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Abstract—Realization of all-digital baseband receiver process-
ing for multi-Gigabit communication requires analog-to-digital
converters (ADCs) of sufficient rate and output resolution.A
promising architecture for this purpose is the time-interleaved
ADC (TI-ADC), in which L “sub-ADCs” are employed in
parallel. However, the gain, timing and voltage-offset mismatches
between the sub-ADCs, if left uncompensated, lead to error floors
in receiver performance. A standard technique for gain and
timing mismatch correction is to use L FIR filters, with tap
lengths increasing with the mismatch levels. In this paper,we
investigate the use of TI-ADCs in OFDM receivers, and provide a
scalable technique for mismatch compensation whose complexity
is independent ofL and the mismatch levels. We achieve this by
decomposing the FFT operator that is at the core of the OFDM
receiver into eigenmodes, and showing that, even for large values
of L and mismatch levels as high as 25%, two eigenmodes suffice
to provide an accurate description of the mismatch-perturbed
FFT operator. We provide simulation results that show that
the associated mismatch compensation algorithm is successful
is eliminating the mismatch-induced error floor.

I. I NTRODUCTION

The analog-to-digital converter (ADC) is a critical com-
ponent in modern digital communication receivers, enabling
cost-effective, all-digital implementation of sophisticated base-
band signal processing algorithms. However, as communi-
cation bandwidths increase, the availability of ADCs with
sufficient speed and resolution becomes a concern: Gigahertz
bandwidths are required for emerging ultrawideband [1] and
millimeter wave [2] applications, while 8-12 bits of resolution
are required for providing enough dynamic range when oper-
ating in multipath environments with large constellations. The
technology of choice at GHz speeds is “one shot” flash ADC,
but it becomes unmanageable beyond 5 bits resolution, due to
exponentially (in number of bits) increasing power consump-
tion and hardware complexity [3]. An attractive alternative [3]
is a time-interleaved (TI) architecture, where high rate and
high resolution can be achieved by employing several low
rate, high resolution, sub-ADCs in parallel. An ideal TI-ADC
formed by time-interleaving four sub-ADCs is shown in Fig. 1.
However, an inherent problem with the TI-ADC architecture is
mismatch between the sub-ADCs, which to first order can be
assumed to be gain, timing and voltage-offset mismatch [4].
Left uncompensated, such mismatch leads to error floors when
TI-ADCs are employed in communication receivers. In this
paper, we investigate scalable (as the number of sub-ADCs
and the mismatch levels increase) mismatch compensation
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techniques for removing mismatch-induced error floors due
to TI-ADCs employed in OFDM reception.
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Fig. 1. Ideal time-interleaved ADC (d =integer)

Our approach is as follows. We show that the demodulator
(FFT operator in the case of no mismatch) following the TI-
ADC can be decomposed into eigenmodes, and that first two
eigenmodes provide an excellent approximation, even as the
number of sub-ADCs and the mismatch levels grow large. We
show that, as long as the overall TI-ADC sampling rate is at
least twice the Nyquist rate, mismatch compensation based on
the two eigenmode approximation is effective in eliminating
mismatch-induced error floors. Since the time variation of
mismatch is very slow [7], we assume that the mismatch
parameters can be accurately estimated [5], [7], [10]. Hence,
the focus of this paper is only on compensating for mismatch
given accurate estimates of mismatch parameters.

A. Related work and Comparison

Digital mismatch compensation for TI-ADCs has received
a great deal of attention in the literature [7], [10], [11], [12],
[13]. A standard time-domain approach to correct for gain and
timing mismatch is to useL FIR filters [7], [11], [12], [13],
where L denotes the number of sub-ADCs. Since the ideal
correction filters are of infinite length, with slowly decaying
taps, a large number of taps were needed when the resolution
requirement and/or the mismatch range is large. Furthermore,
the hardware complexity scales withL and the number of
taps; the latter increases with the resolution requirement
and the mismatch range (the ideal correction filters are of
infinite length, and have slowly decaying taps). In our own
prior work on TI-ADCs in OFDM receivers, we developed
a frequency domain approach whose complexity scales with



L (regardless of the mismatch level) whenL divides the
number of subcarriers. The present paper therefore provides
significant complexity reduction relative to the literature: the
computational complexity is that of taking 2 oversampled
FFTs (instead of taking the one FFT in an OFDM system),
independent of the number of parallel sub-ADCs and the
mismatch levels.

