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Abstract— Recent work has shown that large gains in commu-
nication capacity are achievable by distributed beamforming in
sensor networks. The principal challenge in realizing these gains
in practice, is in synchronizing the carrier signal of individual
sensors in such a way that they combine coherently at the
intended receiver. In this paper, we provide a scalable mechanism
for achieving phase synchronization in completely distributed
fashion, based only on feedback regarding the power of the
net received signal. Insight into the workings of the protocol is
obtained from a simple theoretical model that provides accurate
performance estimates.

I. INTRODUCTION

Recently there has been significant interest in the com-
munication problem in sensor networks. While several in-
teresting communication models have been proposed and
analyzed in the literature [1], [2], we concentrate here on the
model proposed in [3]. The basic assumption of this model
is the availability of redundant, spatially-distributed, power-
constrained nodes that can cooperatively transmit a common
message signal to a remote station. The goal is to exploit
the spatial diversity and redundancy available in the sensor
network to achieve energy efficient communication. The chal-
lenge is in devising protocols to coordinate the transmissions
of individual sensors in a distributed fashion.

In the distributed beamforming system considered in [3],
the individual sensors adjust their transmissions such that they
combine coherently (in-phase) at the receiver. This requires
that the sensors be able to measure or estimate the channel ac-
curately, and that the sensors share a common phase reference.
While channel-estimation can be performed by reciprocity
using pilot symbols transmitted by the intended receiver, es-
tablishing a common phase reference is an important practical
challenge. This is because small timing differences between
sensors, e.g. from channel propagation delays, can still cause
large phase offsets with high frequency carriers. In [3], a
master-slave architecture was proposed for this purpose, where
slave sensors derive their phase reference from a designated
master sensor, while correcting for propagation delay lags to
the master sensor. In this paper, we propose an alternative
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approach, in which feedback from the receiver is employed
by each sensor to adjust its phase.

We consider the following model to illustrate our ideas. The
protocol is initialized by each sensor transmitting a common
message signal modulated by a carrier with an arbitary phase
offset. (This phase offset is a result of timing synchronization
errors.) When the sensors’ wireless channel is linear and time-
invariant, the received signal is the message signal modulated
by an effective carrier signal that is the phasor sum of the
channel-attenuated carrier signals of the individual sensors. At
periodic intervals, the receiver broadcasts a feedback message
to the sensors conveying the received SNR level of the
preceding transmission. Each sensor introduces an independent
random perturbation of their transmitted phase offset. When
this results in increased SNR compared to the previous time-
slot, the new phase offset is set equal to the perturbed phase by
each sensor; otherwise, the new phase offset is set equal to the
phase prior to the perturbation. Each sensor then introduces
a new random perturbation, and the process continues. We
show that this procedure asymptotically achieves a phase
synchronized system, and provide an analysis that accurately
predicts the rate of convergence.

Related Work: Much of the focus of the growing literature
on cooperative transmission has been on obtaining diversity
gains. The authors in [4] first looked at the problem of coop-
erative transmission in the context of cellular mobiles. They
showed that diversity gains can be realized over single node
transmission. Multiple cooperating relays between a source
and destination are considered in [5], where it is shown that
distributed coding, along with amplify-and-forward or decode-
and-forward strategies achieves maximum diversity gain. In
these works, the cooperating mobiles are not assumed to have
carrier synchronization, and they transmit on orthogonal sub-
channels. If we fix the power per transmitter, such strategies
can achieve gains in range because the powers add at the
receiver, and because of the diversity obtained for combating
impairments such as fading and shadowing. In contrast, our
objective is to obtain beamforming gains, which require the
coherent addition of the amplitudes of multiple transmitters,
which allow reduction of the power per transmitter for a
given range. Distributed beamforming requires much more
stringent synchronization across participating nodes than dis-
tributed diversity, although we have shown recently [6] that



synchronization can also be a limiting factor for some classes
of distributed diversity schemes.

