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Slicer Architectures for Analog-to-Information
Conversion in Channel Equalizers

Aseem Wadhwa, Upamanyu Madhow, and Naresh R. Shanbhag

Abstract— The scaling of analog-to-digital converter (ADC)
power consumption with communication bandwidth imposes
severe limits on its precision, which significantly impacts receiver
performance. In this paper, we consider a “space-time” gener-
alization of the flash architecture by allowing a fixed number
of slicers to be dispersed in time (i.e., sampling offset) as well
as space (i.e., amplitude), with the goal of investigating its
capabilities for analog-to-information conversion (i.e., enabling
reliable recovery of digital information, rather than faithful
reproduction of the input signal) in the context of channel
equalization for binary signaling over a dispersive channel.
We first study standard symbol-spaced ADC with severe quan-
tization constraints, estimating the minimum number of slicers
needed to avoid error floors. We observe that the performance
is sensitive to channel realization and sampling phase, which
motivates a more flexible space-time architecture. Using ideas
similar to those underlying compressive sensing, we prove that
such architectures have no fundamental limitations in theory:
randomly dispersing enough one-bit slicers over space and time
does provide information sufficient for reliable equalization.
We then focus on practical designs for symbol-spaced and
fractionally-spaced sampling subject to a constraint on the
number of slicers, and propose an algorithm for optimizing
slicer thresholds, which significantly improves performance over
a standard design.

Index Terms— Equalization, analog to digital converter,
quantization, high-speed link, fractionally spaced sampling.

I. INTRODUCTION

ACRUCIAL component of a modern communication
receiver is the analog-to-digital converter (ADC), which

translates the analog received waveform into a digital signal,
enabling implementation of sophisticated receiver algorithms
using digital signal processing. As signal bandwidths scale up
to multiples of GHz, however, the cost and power consumption
of high-resolution ADCs become prohibitive [1]. Once the
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number of bits per sample becomes constrained by such
considerations, it becomes natural to consider alternatives to
the general-purpose ADC that are tailored to the communi-
cations application. Thus, we are interested in the design of
analog-to-information converters enabling reliable recovery of
the transmitted data, rather than accurate reproduction of the
received signal as for a standard ADC. In this paper, we inves-
tigate this approach in the context of channel equalization,
with the goal of exploring the fundamental limits imposed by
ADC precision constraints.

Our starting point is the flash ADC, a popular architecture
for high sampling rates (GHz) and relatively low resolutions
(2-6 bits) (for instance, see [2], [3] for some recent high-speed
flash ADC designs). Other architectures such as successive
approximation and pipelined are also built upon low resolution
flash ADCs. The standard flash architecture comprises of
several parallel 1 bit slicers. An n-bit flash ADC consists
of 2n − 1 comparators sampling synchronously, with slicer
thresholds spread uniformly over the input signal voltage
range. Fractional sampling is known to be more robust than
symbol-spaced sampling for systems in which ADC resolution
is not an issue. However, in the regimes of interest to us, the
Nyquist sampling rate is already stressing the state of the art,
hence the conventional approach is to sample at the Nyquist
rate. If the objective is signal reconstruction, high precision
quantization is desired (typically n > 10), which is prohibitive
at high speeds due to the large number of slicers required.
However for equalization much less precision is enough for
preserving information to invert the channel and ensure error
free reception at high SNR. Key questions we address in this
paper are characterizing the minimum precision required for
information preservation and whether, for a fixed number of
comparators, we can do better by generalizing beyond uniform
spacing and synchronous sampling of a standard flash ADC.
We explore designs which are “space-time” generalization
of the flash architecture, in which all slicers sample at the
Nyquist rate, but can have different sampling times and non-
uniform thresholds over the input dynamic range. Depending
on the values of the sampling offset, we either get relatively
high precision Nyquist rate samples (same offsets) or lower
precision faster than Nyquist rate samples (different offsets).

As a first step in obtaining initial insights, we restrict
attention to the simplest possible setting of binary antipodal
signaling over a time-invariant, real baseband channel with
relatively small delay spread. High-speed backplane wireline
channels provide an interesting set of running examples that
conform to this model: the impulse responses are fairly sta-
tionary, and are typically 5-10 symbol periods long. Backplane
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communication generally employs uncoded binary antipodal
modulation, in moderate to high SNR regimes which are
interference limited.

The objective of this work is to explore system level design.
Hence we employ a standard Gaussian noise model, ignoring
issues such as clock jitter, noise in slicer thresholds and other
circuit impairments which result in other sources of noise
when a complete bottom-up system is considered.

Contributions and Outline: We summarize our contribu-
tions, and the organization of the paper, as follows.
We discuss related work in section II and the system model
in section III.
(1) In section IV we first consider the standard Nyquist
synchronously sampled, uniformly spaced design. For a given
channel, we derive easily computable lower and upper bounds
for the smallest number of comparators to avoid an error floor
in the bit error rate (BER). The results give insight into the
kind of channels that are worse in terms of requiring a larger
number of comparators; for example, mixed-phase channels
are worse than minimum/maximum phase channels. We also
demonstrate via an example how, for the standard design,
the BER can be sensitive to the sampling phase, and that
more robust performance can be obtained by spreading the
same number of slicers across time. This motivates a more
systematic study of space-time architectures.
(2) In Section V, we establish that, in theory there are no
fundamental performance limitations imposed by spreading
slicers out in space and time, by proving that the �1 distance
between a pair of waveforms is preserved upon quantization by
n slicers spread across time and having randomly distributed
thresholds, if n is larger than a lower bound. The proof
of this general result employs the Chernoff bound and the
union bound, analogous to the Johnson-Lindenstrauss (JL)
lemma [4]. Its application to our equalization problem guar-
antees the absence of an error floor if sufficiently many 1-bit
measurements are obtained with random thresholds. While this
result provides a sound theoretical underpinning for space-time
slicer architectures, in practice, good performance is obtained
with fewer slicers with carefully chosen thresholds.
(3) We present (in Section VI) an approximate optimization
technique for adapting, as a function of the channel, the slicer
thresholds for symbol-spaced and fractionally-spaced (at Ts/2,
where Ts denotes the symbol interval) architectures. For a
fixed number of slicers, the performance gains over a standard
symbol-spaced uniform ADC are significant. Depending on the
choice of channel, sampling phase and number of available
slicers, the procedure allocates all slicers to one sampling
phase or distributes them among the two phases.