The problem of timing mismatch compensation can be
thought of as the reconstruction a bandlimited signal from
its non-uniform samples. Unlike prior work in non-uniform
sampling theory [14] and [15], we consider the case where
the sampling instants have small offsets (equivalently, the case
of small timing mismatch) and hence obtain a simpler two-
eigenmode approximation.

B. Organization

The paper is organized as follows. Section II provides a
model for received samples in an OFDM receiver when sloppy
TI-ADCs are used. Section III develops the two-eigenmode
approximate model for a TI-ADC with gain and timing
mismatches. Section IV presents a scalable compensation
algorithm based on the model in Section III. Section V gives
BER simulation results. Section VI provides our conclusions.

II. SYSTEM MODEL

In this section, we present one of the widely used models for
a non-ideal TI-ADC and then derive the model for the received
signal when such an ADC is used in an OFDM communication
system.

A. Mismatch model

A first order model for a non-ideal TI-ADC is to assume
gain, timing and voltage-offset mismatches among the parallel
sub-ADCs in Fig. 1. For clarity, we repeat the model in [4]
for the output of a non-ideal TI-ADC as

r[m] = gmmodLr(mTo + δmmodL) + µmmodL + q[m] (1)

where L denotes the number of interleaved sub-ADCs. We
denote the sampling rate in the case of no-mismatch asT−1

o

and refer to it as thenominal sampling rate. Themth output
sample, denoted asr[m], is sampled by the sub-ADC with
index mmodL, where modL indicates the remainder after
division byL (From here on, the notation modL is understood
and not explicitly written). The gain, timing and voltage-offset
mismatches of themth sub-ADC are denoted as(gm, δm, µm).
Since the output precision is finite, the resulting quantization
noise is denoted asq[m].

We list the assumptions made related to the use of (1) in
this paper:

• Since error termµm due to voltage-offset mismatch in
(1) is additive and signal-independent, it can be easily
corrected after estimation. Hence, we neglect offset mis-
match and refer the reader to related literature for further
details [5]. The gain and timing mismatches result in a
more complicated interference structure and hence are the
subject of this paper.

• In all our analyses, we assume that sufficient bits of
precision are available at the ADC output and hence, we
neglect the quantization noise in (1).

• For the passband transmission, two ADCs are needed for
I and Q channels. We assume that sub-ADCs with indexi
for I and Q channels have the same mismatch parameters.
In practice, this refers to the circuit layout whereL low
rate (I, Q) ADC pairs are interleaved and there is no
mismatch within each (I,Q) pair of ADCs.

B. Communication Model

By performing scalar equalization in frequency domain,
OFDM provides a scalable solution for high data-rate wireless
systems in multi-path channels [9]. A model for the received
signal in OFDM reception, employing the non-ideal TI-ADC
modeled by (1), is derived in [10]. For completeness of this
manuscript, we repeat with a more detailed and insightful
presentation.

Fig. 2 depicts the typical block diagram of an OFDM
transceiver [9]. The time samples{b[x]} corresponding to the
information-bearing symbols{B[y]} are obtained using IFFT.
These time samples are then transmit filtered and sent over the
wireless channel. After the action of the channel and receive
filters, the received signalr(t) is sampled using a non-ideal
TI-ADC.
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Fig. 2. (a) OFDM Transmitter (b) OFDM Receiver

We introduce some notation before arriving at an expression
for the received signal samples{r[m]}. Let M denote the
number of subcarriers andT−1, the symbol rate. Assuming no
excess bandwidth, baseband analysis uses the band

(

− 1
2T , 1

2T

)

for analysis. For simplicity of representation, we use the
band

(

0, 1
T

)

