timing mismatch. For the left subfigure (a)yduist rate
From [4], polynomial solutions exist for all the entries okampling is performed and the TI-ADC interleaving factbris 8. On the
?b(z) and Qc(z), when the greatest common divisor (gcdyther hand, we assume two times oversampling &ne= 32 in the right
of all the L x L determinants is same for bofi and U,. su_bf|gure (b). The Mo_d|f|ed-FFT app(oach corresponds to abNDBpecific
. . ismatch compensation approach given in [14].

(Actually, [4] provides results for when the variables and
coefficients in the linear system of equations are integers, 'V- APPLICATION TO AN OFDM RECEIVER EMPLOYING A
this result extends to polynomials). By hypothesist B(z) TI-ADC
and det C(z) have no common zeros and hence the gcd isWe now illustrate the use of oversampling for mismatch
1. These two determinants constitute two of all thex . compensation by considering a communication link using 128
determinants calculated for both the matri€eandU,,. Since subcarrier OFDM with 64-QAM signaling on each subcarrier,
the gcd of any other polynomial with 1 is also 1, we concludeansmitted (with no excess bandwidth) over a frequency
the required gcd s are same (equal 1) for bbthand U,, selective communication channel. In our numerical resulées
implying the existence of a polynomial solution to (30).m use a channel impulse response obtained as a realizatiba of t

Referring to the running example, we have, from (29), thatar Line-of-Sight (LOS) channel model defined in the UWB
det B = b%(z) anddet C = z2c*(z) and the determinants standardization process [1]. For the TI-ADC, we consider a
can be verified to have no common zeros, except far-atd, 10% relative timing mismatch for each sub-ADC. Details of
which anyways can be traded off with a delay in (30). We givae channel and mismatch parameters are omitted here due to
further illustration of the relation between the zerosdet B lack of space, but are available at [13], [14].
and det C' in Fig. 3, where we considef. = 4 sub-ADCs Following the discussion in Sections Il and lll, ideal zero-
and assume different levels of timing mismatch. The misatéorcing equalizers for mismatch compensation can have an




infinite number of taps. In this case, we can employ Minimursub-ADCs with high resolution. For example, consider an
Mean-Squared Error (MMSE) mismatch compensatio@FDM transceiver employing 64-QAM over a communication
minimizing the total residual interference power with aténi bandwidth of 1 GHz (uncoded bit rate of 6 Gbps). For 2x
number of taps. When there exists a finite length zero-fgrcioversampling, each of the | and Q components require a
(ZF) solution (as in the two times oversampling case und&-ADC operating at an aggregate sampling rate of 2 GHz
certain conditions), a ZF equalizer would be obtained as théth 8-10 bits resolution. If we use 32 sub-ADCs with the
MMSE solution for a sufficient number of taps. In othesame resolution, each sub-ADC must operate at 62.5 MHz.
cases, as our numerical results illustrate, the equaleegth Attractive low-power solutions for implementing such loate
must increase with the desired resolution in order to lifmét t sub-ADCs exist in Pipelined or Successive-Approximation
residual interference to an acceptable level. Register (SAR) architecture [6], resulting in reasonable
Zero-forcing time domain mismatch compensation is averall power consumption. Of course, detailed circuitigies
general applicability, but given our focus on OFDM in this-se and evaluation are required to determine the efficacy of such
tion, we also evaluate the performance of a frequency-domaystem-level designs.
mismatch compensation scheme that we proposed in [13]A specific topic of ongoing research is to extend the ideas
which is specifically designed for OFDM receivers. It wapresented in this paper to more general mismatch models and
shown in [13] that, regardless of the desired resolutioncare to design efficient algorithms for estimating the mismatch
compensate for mismatatfter the FFT usingl-tap frequency parameters either by using specialized on-chip trainingyor
domain equalizers operating on groups of subcarriers @f sizsing the training information available in communication
L, when the number of subcarriers is a multiple of the numbsignals. A broader area of investigation is the design of
of sub-ADCsL. We refer to this scheme &ost-FFT compen- scalable mismatch compensation techniques for generic
sation, and to the general zero-forcing mismatch compemsatapplications of TI-ADC.
solution here are-FFT compensation. For large constella-
tions, we desire a high ADC resolution: in this case, post-
FFT Compensation works well for Smdj' but that pre_FFT [1] |EEE 802.15 WPAN ngh rate Alternative PHY Task Groups, 3&,

I ) . . . Available at http://www.ieee802.0rg/15/pub/TG3a.htfhG3c.html
compensatlon Wlth_ oversampling (to limit complexﬂy as thFZ] S. K. Mitra, “Discrete Time Signal Processing; McGraw Hill, 1998.
desired resolution increases) becomes attractive foelarg [3] E. Bezout, “General Theory of Algebraic Equations’ Princeton
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