Our conclusions are presented in Section VII.
Caveats: While the results discussed in this paper are,

in principle, directly applicable to backplane communication,
some caveats are in order. First, since our focus is on under-
standing the impact of analog-to-information conversion, we
do not restrict the complexity of the digital backend. Further
simplifications to the digital processing might be required for
practical implementation. Second, in order to derive systems-
level insights, we make the simplifying assumption of equat-
ing power consumption to the number of slicers employed

in the ADC, and strive to minimize that in our design.
However, the exact power consumption will depend on
many specific implementation details that are beyond our
current scope. We also note that, while our formulation
provides insight into information conversion for dispersive
channels under stringent quantization constraints, extensions
to more complicated scenarios such as higher constellations,
OFDM modulation and time varying channels are bound to
present a richer set of challenges, which are again beyond our
present scope.

II. RELATED WORK

It is known that Nyquist sampling, even for strictly band-
limited inputs, is not optimal for finite precision measure-
ments. For example, Gilbert [5], Shamai [6] have shown that
the capacity of bandlimited systems with 1-bit measurements
increases as we sample faster than the Nyquist rate. A related
result is discussed by Kumar et al. [7]. The effect of heavily
quantized measurements on communication systems design
and performance has received significant attention recently.
For non-dispersive channels, the effect of coarse quantization
has been studied for the ideal AWGN channel [8] and carrier-
asynchronous systems [9], [10]. Reference [11] discusses
channel estimation with coarsely quantized samples.

The analog-to-information (AIC) converter discussed in [12]
is “compressive”: it consists of a front-end that applies a
known pseudo-random noise to the input, followed by a sub-
Nyquist sampling rate ADC. Such a design preserves the
information in the input signal if is frequency sparse, and
is therefore of interest for applications such as cognitive
radio. In such settings, the sparser the signal, the more the
sampling frequency can be reduced, which potentially leads to
power savings. Analog to information conversion as discussed
in this paper has a different context: the focus here is on
equalization of non-sparse signals, since we are trying to
utilize the available degrees of freedom to the signal as rapidly
as possible.

A number of papers [13]–[16] consider the problem of
equalization with low-precision analog front ends, and propose
methods for designing ADC quantizer levels. However, the
emphasis in all of these papers remains on designing multiple
slicer thresholds for a given sample, rather than dispersing
slicers over time as we allow. Moreover, none of these focus
on designing the front end to optimize the minimum BER
(based on MAP decoding) as we do.

Mutual information computation for ADCs is considered
in [13], [17]. Reference [17] focuses on time-interleaved
ADCs, unlike the flash ADC architecture discussed here.
Reference [13] considers the problem of designing non-
contiguous quantizers for maximizing the mutual informa-
tion between i.i.d. inputs and quantized outputs. However,
mutual information quickly saturates with SNR, and is there-
fore not a good measure to optimize for the uncoded or
lightly coded systems typical at high speeds. Moreover, non-
contiguous quantization, if implemented by parallel compara-
tors, does not fully utilize the available number of slicers.
References [14]–[16], [18] also optimize BER as we do, but
they restrict attention to simpler processing (based on a linear
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transmit filter and DFE rather than the optimal BCJR algorithm
employed here), hence their performance degrades quickly
for heavy quantization and heavy precursor ISI. Our use of
optimal nonlinear decoding enables significant reduction in the
number of slicers while avoiding error floors: for instance, with
an FR4 channel similar to the one used in [15] and [18], the
BER that we obtain using only 5 slicers (equivalent to using a
log2(6)−bit ADC) is much smaller than what is reported there
using a 3-bit ADC (7 slicers). Of course, the potential power
savings in the analog front end from reducing the number
of slicers must be balanced against the more complex digital
backend. Such detailed tradeoffs are beyond our present scope,
but as noted in the conclusions, are an important topic for
future work. Even though we do not discuss implementation
details of our space-time ADC architecture, circuit imple-
mentations with non-uniform thresholds have been discussed
in [14]–[16] and [18] which provide evidence for the feasibility
of such designs.

References [12], [19], [20], which discuss “compressive”
AICs for sparse signals, present models for analysis of dif-
ferent types of circuit noise such as clocking jitter, amplifier
distortions etc. Although their analysis is specific to the
AIC design and the related pseudorandom noise component,
some of the circuit impairment models can serve as useful
starting points for analyzing the architecture described in this
paper as well, which is an important topic for future work.

As already mentioned, the proof of our theoretical result
on �1 distance preservation is analogous to that of the
JL lemma [4] which provides a theoretical basis for com-
pressed sensing. The result also appears at first glance to be
similar to the bit-conservation principle articulated in [7], but
the details and implications are completely different. The result
in [7] considers signal reconstruction, and can be roughly
paraphrased as saying that n 1-bit observations are equivalent
to n/2k k-bit measurements. In contrast, our result says that
n 1-bit measurements are equivalent to n infinite-precision
measurements in terms of guaranteeing the feasibility of
reliable data recovery in the low-noise regime (albeit with a
smaller error exponent).

III. SYSTEM MODEL

We focus on uncoded transmission of binary symbols
b = {bi }, with bi chosen independently and equiprobably
from {−1,+1}, at rate 1/Ts over a real baseband dispersive
channel. The continuous time received signal at the input of the
A/D conversion block is given by

xc(t) =
∞∑

i=−∞
bi h(t − i Ts) + wc(t) (1)

where h(t) = (hT X ∗ hc ∗ h R X )(t) is the effective chan-
nel impulse response obtained by convolving the transmit
filter hT X (t), the physical channel hc(t), and the receive filter
h R X (t). Assuming white noise n(t) with PSD σ 2 at the input
to the receive filter, the noise wc(t) = (n∗h R X )(t) at the input
to the A/D block is zero mean Gaussian with autocorrelation
function

Rwc (τ ) = σ 2
∫

h R X (t)h R X (t − τ )dt (2)

Input to Quantizer: Let x(k) = x(sk) denote the continuous-
valued discrete time samples obtained by sampling at
times {sk}. For Nyquist sampling at rate 1/Ts , we set sk = (k+
τ )Ts , where τ ∈ [0, 1) is the sampling phase (suppressed in
subsequent notation for simplicity of exposition). We assume
that the receive filter is square root Nyquist (e.g. square root
raised cosine) at rate 1/Ts , so that the noise samples wc(kTs)
are uncorrelated. However, sampling irregularly, or faster than
1/Ts , both of which we allow, yields correlated noise samples.