. The transmit and receive filters are chosen as
I[0,W ](f), whereI[0,W ](f) represents the function that equals
one on[0, W ] and zero elsewhere. The receiver input noise,
w(t), is assumed to be proper, complex, zero-mean, white,
Gaussian process with a power spectral densityNo. Then,
the receive-filter output noisen(t) is a proper, complex, zero-
mean, Gaussian process with power spectral density that is
No in [0, W ]. The impulse response of the cascade of the
transmitter, channel and receive filters is denoted byh(t) and
it is assumed thath(t) is almost zero outside[0, NT ]. This
implies the required length of cyclic prefix to beN . Now,
considering an isolated OFDM frame, the input to the TI-ADC



is given as

r(t) =

M−1
∑

m=−N

b[m mod M ]h(t − mT ) + n(t) (2)

Replacing the time-domain samples{b[m]} with frequency
domain symbols{B[y]}, which are related by the IFFT
operation, we have

r(t) =
1

M

M−1
∑

y=0

B[y]

M−1
∑

m=−N

h(t − mT )ej2πym/M + n(t) (3)

All significant samples ofh at rateT are covered in the
summation overm in (3) for any t in [0, (M − 1)T ]. This is
under the assumption thath(·) ≈ 0 outside[0, NT ]. Hence,
the summation overm in (3) can be converted to a summation
over m in (−∞,∞). This implies that (3) can be written as

r(t) =
1

M

M−1
∑

y=0

B[y]φy(t)

∞
∑

m=−∞

h(t−mT )e−
j2πy
MT

(t−mT )+n(t)

(4)
whereφy(t) = e

j2πyt
MT . Let H(f) denote the Fourier transform

of h(t). Then, H(f) = 0 for f /∈ [0, W ]. Now, we apply
Poisson’s summation formula for the summation overm in (4)
with the function in time ash(t)φ∗

y(t) and the corresponding
Fourier transform asH(f + y

MT ). We have,

r(t) =

M−1
∑

y=0

H [y]B[y]φy(t) + n(t) (5)

whereH [y] = 1
MT H

(

y
MT

)

.
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Fig. 3. Normalized singular values for 128 sub-carrier OFDMsystem
employing a sloppy TI-ADC with 32 sub-ADCs

Now, we use (1) in (5) to obtain the digital samples ofr(t)
taken at a nominal sampling rate ofT−1

o as

r[m] = gm

M−1
∑

y=0

H [y]B[y]e
j2πy(m+δm)

Mo + n[m] (6)

where the noise samplesn[m] = gmn(mT +δm) andm takes
values in{0, ⌈Mo⌉} with Mo = MT/To. The oversampling
rate is given as(To/T )−1. The equation (5) is shown to be

approximately true only fort ∈ [0, (M −1)T ]. In the presence
of oversampling and/or timing mismatch, some samples at the
edges would not belong to this range. Assuming largeM , we
neglect this edge effect and assume that (6) holds true for all
the samples.

We now proceed to derive an approximate structure for (6).
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Fig. 4. Approximation error due to the use of two eigenmodes in 128 sub-
carrier OFDM system as a function of number of sub-ADCs in thesloppy
TI-ADC

III. A PPROXIMATE MODEL FORM ISMATCH-INDUCED

INTERFERENCE

Firstly , equation (6) can be written in vector notation as

r = Ax + n (7)

where we denote the receive vector byr = {r[m]}, the
signal vector byx = {H [y]B[y]} and the noise vector by
n = {n[m]}. The elements of theMo-by-M matrix A are

given asA(m, y) = gme
j2πy(m+δm)

Mo . For integralMo, it can
be seen thatA is a perturbation to the standard IFFT operator
given by F ∗(m, y) = e

j2πym
Mo . We define the matrix charac-

terizing the perturbation as∆ = A · /F ∗, where ·/ denotes
element-wise division. The singular-value decompositionof ∆
can be obtained as

∆ =

M
∑

i=1

λiuiv
∗

i (8)

Using (8), the operatorA can be expanded as

A =

M
∑

i=1

λiD(ui)F
∗D(v∗

i ) (9)

where D(u) denotes the diagonal matrix with the vectoru

in the diagonal. We refer to the pair(D(ui), D(v∗

i
)) as the

ith eigenmodeof A w.r.t. F ∗. In the case ofL sub-ADCs,
the matrix ∆ has at mostL independent rows and hence
there are a maximum ofL eigenmodes. However, not all
eigenmodes are necessarily dominant. To obtain a simpler
model, we investigate the number of dominant eigenmodes.



