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ABSTRACT

In this paper, we present a framework for the design of stegano-
graphic schemes that can provide provable security by achieving
zero Kullback-Leibler divergence between the cover and the stego
signal distributions, while hiding at high rates. The approach is to
reserve a number of host symbols for statistical restoration: host
statistics perturbed by data embedding are restored by suitably mod-
ifying the symbols from the reserved set. A dynamic embedding ap-
proach is proposed, which avoids hiding in low probability regions
of the host distribution. The framework is applied to design prac-
tical schemes for image steganography, which are evaluated using
supervised learning on a set of about 1000 natural images. For the
presented JPEG steganography scheme, it is seen that the detector is
indeed reduced to random guessing.

Index Terms— data hiding, steganalysis, steganography.

1. INTRODUCTION

Security and secrecy of information has always been important to
people, organizations, and governments. In this paper, we consider
the problem of steganography: a message is to be embedded into an
innocuous looking host or cover to get a stego or composite signal,
such that the presence of hidden data is invisible, both perceptually
and statistically.

We build-upon a framework, called statistical restoration (pro-
posed in our previous work [1]), for the design of embedding schemes
that can evade statistical steganalysis while hiding at high rates, and
achieve robustness against attacks. We are motivated by the notion
of e-secure steganography proposed by Cachin [2], in which the rel-
ative entropy (also called Kullback-Leibler or K-L divergence) be-
tween the cover and stego distributions is less than or equal to e.
Techniques proposed in [1] can achieve a small € using statistical
restoration: a portion of the data-hider’s “distortion budget” is spent
in repairing the damage done to the host statistics by the embedding
process.

In the framework presented here, one can achieve provable se-
curity by having zero K-L divergence between the cover and the
stego signal distributions, while hiding at high rates. The probability
density function (pdf) of the stego signal exactly matches that of the
original cover, and hence no statistical steganalysis can detect the
presence of embedded data. This result, however, must be used with
caution, since it requires that dependencies of all orders be restored
to match the original. For example, a JPEG steganography scheme,
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designed to match the histogram of discrete cosine transform (DCT)
coefficients, can still be detected by steganalysis techniques that ex-
ploit cover memory. The good news, however, is that the framework
is general, and can be applied to restore higher-order statistics as
well.

Another advantage of the proposed framework is that it allows
design of robust techniques that are not fragile against attacks, unlike
many other steganographic methods. Also, one can match continu-
ous statistics using the proposed approach, not just discrete (or quan-
tized) statistics. The techniques do not rely on accurate modeling of
the host statistics. Mathematical analysis to estimate the allowable
embedding rate for the proposed zero-divergence steganography is
provided in [3]. This analysis takes into account the fact that there
are only a finite number of host samples available to the hider and
the detector, an aspect sometimes ignored by prior works.

In order to demonstrate the practical applicability of our frame-
work, we implement a JPEG steganography scheme that perfectly
restores the DCT coefficient distribution while hiding several thou-
sand bits into images (e.g., 25000 bits in a 512x512 image). In our
evaluation, we assume that the adversary knows the embedding al-
gorithm, and can train a detector specifically tuned to our embedding
schemes using supervised learning. In the experiments, a set of 1000
natural images is used to train a support vector machine (SVM). In
spite of such stringent steganalysis, we find that detection is reduced
to random guessing for our proposed high-capacity JPEG steganog-
raphy technique.

2. RELATED WORK

Provos’ Outguess [4] is an early attempt at restoring the stego dis-
tribution to the cover empirical distribution. This method was fol-
lowed up later by Eggers et al [5], with a more mathematical for-
mulation denoted histogram-preserving data mapping (HPDM), and
Franz, with work in matching the message data to the cover dis-
tribution [6]. All of these schemes are designed for compensating
discrete-valued hiding medium, and are also fragile against attacks.

We know of only two methods that can potentially achieve zero
K-L divergence for continuous host statistics. Guillon et al [7] sug-
gest transforming the source to a uniform distribution, and then em-
bedding data using quantization index modulation (QIM). QIM is
known not to change the probability mass function (PMF) of uni-
form sources. However, apart from difficulties in practical imple-
mentation (in companding to a uniform distribution), the method is
not likely to be robust, and also, there is no systematic way to control
the embedding distortion. Another approach called stochastic QIM
[8] can potentially achieve zero K-L divergence. However, because
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of the stochastic nature of the hiding process, the method is likely to
yield high error rates when embedding large volumes of data.

Other methods such as stochastic modulation [9], Fridrich et al’s
JPEG perturbed quantization (PQ) [10], and Sallee’s model based
embedding [11] accept a change of stego distribution from the orig-
inal cover, but attempt to match a different distribution, which is
close to a plausible cover distribution. It is difficult to define what
is “plausible enough”, and in some cases (e.g. [12]) a steganalyst
can exploit the divergence from the original. Additionally, these ap-
proaches are very fragile to any interference between sender and re-
ceiver. Note that our methods do not rely on accurate modeling of
the host statistics (to define a plausible distribution). Moreover, the
proposed framework allows design of robust techniques that are not
fragile against attacks, unlike prior approaches such as OutGuess [4],
HPDM [5], PQ [10], and model based methods [11].