There is also some recent work on distributed beamforming
in the literature. It is pointed out in [7] that distributed
beamforming relays offers the possibility of achieving power
efficiency in a wireless ad-hoc network, they also show
that even partial phase synchronization leads to significant
increase in network performance. In our own prior work
[3], we consider distributed beamforming in sensor networks
using a master-slave architecture for a cluster of cooperating
nodes. The degradation due to synchronization errors was
examined, and detailed methods for achieving synchronization
in practice were presented. The directivity patterns achieved
through random beamforming are studied in [8]. Using a
physical propagation path model, it is shown that the “average
beampattern” achieves a directivity that scales linearly with
number of sensors, which are assumed to be randomly located
on a surface area. However, carrier phase synchronization
across sensors is not addressed in [8]. To the best of our
knowledge, this is the first paper to consider feedback control
for distributed carrier synchronization in sensor networks.

Outline: Section II describes the communication model and
the assumptions used in the paper. Section III formulates a
distributed feedback control protocol for phase synchroniza-
tion. In Section IV, we present a theoretical analysis for the
synchronization protocol and numerical results in Section V
validate the analysis. Section VI suggests possible extensions
of this work and concludes the paper.

II. SYSTEM MODEL

We consider a system of � sensors transmitting a common
message signal ���� to a receiver. The sensors are power
constrained to a maximum transmit power of � . The message
���� could represent raw measurement data, or it could
be a waveform encoded with digital data. We now list the
assumptions in this model.

1) The sensors communicate with the receiver over a nar-
rowband wireless channel at some carrier frequency, ��.
In particular, the message bandwidth � � ��, where
� is the bandwidth of ���� and �� is the coherence
bandwidth of each sensor’s channel. In other words,
each sensor is assumed to have a flat-fading channel
to the receiver. Therefore the sensor �’s channel can be
represented by a complex scalar gain 	�.

2) The sensors’ communication channel is time-slotted with
slot length 
 . The sensors only transmit at the beginning
of a slot. This assumes that ����� � �, where ���� is
an upper bound on sensor timing errors. In other words,
timing errors are small compared to a symbol interval
(a “symbol interval” 
� is nominally defined as inverse
bandwidth: 
� � �

�
).

3) Each sensor has a local oscillator synchronized to the
carrier frequency �� i.e. carrier drift is small. One way
to ensure this is to use Phase-Locked Loops (PLLs)
to synchronize to a reference tone transmitted by a
designated master sensor as in [3]. This allows us to

use complex-baseband notation for all the transmitted
signals referred to the carrier frequency ��.

4) The local carrier of each sensor � has an unknown phase
offset, �� relative to the receiver’s phase reference. Note
that even using PLLs for synchronization, still results
in independent random phase offsets �� � ��
����
��� �
�, because of timing synchronization errors
�� that are fundamentally limited by propagation delay
effects.

5) The channels 	� are assumed to exhibit slow-fading, i.e.
the channel gains stay roughly constant for several time-
slots. In other words 
� � 
 � 
�, where 
� is the
coherence time of the sensor channels.

Distributed transmission model: The communication pro-
cess begins with the receiver broadcasting a signal to the sen-
sors to transmit their measured data. The sensors then transmit
the message signal at the next time-slot. Specifically, each
sensor transmits: ����� � �� ����� � ���, where �� � ����

is the timing error of sensor �, � �
�
� is the amplitude of

the transmission, and �� is a complex amplification performed
by sensor �. Our objective is to choose �� to achieve optimum
received SNR, and the scaling factor � represents the transmit
power constraint. For simplicity, we write 	� � ���

��� and
�� � ���

�	� . Then the received signal is:
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In the frequency domain, this becomes:
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where ���� is the additive noise at receiver and ���� is its
Fourier transform over

���
�� � �

� .
In (1), the phase term �� accounts for the phase offset in

sensor �. In (3), we set ����
� � � because ��� � �. Equation
(3) motivates a figure of merit for the beamforming gain:
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where � is the ratio of the received power to total transmit
power.