Quantizer: We denote by q(x; T) the output of a quantizer
mapping a real-valued sample x to N + 1 values using
thresholds T = {t1, . . . , tN }. For a classical n-bit quantizer,
we have N = 2n − 1. For a uniform quantizer over the
range [−R, R], we have

ti = R

(
−1 + i

2

N + 1

)
, i = 1, . . . , N (3)

Our goal here is to explore more flexible designs, in terms of
choice of both N and T.

In this paper, we consider three different scenarios:
1) T -Spaced Equalization (TSE): We consider regularly spaced
samples at rate 1/Ts , and we use a fixed quantizer for all
samples. The effective discrete time channel is denoted by
h = [h(0), h(Ts), .., h((L −1)Ts)]T = [h1, h2, .., hL ]T , where
L − 1 is the channel memory. We note that

x(k) = 〈h, bk−L+1
k 〉 + w(k) (4)

where bk−L+1
k = (bk, bk−1, ...., bk−L+1)

T denotes the set of
bits affecting the kth sample, 〈〉 the dot product, and w(k) are
i.i.d. N(0, σ 2||h R X ||2). We assume that the same quantizer T
is used for all samples, so that the quantized samples are given
by

xq(k) = q (x(k); T) (5)

The key question in this setting is how the performance
depends on T, where we allow channel-dependent choices
of T.
2) Fractionally Spaced Equalization (FSE): We consider sam-
ples spaced by Ts/2 (the typical choice for FSE), which yields
two parallel symbol rate observations, which can be modeled
as two parallel discrete time channels h1 and h2 operating on
the same symbol stream:

xi (k) = 〈hi , bk−L+1
k 〉 + wi (k) , i = 1, 2 (6)

where L is the larger of the memory of the two parallel
channels. The noise streams wi (k) are each white, but are
correlated with each other. The correlations can be computed
based on the autocorrelation function (2) of the continuous-
time noise wc. We also allow the quantizers for the two
streams to differ, with thresholds T1 and T2, so that the
two-dimensional quantized observation at time k is given by
xq(k) = [q(x1(k); T1), q(x2(k); T2)]T .
3) General Space-Time Equalization: Here we allow the sam-
pling times {sk} to be arbitrary, and also allow the quantizer Tk

for each sample to vary.
Thus, our goal is to understand how to rethink equalizer

design in the classical settings of scenarios 1 and 2 when we
have severe quantization constraints. In considering scenario 3,
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we try to provide a theoretical perspective on how flexible
quantizer design can be, in terms of choice of sampling times
and quantizers. In particular, we focus on high rate fractionally
spaced sampling with randomly chosen and scalar Tk , corre-
sponding to one-bit quantization with time-varying thresholds.

We assume that the discrete time channels corresponding
to the sampling points {sk} are known (e.g., see [11] and
[21, Ch. 6] for approaches for channel estimation with low-
precision quantization). We employ the BCJR [22] or the
Viterbi MLSE algorithm [23] to evaluate various quantizer
designs (for completeness, a quick review of how these apply
to our setting is provided in the appendix). For irregular
or faster than Nyquist sampling, the noise samples at the
quantizer input are correlated, but we ignore these in running
the BCJR or MLSE algorithm, which means that the perfor-
mance in these settings could potentially be improved further
by accounting for these correlations. However, accounting
for such correlations in severely quantized observations is
difficult, and we do not expect the gains to be significant at the
high SNRs (typical for high-speed wireline links) considered
here.

Example Channels: We use three channels as running exam-
ples (see Figures 1(a), 1(b), 1(c)) throughout the paper. Chan-
nel A models a 20 inch FR4 backplane channel at 10GHz [15],
and has discrete time channel impulse response (CIR) hA,0 =
[.1, .25, .16, .08, .04] (maximum phase, as is typical for back-
plane channels). Channel B, taken from [24], is mixed phase
with CIR hB,0 = [.23, .46, .69, .46, .23]. For simulations
with irregular or faster than Nyquist sampling, the contin-
uous channel impulse waveform is required. We generate it
using interpolation with a raised cosine waveform with roll-
off factor 0.5. This may be interpreted as using matched
square root raised cosine (SRRC) pulses for the transmit
and receive filters with physical channel impulse response
hc(t) = ∑L

i=1 hiδ(t − i) (setting Ts = 1 without loss
of generality). Channel C is generated by SRRC transmit
and receive pulses as above, with physical channel hc(t) =
.2δ(t − 1) + .3δ(t − 1.85)+ .15δ(t − 2.55) + .25δ(t − 3.35)+
.05δ(t−4.6). This gives a channel with a broader peak (formed
from the merging of two peaks) than the other two. The
impulse responses (h(t)) of the 3 channels are shown in the
subfigures 1(a), 1(b), 1(c). The notation hA,τ , 0 ≤ τ < 1 is
used to denote the CIR obtained by sampling at the sampling
phase τ (i.e., the sampling times are at (k+τ )Ts). For instance
hC,1/2 = [−.03, .24, .3, .22, .03, .01].

IV. NYQUIST SAMPLED UNIFORM ADC

We first consider the standard setting of Nyquist sampling
with uniform ADC with N thresholds as in Eq. (3), and ask
how small N can be for a given channel while avoiding
an error floor (i.e., error-free reception at infinite SNR)?
An analytical characterization is intractable, but it is pos-
sible to evaluate Nmin numerically by fixing σ 2 = 0, and
increasing N until the information rate reaches its maximum
value (for binary signaling) of one. The information rate
can be evaluated via Monte Carlo methods using BCJR as
described in [25]. However, it is interesting to explore whether
there are analytical insights to be obtained by examining the

Fig. 1. (d),(e) Each star symbol denotes a slicer, x and y axis correspond
to the sampling phase and threshold of the slicer, respectively. All slicers
still operate at the Nyquist symbol rate (normalized to 1 in the figures).
(f) Bit error rate curves for channel B corresponding to different sampling
phases 0, 0.25, 0.5.

channel coefficients. Intuitively, we expect that a channel with
a strong dominant tap should have a lower value of Nmin,
compared to a channel where the taps are comparable. The
placement of the dominant tap should also have a significant
effect. We make these intuitions concrete via the lemma stated
next, which provides easily computable bounds for Nmin when
all the channel taps have the same sign (which is often a
good approximation for backplane channels, for example). The
proof of the lemma, given in the appendix, is based on bounds
on information rate derived by Zeitler et al. [13].