3. PROVABLY SECURE STEGANOGRAPHY

In this section, we describe our approach for secure steganography.
We start by presenting a brief review of the concept of statistical
restoration initially proposed in [1].

3.1. Statistical Restoration

In the game between the steganographer and the steganalyst, the ad-
vantage with the steganographer is that he or she is ‘informed’ of the
cover signal statistics. Thus, he or she can be assured of perfectly
secure communication simply by sending a composite signal whose
statistics resemble that of the original cover. A natural way to ac-
complish this is to spend a part of the allocated distortion budget to
restore the statistics.

In the statistical restoration framework, the host symbols are di-
vided into two streams: an embedding stream, and a compensation
stream. The goal is to match the continuous probability density func-
tion (pdf) of the cover signal. We use QIM with dithering to embed
the data into host symbols in the embedding stream, thus making
sure that we do not leave any “gaps” in the stego pdf. Next, the
host symbols in the compensation stream are modified to match the
original, while incurring minimum mean-squared error. This design
ensures that the robustness properties of the employed embedding al-
gorithm remain intact. Note that previous compensation approaches
use entropy codecs [5, 11], and hence, are fragile against attacks.

In real-world systems, the steganalyst does not have the perfect
knowledge of the cover signals (i.e., the continuous pdfs). More-
over, only a finite number of host samples are available for analysis.
From the available host samples, the steganalyst must calculate a
histogram approximation of the cover distribution, using a bin size
w. Our data hiding is secure if we match the stego histogram to the
cover histogram with the bin size, w.

We seek to maximize the ratio of symbols used for hiding, de-
noted A € [0, 1], for a given cover distribution. Denoting the cover
PMF as Px 4], the standard (uncompensated) stego PMF as Ps[z],
the achievable embedding rate (derived in [1]) is given by A*
PxBl 0 1f we apply this constraint to typical PMFs, we run

Pgld]
into erratic behavior in the low-probability tails. The ratio 1;)5 [[Z]] can

vary widely here, from infinitesimally small to huge. In the work
presented in [1], this problem is solved by relaxing exact equality
constraint: a small low-probability region is ignored for compensa-
tion. Using this approach, we can communicate at high rates, but
there is always a low non-zero divergence between cover and stego
signals, which can be exploited by the steganalyst.

min;
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3.2. Zero Divergence Steganography

The idea for achieving zero K-L divergence is quite simple. As seen
in the previous section, since the low-probability region is hard to
compensate, we just avoid embedding in that region. Thus, our new
hiding strategy is not to hide in any symbol whose magnitude is
greater than a predefined threshold! 7. We define a hiding region
H as H 2 [=T,7T]. The net rate, denoted R, can be given as,
R = X" 3,4 Pxli], where X* is now defined over the hiding re-

Px [i]
Pg[d]

Changing the threshold affects the net rate in two ways: (i) if
the threshold is reduced, there is a reduction is number of host sam-
ples used for embedding, which reduces the effective rate, and (ii) a
smaller hiding region can lead to a higher A*, since the minimization
of 1;)5 [[Z]] oceurs over a narrower high-probability region. A detailed
analysis of the optimum threshold and achievable rates is presented
in [3].

In practical systems, the choice of threshold cannot be arbitrary,
since we must make sure that the embedded data is decodable at the
receiver. For QIM embedding, we can get around this problem by
choosing the threshold to be an integer multiple of the quantization
interval A. In the presence of attacks, the dynamic embedding strat-
egy can potentially lead to desynchronization of the decoder. Thus,
if attacks are anticipated, we use the coding framework proposed in
[13], which allows the encoder to choose the embedding locations
without explicitly sending that information to the decoder.

gion: \* = minen

Figure 1 shows a zero-divergence steganography example for a
Gaussian host (0, 1). QIM embedding with A = 2 is used (so that
o/A = 0.5). The bin-width is w = 0.05, and threshold is 7" = 1.
In this example, we hide 33,242 bits in 100,000 host samples and
achieve perfect restoration.

3.3. Variable Bin Size

When the involved distributions are continuous, a fixed bin size w
is used for the analysis of the statistics. It is natural to ask what
happens if the steganalyst analyzes the statistics with a finer bin size.
Note that when there are finite number of samples, a finer bin-size
does not guarantee a better observation (see [14] for a discussion on
optimal bin sizes).

A potential solution is to employ a system with variable bin-size:
instead of fixing the bin-width w, we fix the number of host symbols
np, in every bin. Thus, the bin-width gets automatically adjusted in
such a way that it is finer in the high probability regions, and wider
in the low-probability regions. The idea here is to match the original
histogram more precisely in the high probability regions compared
to the low-probability parts.

Figure 2 shows variable bin-size embedding example for a Gaus-
sian cover N'(0,1). The bins have exactly 250 host symbols. The
o/A = 0.5, number of samples are 100,000, the A is 0.45, and the
threshold is 7" = 1. The histograms are displayed for a bin-width of
0.01. Notice that in spite of such finer analysis (five times smaller
bin size than previous example of Figure 1) and high rate of em-
bedding, the difference between cover and stego histograms is very
small.