Note that �� � �, in order to satisfy the power constraint on
sensor �. From the Cauchy-Schwartz Inequality, we can see
that to maximize �, we require:

�� � �
���
� � �� � �� (5)



where � is a constant. However sensor � is unable to estimate
either �� or �� because of the lack of a common carrier
phase reference. In the rest of this paper, we propose feedback
control methods for sensor � to dynamically compute �

���
� so

as to achieve (5).

III. FEEDBACK CONTROL PROTOCOL

Fig. 1. Phase synchronization using receiver feedback

Figure 1 illustrates the process of phase synchronization
using feedback control. The protocol works as follows: each
sensor starts with an arbitrary unsynchronized phase offset.
In each time-slot, the sensor applies a random phase per-
turbation and observes the resulting received signal strength
���� through feedback. The objective is to adjust its phase to
maximize ���� through coherent combining at the receiver.
Each phase perturbation is a guess by each sensor about
the correct phase adjustment required to increase the overall
received signal strength. If the received SNR is found to
increase as a result of this perturbation, the sensor adds the
appropriate phase offset, and repeats the process. This works
like a distributed, randomized gradient search procedure, and
eventually converges to the correct phase offsets for each
sensor to achieve distributed beamforming. Figure 2 shows the
convergence to received beamforming with � � �� sensors.

Let � denote the time-slot index and ���� the amplitude
of the received signal in time-slot �. We have: ���� ����

� ��	�

������

�� where �� � �������� is the received phase,
and all the coefficients ��, 	�, and the proportionality constant
are taken to be unity (for simplicity of analysis).

We set the initial phases ����� � �. At each time-slot, the
sensor � observes the feedback ���� (assumed noiseless) and
applies a perturbation to its phase for the next time-slot: �����
�� � ������������Æ����, which results in a similar perturbation
in received phase: ���� � �� � ����� � ����� � Æ����. The
perturbation consists of two components: an adaptive control
component ����� and a random component Æ����. The random
component is simply set to Æ���� � �Æ with equal probability
where Æ is a parameter of the protocol, independently across
sensors and across time-slots. The adaptive component is set
according to:

����� �

�
Æ���� �� ���� 
 ���� ��

� otherwise.
(6)
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Fig. 2. Convergence of distributed beamforming algorithm

IV. CONVERGENCE ANALYSIS

We first show that the objective function of total received
SNR has a unique global maximum, and then provide an
analysis of the rate of convergence that closely matches
simulations.

A. Globally Optimum Phase Offsets

Consider �����
�
� ����� ��� ���� � �

����

��� 

���

���. The
problem of achieving distributed beamforming is the same as
the problem of maximizing �����. We now look for the critical
points of this function. We have:
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We obtain the following expression for the partial derivatives:
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To find the critical points of the function �����, we set the RHS
of (7) to zero for all �. The only way to satisfy the resulting set
of equation is: �� � �� � ������ �. If we express the phases
�� to be modulo ��, then we can simplify this condition to
�� � � or �� � � � ���� � ���� for some constant �.
We can demonstrate (details omitted) that a critical point of
����� is a saddle point unless �� � ���� in which case it is a
local (and global) maximum. We therefore conclude that any
gradient search procedure converges to a global maximum of
�����, and hence achieves distributed beamforming. However,
it is desirable to have a theoretical model that gives some
insight into the rate of convergence of the received SNR, and
its dependence on the random perturbation parameter Æ. This
analysis is carried out in the next section.



B. Rate of Convergence

We now present an analytical model that predicts the con-
vergence behavior of the synchronization protocol presented in
Section III. In this protocol, the control applied by the sensors
(as in (6)) is highly non-linear, therefore exact analysis is
difficult. We present a theoretical model that is based on a
series of approximate arguments, and show empirically that it
gives accurate results.