Before stating the lemma, we note that the symmetric
information rate is invariant under time reversal and scaling
(under fixed SNR) of the channel. The scaling result is
standard, and the time reversal result follows because the
same output is generated by feeding a time reversed bit
stream (which is another valid i.i.d. input) to the time reversed
channel. Naturally, the bounds in the lemma also exhibit these
invariances. Define g = h

‖h‖1
as a normalized version of h

with unit �1 norm, and set g̃ as the time-reversed version of g,
so that g̃i = gL−i+1. i = 1, . . . , L. Define

Nl =
⎡

⎢⎢⎢
1

max
i

(gi)
− 1

⎤

⎥⎥⎥
(7)
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TABLE I

MINIMUM NUMBER OF THRESHOLDS REQUIRED TO DECODE WITH
NO ERROR AT HIGH SNR. ALSO LISTED ARE THE LOWER AND

UPPER BOUNDS COMPUTED USING LEMMA 1

Nu = min

(
{	ui
, 2 ≤ i ≤ L − 1}, {	vi
, 2 ≤ i ≤ L − 1},

⌈
1

g1
− 1

⌉
,

⌈
1

g̃1
− 1

⌉)
(8)

where

ui = 1

(gi − ∑i−1
j=1 g j )+

− 1; vi = 1

(g̃i − ∑i−1
j=1 g̃ j )+

− 1

where (x)+ = x if x > 0 and (x)+ = 0 if x ≤ 0
and 	
 denotes the ceil function i.e. rounding to the next
integer. Thus, we allow ui , vi to take the value +∞, but
the value of Nu is guaranteed to be finite because of the
last two terms in the minimum. It is also easy to see that
vL−i+1 = 1

(gi−∑L
j=i+1 g j )+

− 1.

Lemma 1: The minimum number of levels for avoiding an
error floor is bounded as Nl ≤ Nmin ≤ Nu .

The lower and upper bounds capture the effect of the
strength and the location of the dominant tap, respectively.
An examination of the expression (8) for Nu shows that, if
we can permute a given set of channel coefficients, maximum
or minimum phase channels (most of the energy in ending or
beginning taps) will generally have smaller Nmin compared
to mixed phase channels (most of the energy in the taps
in the middle). Table I lists the values of Nmin (computed
numerically) for a few different channels along with the lower
and upper bounds. The channel in the first row is mixed phase
and has the highest Nmin compared to rows 2 and 3 channels
which have the same tap values but are instead maximum
phase. We find that for a fixed channel, varying the sampling
phase may slightly change Nmin. However, as we show next,
the shape of the BER curve and the performance at moderate
SNRs may be far more sensitive to the sampling phase.

While the bounds of the number of ADC levels are not
always tight (see Table I, channels hB,0 and hB,1/4), they pro-
vide valuable insights on what is needed to avoid error floors.
The lower bound is the inverse of the dominant tap strength
minus 1 (assuming that the channel coefficient magnitudes are
normalized to sum to one), and the upper bound depends on
the difference of the strength of the dominant tap(s) and the
taps before and after. Thus, if the dominant tap is much larger
than the other taps, then we need fewer quantization levels.
This makes intuitive sense, since the effect of ISI is less severe,
and we need to devote fewer resources to modeling it. On the
other hand, the number of quantization levels is at least L-1
for a uniform channel of length L.

For suboptimal linear equalization with unquantized sam-
ples, it is well known [24], [26] that fractionally spaced
equalizers (FSE) are superior to symbol-spaced equalizers,
providing robustness to sampling phase and avoiding error
floors due to residual interference. However, when optimal
BCJR or MLSE equalization is employed, the difference is
not as drastic, but FSE is still more insensitive to sampling
phase, which is attractive because hardware-based control of
sampling phase is not always feasible. We would like to
investigate if similar trends hold with severe quantization, with
a quick exploration in this section followed by more detailed
theory and algorithms in later sections. In order to have a
fair comparison between TSE and FSE, we take the number
of slicers used in a TSE and disperse them across different
sampling phases to obtain a space-time architecture.

As an example, we plot in Fig. 1(f) the BER over channel B
with TSE. We consider unquantized samples, as well as
samples quantized using a 3-bit ADC (i.e., with 7 slicers),
for sampling phases τ = 0, 0.25, 0.5. In the unquan-
tized setting, there is a small degradation in performance
(∼ 1 dB at 10−5) at sampling phase 0.5. However, the
degradation with quantization is much larger, even though
there is no error floor (see the hB,1/2 entry in Table I). Even
for channels with similar dynamic ranges, the performance of
TSE/uniform-ADC with a fixed set of thresholds can show
significant sensitivity to sampling phase. As a quick remedy,
we try spreading the same set of slicers across time, as shown
in Fig. 1(e). Each slicer still samples at the symbol rate
but with a different sampling phase. Changing the sampling
phase now corresponds to shifting the whole space-time slicer
structure. We see that now the performance (the BER curves
in green) is much less sensitive to the phase, although there is
still some degradation for one of the sampling phases. This was
a specific configuration, obtained without any design, which
demonstrated the potential of space-time slicers. However,
there are numerous ways in which the slicers can be spread
across time, hence it is of interest to develop automated
procedures for arriving at good designs. It is also natural
to ask the question as to whether there is any fundamental
disadvantage to spreading slicers across time.

In the next section, we show that even randomly distributed
slicers spread across time suffice to avoid error floors as long
as the number of slicers is large enough. While such a design
would be impractical, it shows that, in principle, there is no
fundamental performance limitation imposed by quantization
using one-bit comparators spread out in space and time.
Of course, the number of slicers predicted by this theoretical
result is much larger than what is required when the space-
time architecture is optimized for a particular channel, and we
consider this problem in Section VI.

V. ONE-BIT MEASUREMENTS WITH

RANDOM THRESHOLDS

In this section, we consider the special case of 1-bit
measurements spread over time. Without loss of generality,
consider reliable demodulation of bit b0. We restrict attention
to measurements in the interval [0, LTs ] affected by this bit.
This choice of observation interval is sensible but arbitrary,
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and our approach applies to other choices as well. The
measurements in this interval are also affected by L − 1
“past” ISI bits (b−L+1, . . . , b−1) and L − 1 “future” ISI bits
(b1, . . . , bL−1). Denote the noiseless received waveform in this
interval by s(t), suppressing the dependence on the desired
bit bi and the ISI bits from the notation. Without loss of
generality, we normalize h(t) so that s(t) lies in [−1, 1]. The
main result in this section can be paraphrased as follows:
for sufficiently many 1-bit measurements uniformly spaced
in time but with thresholds chosen randomly over [−1, 1],
it is possible (at high SNR) to reliably distinguish between
b0 = +1 and b0 = −1, as long as it is possible to do so with
unquantized measurements.