INote that a threshold can be used to define high-probability region for
all peaked unimodal distributions (e.g., Gaussian, generalized Laplacian, or
generalized Cauchy).
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Fig. 2. Variable bin-size compensation for a Gaussian cover: The original and final histograms, and their differences. Even with five times
finer histogram analysis than in Figure 1, the difference, as shown in Figure (c) above, is very small.

4. APPLICATION TO IMAGE STEGANOGRAPHY

In this section, we apply the zero-divergence statistical restoration
framework to design practical methods.

4.1. JPEG Steganography

Here we describe an adaptation of our zero K-L divergence frame-
work for a JPEG steganography scheme. The goal here is to embed
in a JPEG compressed image at a particular quality factor, such that
the stego image is also a JPEG image at the same quality factor with
exactly the same distribution of the DCT coefficients.

The host image is divided into 8 X8 non-overlapping blocks and
its 2-d DCT is taken. Those coefficients that lie in a low frequency
band of 21 coefficients are considered to be eligible for data embed-
ding or compensation. Now, out of all eligible coefficients, a fixed
percentage (we use 25-40% in our experiments) are set aside for
hiding and the rest are used for compensation. The hiding and com-
pensation locations are pre-determined based on a secret key shared
between the encoder and the decoder. We then embed data using
+k LSB steganography (with £ = 1) into the quantized DCT coef-
ficients that are in the hiding stream. Note that QIM cannot be used
because the coefficients here are already quantized. As prescribed
by the zero-divergence framework of Section 3.2, only those coeffi-
cients whose magnitude is smaller than a positive integer threshold
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T, are used for data embedding. The coefficients in the compen-
sation stream are modified as per the minimum mean-squared error
(MMSE) algorithm presented in [1].

Using the above approach, we ensure that the DCT coefficient
distribution achieves exactly zero K-L divergence. This scheme is
still prone to steganalysis techniques that bank on the increase in the
blockiness due to block-DCT embedding [15]. In [1], we propose
a method to restore the pixel value differences within the blocks as
well as along the block boundaries, so as to survive these blockiness
based steganalysis techniques.

4.2. Flexible Image Steganography

Here we describe a flexible technique that accepts two quality fac-
tors (QFs): a design QF, and an advertised QF. The idea is to “adver-
tise” the images at a higher quality factor, but still design to survive
compression at lower QFs. As an example, when the scheme has
advertised QF of 75 and design QF of 50, the released stego images’
DCT coefficients resemble the PMF of 75 QF compressed cover im-
ages. However, the images can survive attacks of up to 50 QF. Also
note that a JPEG attack would not compromise the steganographic
security of the image.

The implementation of this technique is similar to the above
JPEG steganography scheme, except for the use of a dithered QIM
embedding. The employed QIM’s quantizer corresponds to the de-
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Fig. 3. Detection of JPEG steganography with standard QIM verses
perfect restoration QIM. As expected, the detection for perfect-
restoration JPEG scheme is random. However, the standard QIM
at same rate is detectable.

sign QF. The dither pattern is also quantized using intervals defined
by the advertised QF.

5. RESULTS

We now present the results for our JPEG steganography technique
discribed in Section 4.1. We use supervised learning on about 1000
natural images to test the system. Parameters used for hiding are
fixed for all the images in the test set: QF =75, 7' = 30, and A =
0.4. A SVM classifier is trained and tested on the first order statistics
of the DCT coefficients. We here compare the perfect restoration
JPEG steganography with the standard QIM. Same rate and same
images are used in both the cases. Figure 3 plots the probability
of missed detection verses probability of false alarm for both the
schemes. As expected, the detector performance is random for the
JPEG steganography scheme with perfect restoration.

Experiments with flexible steganography of Section 4.2 provide
similar results. The images were designed to survive QF of 50 and
were advertised at QF of 75. The embedded messages can be de-
coded with low error rates (less than 2%) from the images after JPEG
attacks up to QF of 50. Note that error correcting codes must be em-
ployed to ensure perfect recovery.

6. CONCLUSION

In this paper, we demonstrate a provably secure steganography frame-
work that can achieve zero K-L divergence between cover and stego
distributions while embedding at high rates. Key to our efforts is the
fact that we do not attempt to model the host statistics, but rather
match the empirical density of the cover signal. Practical applica-
tion of this framework to JPEG steganography indeed shows that the
detector can be reduced to random guessing. The method, when in-
tegrated with the coding framework of [13], survives several attacks
such as compression, additive noise, and tampering. The effect of
such attacks on the detectability of the presence of embedded data
has not been investigated and is an avenue of future work.

Other avenues for future work include applying the framework
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to other embedding methods (such as spread spectrum), or to other
host signals (such as audio and video). Challenges also remain in
dealing with steganalysis methods that consider several different sta-
tistical measures. We finally note the close relationship shared by
this method with the earth-mover’s distance (see [16]), a popularly
used distance metric in computer vision applications.
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