For the analytical model, let ���� represent the received
signal strength in the �’th time-slot, which is also known to
the sensors as noiseless feedback at the end of the time-slot.
(This is consistent with the notation in Section III.) We want
to model the increase in signal strength �� as a result of the
random phase perturbation by the sensors. This is a random
variable that can be written as follows:

�
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����� �Æ���

� �
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�

�
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� otherwise�
(8)

where �Æ��� �
�
Æ����� Æ����� � � � Æ� ���

�
.

Consider a sequence of � time-slots. The total increase in
received signal strength over the � time-slots is:
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Equation (9) is based on the assumption that the phase
perturbation Æ is small enough that the signal strength variation
is small in � time-slots. Equation (10) uses the fact that Æ����
is chosen iid across time-slots and therefore the law of large
numbers applies. Essentially we want to replace the random
signal strength variations by the ensemble average variation for
the purposes of the theoretical analysis. These approximations
require that � is large enough for the law of large numbers
to apply, and Æ is small enough that ��Æ���

�
������� �Æ���	

�
is

roughly constant over � time-slots. Rather than trying to
justify these assumptions, we show that it leads to accurate
results for reasonable choices of the parameter Æ.

Next we obtain expressions for the ensemble average signal
strength increase per time-slot:
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with ��� �� defined as the real and imaginary parts of the
random terms in (11); this is shown in Figure 3.

Fig. 3. In-phase and quadrature components of random signal increments

Since Æ� are iid across sensors, it follows that ��� Æ� are
also iid, and by using the Central Limit Theorem for large

 , ��� �� can be regarded as zero-mean Gaussian random
variables. Furthermore from (11), it can be shown that ��� �
��� � 
� ���� Æ, where ��� �� are the variances of ��� ��
respectively. The exact values of ��� �� depend on the phase
offsets 
�. The 
� need to be clustered together in a range

� � ��
�� 
�	, that depends on the instantaneous value of
����. We have the following estimates for the variances:
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To see this, we model the 
� as being distributed uni-
formly between �
�. (The 
 � � reference can be chosen
such that the distribution is symmetric.) Using the condition
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Note in (13), we invoked the law of large numbers for large

 . Using (11) and (12), we can now compute an analytical
estimate for ��, the ensemble average of increase of received
signal strength in one time-slot:
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Equation (15) can be readily computed for Gaussian random
variables ��� ��, and is the basis for the results presented in
Section V.

V. NUMERICAL RESULTS

We now present some simulation results to demonstrate
the feedback control protocol presented in Section III. Figure
4 shows the asymptotic convergence of the received sig-
nal amplitude to the maximum (corresponding to distributed
beamforming), for the case of � � ��� sensors. As expected,
the received signal strength grows rapidly in the beginning,
and as a rule of thumb it takes about � � �� time-slots to
achieve signal amplitudes of about ���� of the maximum. It
can be seen that the analytical results based on (15) match
simulated results based on (6) very accurately. The advantage
of the analytical approach is that the resulting model of
the convergence behavior of the system is deterministic and
smooth compared to the simulation results.

There is also a tradeoff between the initial convergence rate
and long-term performance of the protocol, that depends on
the choice of parameter Æ. Figure 6 shows this tradeoff for
��� sensors and ��� timeslots. We observe that the system
performs reasonably well, over a range of Æ values. Again the
analytical model captures the tradeoff very accurately. Finally
Figure 5 shows the variation of the “beamforming gain” with
number of sensors for a fixed number of time-slots.
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Fig. 4. Phase synchronization with noiseless feedback: N=100

VI. CONCLUSION

The proposed distributed beamforming scheme scales to
very large numbers of sensors because of two features: first,
the feedback is not specialized to each sensor, but is simply
the received signal power (the quantity to be maximized);
second, the sensors’ actions in response to the feedback
are completely uncoordinated. Given the excellent agreement
between analysis and simulations, we have detailed insight into
the workings of the algorithm: about 40 % of the achievable
beamforming gain is attained very rapidly, followed by a
slower convergence to an asymptotic value. These promising
preliminary results motivate a number of directions for future
research. Practical aspects to be explored include analyzing
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the the effects of noise and the ability of the feedback control
algorithm to track a time-varying channel.
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