Information Rate: Let x j
i denote the vector of samples (these

may or may not be quantized) obtained during the interval
[i Ts, j Ts]. For symbol spaced sampling, the length of x j

i is
j − i +1 (the length for general space-time slicers depends on
the specific pattern of sampling times used). The information
rate between the transmitted bits and the received samples is
given by

I (b; x) = lim
N→∞

1

N
I (bN

1 ; xN
1 )

= lim
N→∞

1

N

N∑

i=1

I (bi ; xN
i |bi−1

i−L+1)

≥ lim
N→∞

1

N

N∑

i=1

I (bi ; xi+ f
i |bi−1

i−L+1) (9)

Inequality (9), derived in [13], states that the information rate
is lower bounded by the average (over the past bits) mutual
information between the current bit and the measurements
over the next few symbols ( f ), conditioned on the past bits.
Numerical results in [13] show that this lower bound becomes
a fairly tight approximation for f = L future symbols.

Let xL
0 denote the vector of continuous-valued samples

obtained by sampling s(t) uniformly, n times, over the
observation interval. Length of xL

0 is n. If we denote the
sampling interval by �, we have n� = LTs . Fixing the past
ISI bits, we partition the noiseless waveforms corresponding
to all possible realizations of the future bits into two sets,
each of cardinality 2L−1, corresponding to the two possible
values of the “tagged bit” b0: S−1 = {s(t) s.t. b0 = −1}
and S+1 = {s(t) s.t. b0 = +1}. Denote by X−1 and X+1 the
corresponding sampled vectors xL

0 . The absence of error floors
can be proved by setting the noise level to zero and checking
whether the lower bound (9) on the information rate equals
one. This happens as long as the set of observations generated
by the two different values of the desired bit are mutually
exclusive: X−1 ∩ X+1 = ∅. Note that this property always
holds for unquantized measurements, as long as at least one
sample is obtained in the first symbol period ([0, Ts]) and the
corresponding CIR value h(0) �= 0. This follows from the
fact that, since the past bits are fixed, and future ISI bits do
not affect the waveform in the interval [0, Ts ], b0 = −1 and
b0 = +1 result in different samples in the first entry of xL

0 .
This result is also discussed in [27], where the author considers
symbol spaced samples and shows that the lower bound

(and hence the information rate) goes to one as SNR increases
as long as the first element of the discrete time CIR is nonzero.
In general, such guarantees cannot be provided for quantized
measurements. However, we show that as long as n is large,
using randomized thresholds for one-bit quantization results
in similar behavior.

In general (at any SNR), the performance depends on the
amount of overlap/separability between the sets X−1 and X+1.
For the purpose of our proof, we employ the normalized �1
distance between each pair of elements x−1 ∈ X−1, x+1 ∈ X+1,
defined as follows:

‖x−1 − x+1‖1 =
n∑

i=1

� |s−1(i�) − s+1(i�)| (10)

where s−1(t) and s+1(t) are the corresponding continuous
time waveforms from sets S−1 and S+1 respectively and
� is the sampling interval (for uniform sampling as assumed
in this section, n� = LTs ). The scale factor � is included
for the normalized �1 norm ‖x−1 − x+1‖1 to approximate
the continuous time �1 norm ‖s−1 − s+1‖1 as n gets large.
We define the minimum normalized �1 distance between the
two sets as follows:

d = min
x−1∈X−1;x+1∈X+1

‖x−1 − x+1‖1 (11)

For unquantized observations, as noted earlier, X−1 ∩X+1 = ∅,
and hence d > 0.

Let us now consider what happens when we pass the
unquantized sampled vector x through a series of one-bit
quantizers, with the i th sample compared to threshold ti . The
vector of thresholds is denoted as T = [t1, t2, ....., tn]T , and
defines a quantization function q as follows:

q(x) = (2�)y; y(i) =
{

1 if x(i) ≥ ti
0 if x(i) < ti

i = 1, ....., n

(12)

The following theorem states that, with a sufficient number
of samples n, quantized with random thresholds, the quanti-
zation function q(·) approximately preserves the �1 norm of
the unquantized differences ‖x−1 − x+1‖1. This result bears
some similarity to the JL lemma in which random projec-
tions preserve the norm for embeddings to lower dimension
subspaces [28].

Theorem: If each entry of the threshold array T is picked
uniformly and independently from [−1, 1], then for any con-
stants ε, β, δ ≥ 0, with probability at least 1 − δ , for all
x−1 ∈ X−1 ; x+1 ∈ X+1 we have

(1 − ε) ‖x−1 − x+1‖1 ≤ ‖q(x−1) − q(x+1)‖1

≤ (1 + ε) ‖x−1 − x+1‖1 (13)

for

n ≥ 4Ts

dε2

(
log 2 · (2L2 + L) + L log δ−1

)
(14)

where d is the minimum �1 distance defined in (11).
Proof: Consider a particular pair of sampled measure-

ments x−1 ∈ X−1 ; x+1 ∈ X+1 (corresponding to s−1(t) ∈
S−1 ; s+1(t) ∈ S+1). Define z = |q(x−1) − q(x+1)|, so
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that z(i) = 2� if ti lies between (and hence can distinguish
between) s+1(i�) and s−1(i�), and z(i) = 0 otherwise.
Since ti is uniformly picked from [−1, 1], z(i) is a (scaled
version of a) Bernoulli random variable with parameter pi =
1
2 |s−1(i�) − s+1(i�)| and mean 2�pi . Thus, from (10)

E (‖z‖1) = E

(
n∑

i=1

z(i)

)

= 2�
∑

i

|s−1(i�) − s+1(i�)|
2

= ‖x−1 − x+1‖1

(15)

so that the quantization function q(·) preserves the norms
of the differences in expectation. It remains to prove a con-
centration result using a Chernoff bound to show that the
probability of deviation from the expectation goes to zero for
large enough n. Given that the z(i) are independent scaled
Bernoulli random variables, derivation of the Chernoff bound
is a straightforward exercise and we state the final result,
omitting the details (see [29]). To simplify notation, we use
the shorthand μ = ‖x−1 − x+1‖1 in the following.