TABLE I
M ISMATCH PARAMETERS(IN % DEVIATION FROM NOMINAL VALUES , g = 1 AND δ = 0) FOR THET IME-INTERLEAVED ADC WITH 32 SUB-ADCS

gm { 6, 1 , -4, -4 , 6, 1, -3 , 8 , 7 , 7, 5 , -4 , 4, 8 , 5 , -6 , -1 , 0 , 0, -1 , 9, 9 ,1, -3, 1, 8, -3 , -8 , -6 , 8 , -4 , 0}
δm { -4, -8 , 0, 1 , -1, 7, 7 , 1 , 8 , 5 , -7 , -6, 4 , 1 , 3 , 6 , -3 , 1, -6 , -9, -9 ,9, -9, -8, 1, -9 , -1 , 8 , 6 , -9 , -9 , 9}

We assumeM = 128 subcarrier OFDM system employing
a TI-ADC with L = 32 sub-ADCs. We consider Nyquist
sampling, that isMo = M in (6). Fig. 3 depicts the fall of
singular values in (8), with the increase in the index of the
eigenmode. Byq% mismatch, we refer to a gain and timing
mismatches uniformly chosen in the ranges[1− q, 1 + q] and
[−qT, qT ] respectively. Although shown for one mismatch set
drawn from the uniform distribution, a similar exponentialfall
is observed for other instances. In many practical designs,
the mismatch is typically within the range of10%. Hence,
we infer that two eigenmodes suffice to approximateA in
(9). Let A2 denote the two eigenmode approximation ofA.
Using A2 instead ofA in (7), the resulting error is given as
e = (A − A2)x. The normalized interference power due to
approximation is given asP2 = ||(A − A2)x||

2/||(Ax||2. As
P2 is a function ofx, we consider the maximum ofP2 w.r.t
x for the worst case scenario. This maximum value can be
obtained as the squared, maximum, generalized singular value
of the matrices(A − A2) andA [18]. Fig. 4 plots the worst
case error power due to two eigenmode approximation as a
function of the number of sub-ADCs of the TI-ADC. The
results are averaged over 25 mismatch sets. Thus, it can be
inferred that the two-eigenmode approximation is accuratefor
a wide range of mismatch values ranging till25%, independent
of the number of sub-ADCs. This is observed to hold true even
when the ADC is oversampling at two times the Nyquist rate.
Finally, we arrive at the approximate model of a sloppy TI-
ADC with small mismatch in Fig. 5 (a).
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Fig. 5. {(a) Approximate model (b) Scalable correction scheme} for a non-
ideal TI-ADC in OFDM system for small mismatch

IV. SCALABLE COMPENSATION OFM ISMATCH

The aim of OFDM demodulator in Fig. 2 is to obtain
the frequency domain symbols{B[y]} from the time-domain
samples{r[m]}. In the case of an ideal ADC at the receiver,
this is typically accomplished using FFT and a scalar channel
equalization (multiplication withH∗[y]). Ignoring mismatch
between the sub-ADCs of the TI-ADC and using the same
demodulator has been shown to result in interference between
subcarriers [10]. This interference, when left uncorrected,
implied an error floor.

Consider the standard Zero-forcing solution forx in (7)
given by Zr = (A∗A)−1A∗

r. In the absence of mismatch,
the zero-forcing operatorZ is FFT operatorF and in general,
it is a perturbation toF . Although a model like that of (9) is
possible forZ, the number of dominant eigenmodes w.r.tF
was not observed to be small unlike those ofA w.r.t F ∗.