Pr (‖z‖1 > (1 + ε)μ) ≤ e− μ
2� ((1+ε) log(1+ε)−ε) ≤ e− μnε2

4LTs

(16)

where we have substituted � = LTs
n and used log(1 + ε) ≥ ε

(for ε ≥ 0) to obtain the last inequality. Proceeding along
similar lines, we obtain an analogous bound for the probability
of deviation below the expectation: Pr (‖z‖1 < (1 − ε)μ) ≤
e− μnε2

4LTs . Combining with (16) yields

Pr (‖z‖1 < (1 − ε)μ or ‖z‖1 > (1 + ε)μ) ≤ 2e− μnε2

4LTs

≤ 2e− dnε2
4LTs (17)

where the last inequality follows from the definition of d
in (11). There are 2L+1 pairs of distances given the past bits
(i.e. |X−1| = |X+1| = 2L), and varying the L past bits,
|X−1| = |X+1| = 2L , and taking the union bound over all
possible pairs x−1 ∈ X−1 ; x+1 ∈ X+1, we obtain

Pr (‖z‖1 ≤ (1 − ε)μ or ‖z‖1 ≥ (1 + ε)μ) ≤ 22L · 2e− dnε2
4LTs

≤ δ (18)

which can be bounded as tightly as desired (18) by decreas-
ing δ and ensuring that n meets the condition (14).

Remarks: While we have considered uniform sampling for
simplicity, this is not required for the theorem to hold. Using
the continuity of the CIR, any non-uniform sampling strategy
that provides sufficient density of samples to capture the
separation of s−1(t) and s+1(t) in the regions where the
waveforms are apart suffices. The independence of the choice
of thresholds is crucial for the concentration result.

Simulations: Due to the looseness of the union bound used
to prove the theorem, picking n based on the theorem is
excessively conservative. We now show via simulations that
moderate values of n suffice to provide good equalization
performance. Figure (2(b)) shows the BER curve obtained

Fig. 2. (a) One-bit measurements with randomly varying thresholds (b) Bit
error rates for the channel hA,0 = [.1, .25, .16, .08, .04].

by employing 90 randomly selected 1 bit slicers for the
FR4 channel. This translates to 15 slicers per symbol period as
FR4 is 6 symbols long. The SNR is defined as ‖h‖2

σ 2 . The BER
curves vary slightly for different instances of slicer thresholds,
the general behavior remains the same for a fixed number of
slicers and we find that ∼ 15 slicers suffice to avoid the error
floor. BER for random 1-bit slicers is worse than for uniform
ADC thresholds since no optimization has been performed.
Carefully picking slicer thresholds for minimizing BER is
discussed in the next section. The bit error rates are computed
empirically using BCJR. Note that the BER obtained for the
random slicers case is actually an upper bound of the minimum
BER as the BCJR algorithm used ignores the noise correlations
and hence is not optimal. As also mentioned in the appendix,
it is non-trivial to extend BCJR for the case with quantization
and colored noise (even though each these 2 scenarios alone
can be handled).

The theorem states that the L1 norm of difference between
two waveforms is preserved after quantization through a
random set of thresholds, in a manner analogous to the
preservation of norms of randomly projected vectors via the
JL Lemma, which is used in compressed sensing. As in the
latter application, we use union and Chernoff bounds, which
are quite loose. However, the result provides the key insight
that information can be preserved using one-bit comparators
with random quantization thresholds, and motivates the search
for constructive strategies. While the theorem is reassuring
testimony to the flexibility of space-time architectures, in
practice, it is often simpler to place slicers at fewer locations.
In the next section, we consider optimization of slicer locations
for TSE and FSE.

VI. OPTIMIZING SLICER THRESHOLDS

In the example discussed in Section IV, we observed that the
uniform ADC performed very poorly at the sampling phase 0.5
with channel B (hB,1/2). A closer look at the error events
(at 25 dB) reveals that most of the errors are caused due
to poor threshold locations rather than large noise samples.
Fig. 3(a) plots the continuous-valued signals corresponding
to the correct and incorrect bit sequences from a simulation
run in which bits 1 and 2 have been incorrectly decoded.
Both noiseless and noisy signals are plotted, but they are
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Fig. 3. (a) Example of an error event with channel hB,1/2 at 25 dB. Plot in
gray is after noise addition. The small circles denote slicers. (b) Probability
of error for different indices Eq. (22) (c) g(	, t) for the sequence shown in
(a) at 25 dB.

barely discernible from each other (i.e., the noise samples are
small). The noiseless sequences differ significantly at 4 sample
locations (locations 2, 3, 5, 6) affected by bits 1 and 2, but at
all of these, the thresholds separating the two waveforms are
very close to at least one of them, hence even a small deviation
due to noise greatly increases the possibility of an incorrect
detection. This shows that, for low-precision quantization, it
is critical to choose thresholds that are compatible with the
channel at hand, since “off-the-shelf” uniform ADCs may not
effectively separate out the waveforms corresponding to dif-
ferent bit sequences. Uniform thresholds are more compatible
with Channel B with a different sampling phase, hB,0, but here
too, the performance can be improved by choosing channel-
specific thresholds. In this section, we present a procedure for
designing a non-uniform ADC with thresholds chosen based
on the channel, given a constraint on the number of slicers.
We first consider a TSE, and then extend the algorithm to an
FSE sampled at twice the Nyquist rate. We assume that the
sampling phase is fixed for the receiver, which determines the
channel tap values. Slicer thresholds are designed for a given
channel response.

A. Threshold Design for TSE

Ideally, we would like to choose the thresholds, T =
[t1, ...., tM ], to minimize the minimum BER attained by
MAP/BCJR decoding. However, this cost function is ana-
lytically intractable, hence we consider the union bound for
MLSE performance and truncate it to a few dominant terms,
targeting a high SNR regime. We use as our cost function an
upper bound of this truncated sum, which can be computed
easily for quantized observations.

The MLSE bit error probability, Pe, can be upper bounded
using the union bound, which in its general form can be stated

as follows [30, Sec. 5.8.1]

Pe ≤ Pu =
∑

e∈E

∑

b,b′
PB(b, b′)w(e)2−w(e)

where b′ = b + 2e (19)

where E denotes the set of error events. As defined in [30] an
error event is a simple error sequence whose first nonzero entry
is at a fixed time, say at index 0. The elements of e take values
in {0,±1}, and are nonzero at indices where the bit sequences
b and b′ differ. The number of nonzero elements in e, or its
weight, is denoted by w(e). We denote by PB(b, b′) the pair-
wise error probability for binary hypothesis testing between
b and b′, which are separated by the error event expressed
by e. For continuous-valued measurements, PB(·) depends
only on e, which reduces the summation

∑
b,b′ PB(b, b′) to

a single term that can be expressed as a function of the
standard normal complementary CDF (or Q function; see
[30, eq. (5.76)] . Exact evaluation of PB(·) is difficult for
quantized observations, hence we bound it from above. This,
together with a restriction on the set of error events, yields an
approximate upper bound that serves as our cost function for
threshold design using K-means.

1) Truncated Union Bound: While there are infinitely many
error events in E, at high SNR, it suffices to consider a small
set of most likely events which dominate the summation (19).
For continuous-valued measurements, these correspond to the
most slowly decaying Q function terms, which correspond to
low weight error sequences [30]. For quantized observations,
it is more difficult to identify the dominant error events,
but for the channels considered here, and using the uniform
quantizer starting point, simulations yield the expected result:
weight one and two error patterns, e1 = {±1, 0, 0, 0, ....} and
e2 = {±1,±1, 0, 0, 0, ....}, are by far the most dominant.
We therefore restrict attention to these in truncating the union
bound (19), as follows:

Pu ≈ Put =
∑

	∈E1

PB(	)w(e1)2−w(e1)

+
∑

	∈E2

PB(	)w(e2)2−w(e2) (20)

where Ei = {
b, b′ s.t . b′ = b + 2ei

}
, i = 1, 2 and we have

denoted pairs of bit sequences (b, b′) by 	 for brevity and
w(e1) = 1, w(e2) = 2. Note that |E1| = 2(L−1) · 2(L−1). This
is because the observations that depend on the bit in error,
b0, are only affected by the truncated bit sequence bL−1

−(L−1).
Similarly we get |E2| = 2(L−1) ·2(L−1) ·2. For a channel with
L = 6, |E1| = 1024, |E2| = 2048 which gives the total terms
to be summed over to be N = |E1| + |E2| = 3072.

2) Bounding the Pairwise Error Probability: Note that in
the notation so far we have suppressed the dependence on
thresholds T. We make that explicit now. Hence in Eq. 20
above, we really have pair wise error probabilities that depend
on the bit sequences and the thresholds i.e. PB(	, T). We now
wish to bound the pairwise error probabilities PB(	, T) for
a particular set of thresholds T. Consider the corresponding
noiseless unquantized signals x = 〈h, b〉 and x′ = 〈h, b′〉.
Since we are only interested in simple error sequences,
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x and x′ differ at most in, say K , consecutive locations. That
is, x(i) = x ′(i) ∀ i ≤ 0, i ≥ K + 1. Note that K = L for
b, b′ ∈ E1 and K = L + 1 for E2 (changing a given bit can
have an effect over at most L output samples when convolved
with a channel of length L). The binary hypothesis problem
of choosing one of b and b′ then reduces to selecting one of
the two vectors, X0 or X1 given by

H0 : X0 = x(1 : K ), H1 : X1 = x′(1 : K );
PB(	, T) = PB(b, b′, T) = PB(X0, X1, T)

Fig. 3(a) shows an example of X0 and X1 corresponding to
a particular bit sequence pair in E2. The vectors X0 and X1
are of length K , after quantization each element takes one of
M + 1 values, as there are M thresholds. We can now obtain
a simple upper bound on the pairwise error probability by
considering the probability of error in separating the scalars
X0(i) and X1(i). The pairwise error probability if we only use
the i th component depends only on a single threshold in the
array T. That is,

PB(X0(i), X1(i), T) = min
t∈T

PB(X0(i), X1(i), t) (21)

Note that the value of t that minimizes the above expression
is the one that is closest to X0(i)+X1(i)

2 . As a function of this
scalar threshold t , we obtain that

PB(X0(i), X1(i), t)

= 2−(2L−2)

(
Q

(
t − Xmin

σ

)
+ Q

(
t − Xmax

σ

))
(22)

where

Xmin = min (X0(i), X1(i))

Xmax = max (X0(i), X1(i))

The factor of 2−(2L−2) is included due to the prior on the
truncated bit sequences. Fig. 3(b) plots this function for
different indices i = 1, ...., 7 for the pair of sequences X0 and
X1 shown in Fig. 3(a). The probability of error for deciding
between the hypothesis H0 and H1 can be upper bounded
by each of the probabilities of error based on the scalar
components as we vary i , hence minimizing over i provides
an upper bound. Applying this and Eq. 21 we get:

PB(	, T) = PB(X0, X1, T) ≤ min
i=1,..,K

PB(X0(i), X1(i), T)

= min
i

min
t∈T

PB(X0(i), X1(i), t)

= min
t∈T

min
i

PB(X0(i), X1(i), t) (23)

3) Truncated Upper Bound: Define

g(	, t) = min
i

PB(X0(i), X1(i), t) (24)

Fig. 3(c) shows an example plot of the function g(	, t) for
the pair of sequences shown in Fig. 3(a). We can rewrite the
upper bound as

PB(b, b′, T) = PB(	, T) ≤ min
t∈{t1,...tM }g(	, t) (25)

Applying Eq. (25) to Eq. (20), we get an upper bound on the
truncated union bound, which is our cost function

Pe ≤ Pu ≈ Put =
∑

	∈E1∪E2

PB(	, T)w(	)2−w(	)

≤
N∑

n=1

min
t∈T

g(	n, t)w(	n)2−w(	n )

=
∑

n

min
t∈T

f (	n, t); (26)

where

f (	, t) = g(	, t)w(	)2−w(	) (27)

w(	) denotes the weight of the error event e = b′−b
2

corresponding to 	 = (b, b′). Our objective now is to find
thresholds that minimize this cost function (Eq. 26).