We make an interesting observation that for oversampling
ratios of 2 or greater, a zero-forcing equalizerZ

′

exists of the
form A∗D, whereD is a Diagonal matrix. By definition of
zero-forcing equalizerZ

′

for x in (7), Z
′

Ax = x. Suppose
we prove the existence ofD which satisfiesA∗DA = I (I
= identity operator), then we have obtained a zero-forcing
equalizerZ

′

= A∗D. Using the expression ofA from (7),
we can write thekth element ofZ

′

r = A∗DAx as

(Z
′

r)[k] =

M−1
∑

y=0

x[y]P [k − y] (10)

wherek ∈ {0, · · · , M − 1} andP [k − y] is given as

P [k − y] =

Mo−1
∑

m=0

D[m]g2
me

j2π(y−k)(m+δm )
Mo (11)

We haveZ
′

r = x when P [k − y] = 1 for (k − y) = 0
and 0 otherwise. The term(k − y) can take values ranging
between{−(M − 1), · · · , (M − 1)} as bothk and y take
values in{0, · · · , M − 1}. Using (11), this implies that the
Mo coefficientsD[m] have to satisfy2M −1 linear equations
for the conditions onP to be true. At least one solution is
guaranteed when the number of variables is greater than the
equations, that is whenMo > 2M −1. This implies that when
the oversampling ratio is greater than 2, there exists a zero-
forcing equalizer of the formA∗D.

SinceA∗ has the same singular values asA, we can write
the zero-forcing solution forx in (7) as

Z
′

r =

M
∑

i=1

λiD(vi)FD(u∗

i
)Dr (12)

Taking the two eigenmode representation ofA from Section
III, an approximate form of zero-forcing equalizerZ

′

can be



given as in Fig. 5 (b). We now calculate the complexity of
the scheme in Fig. 5 (b). We denote the complexity of FFT
as O(MlogM). The complexity of taking oversampled FFT
of size2M for M frequency points isO(2MlogM). Ignoring
the complexity of multiplications by diagonal matrices, the
computational complexity of the scheme in Fig. 5 (b) is
O(4MlogM), independent ofL and the mismatch levels.
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Fig. 6. BER in a 16-QAM, OFDM system (128 sub-carriers) employing a
time-interleaved ADC (32 sub-ADCs) with a mismatch level of10%.

V. NUMERICAL RESULTS

In this section, we present in the form of BER plots, how
the negative effects of using a sloppy ADC get significantly
compensated by applying the scalable two-eigenmode com-
pensation developed in section IV.

First, we list the system parameters used in the simulation.
The number of sub-ADCs is assumed to be 32. We use the
same frequency selective channel as in [10] and use 128
subcarriers in the OFDM system. The mismatch due to gain
and timing mismatches is assumed to be 10% and the exact
values of mismatch are given in Table I. We neglect the
effect of quantization noise in the simulations. Also, perfect
estimates of channel and mismatch parameters are assumed to
be available.

Fig. 6 plots the BER in the OFDM system using 16-
QAM constellation for the cases of corrected and uncorrected
mismatch between the sub-ADCs. It is assumed that perfect
estimates are available for channel taps and the mismatch
parameters. Mismatch when left uncorrected results in an error
floor. As can be seen from Fig. 6, the two-eigenmode based
correction algorithm eliminates the error floor.

VI. CONCLUSION

The scalable mismatch compensation scheme presented
here, even though it requires oversampling, provides the
flexibility of interleaving a large number of relatively slow,
power-efficient, sub-ADCs with high resolution. For example,
consider OFDM with 16-QAM over a communication band-
width of 2 GHz, which yields an uncoded bit rate of 8 Gbps.
For 2x oversampling, the I and Q components each require a

TI-ADC operating at an aggregate sampling rate of 4 GHz. If
we use 32 sub-ADCs, each sub-ADC must operate at 125 MHz
with 8-10 bits resolution for accurate calculation of FFTs.
Attractive low-power solutions for implementing such low rate
sub-ADCs exist in Successive-Approximation Register (SAR)
[16] or Pipelined architecture [17], resulting in reasonable
overall power consumption.

A specific topic of ongoing research is the design of efficient
algorithms for estimating the dominant FFT eigenmodes, using
on-chip training or using the training information available in
communication signals. A broader area of investigation is the
design of scalable mismatch compensation techniques for sin-
glecarrier communication, as well as for generic applications
of TI-ADC.
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