4) Optimization Using K-Means: The problem of finding
the thresholds now reduces to the following minimization
problem

T∗ = argmin
T

N∑

n=1

min
t∈{t1,..,tM } f (	n, t) = argmin

T

N∑

n=1

f (	n, t∗n )

(28)

We note that the above formulation is identical to the clus-
tering problem where we are given N data points 	n , which
are required to be grouped into M clusters to minimize the
total distortion. The distortion function is specified by f (	, t)
and the M cluster centers represent the thresholds. We can
therefore apply the standard K-means [31] algorithm to obtain
candidate solutions. This involves two alternating steps, as
follows:

j∗ = argmin
j=1,..,M

f (	n, t i
j ) (assignment)

t i+1
j = min

t

∑

	∈t i
j

f (	, t) (update)

At the i th iteration there are M cluster centers/thresholds{
t i
1, ...., t i

M

}
. Each ‘data point’ 	n gets assigned to its closest

threshold. Then each threshold value is updated by summing
over all the data points assigned to it. The functions f (	, t)
can be easily computed for each pair of weight 1 and 2 error
sequences, and we compute and store them for each 	 over
a grid for the parameter t . This makes the minimization in
the update step straightforward. We use a grid of size 200,
after first normalizing the channel to limit the range of
the unquantized channel output to [−1, 1], and then using
a grid of size .01 for t . The K-means algorithm typically
converges in a small number of iterations (< 10). Since
the K-means algorithm tends to get stuck in local minima,
we run several iterations of it using different starting points
such as uniform thresholds, Lloyd-Max thresholds and random
perturbations of these. Finally we pick the thresholds that
give the lowest approximate upper bound Put . Precomputing
functions f (	, t) for a grid of threshold values and 	 makes
it possible to run several iterations of K-means from different
starting points very quickly. It also enables rapid computation
of the truncated upper bound Put . Using Put as a proxy for the
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real BER we can quickly compare a given set of thresholds.
This is leveraged for the FSE threshold design.

B. Threshold Design for FSE Ts/2

Now, consider the problem of designing thresholds for
slicers spread across two sampling phases separated by half a
symbol period i.e. an FSE Ts/2 architecture. We now have
two parallel discrete channels, h1 and h2. Fixing the total
budget of slicers to M , suppose that we fix M1, the number of
slicers placed at the first phase (so that M − M1 are placed at
the second phase), then the threshold values can be computed
using exactly the same machinery as earlier. We then optimize
by searching over the values of M1. The results for TSE are
then a special case corresponding to M1 = 0 or M1 = M ,
and indeed, in several examples, it turns out that allocating all
available slicers to one of the two sampling phases results in
the lowest cost. For instance, for channel B, it is best to put
all the 7 slicers at sampling phase 0 (hB,0). When we increase
the number of slicers to M = 9 a 7-2 split configuration turns
out to be the best, but it is only marginally better than having
all 9 at hB,0. This makes sense, since in this case the sampling
phase 0 is a good choice. For channel C we find that 2-1 is
the optimal split.

C. Simulations

For the three example channels, we present the BER attained
using the non-uniform threshold ADCs designed by our algo-
rithm in Figures 4 and 5(a). We simulated 1000 runs, each with
10000 bits to get BER in the range of 10−6 to 1. We compare
performance with ‘off-the shelf’ uniform threshold ADCs and
the Lloyd-Max quantizer [32], [33] which picks thresholds to
minimize the quantization error. Both the Lloyd-Max quantizer
and our algorithm generate thresholds that depend on the noise
level. We design for a nominal SNR of 20dB: we find that the
threshold values are relatively insensitive to SNR once the
latter is high enough. In all the cases we observe that our
non-uniform ADC design performs the best. It is considerably
better than uniform ADC and consistently better than Lloyd-
Max. The latter optimizes quantization error rather than BER,
and hence yields inconsistent performance. In certain cases it
is almost as good as our design (channel B), while sometimes
it performs almost as poorly as the uniform design (channel A,
channel C phase 0). In Fig. 4 we also plot the approximate
truncated upper bound Put (Eq. 26) which our algorithm is
trying to minimize. Even though it is an approximate (and
rather loose) upper bound, it seems to follow a shape similar to
the BER curves, and the benefit of minimizing it gets translated
to the actual BER. FSE design leads to the largest gains for
channel C. We consider sampling phases 0 and 0.5 and a
budget of M = 3 slicers (2 slicers are enough for this channel
to ensure no error floor, see Table I). We find that the optimal
configuration is a 2-1 split (Fig. 5(d)). We notice a 2dB (1dB)
gain compared to using a TSE non-uniform architecture at the
sampling phase 0.5 (0) (Fig. 5(a)).

Error in Channel Estimation: We have assumed perfect
knowledge of the channel impulse response in our designs
and performance evaluations. This is a reasonable assumption

Fig. 4. The curves in gray depict the cost function (Eq. 26)
(a) MLSE BER for hB,0 = [.23, .46, .69, .46, .23] (b) MLSE BER
for hB,1/2 = [.1, .34, .61, .61, .34, .1] (c) MLSE BER for FR4 channel
hA,0 = [.1, .25, .16, .08, .04].

Fig. 5. (a) Bit error rate curves for channel C with sampling phases 0 and 0.5
and a budget of 3 thresholds (b) Non-uniform ADC thresholds at t = 0
(c) Non-uniform ADC thresholds at t = 0.5 (d) Optimal space-time slicers
configuration.

to make, especially for static backplane channels. As shown
in [11], channel taps can be estimated very accurately even
with low precision ADCs. In particular, it was shown that even
with 1-bit ADCs a channel MSE (mean square error) in the
range of −10 to −20 dB can be obtained using a pilot signal
of duration N = 10L bits. Furthermore, the MSE is reduced
by 10 dB for every 10 times increase in N . We performed
simulations by taking channel MSE into account and observed
that the BER performance remains essentially the same if
MSE is below −50 dB. A pilot sequence which is 106 bits
long (i.e. 0.1ms long for a 10 Gbps link) would easily achieve
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channel MSEs lower than −50 dB. Hence it is safe to assume,
as we have done in this paper, that the channel is known at
the receiver with high fidelity.

Our overall observation is that TSE with channel-optimized
thresholds significantly outperforms the standard uniform
ADC. The additional gain obtained by generalizing to FSE
depends on the channel and the sampling phase. Of course,
the trends might be quite different if BCJR decoding is
replaced with lower-complexity algorithms. For example, for
continuous-valued observations, FSE is much better than TSE
for linear equalizers, but is typically only marginally better
with BCJR decoding.

VII. CONCLUSIONS

We have shown that there is significant scope for improv-
ing on generic ADC designs for communication over
dispersive channels when there are severe quantization con-
straints. Specifically, we propose choosing slicer thresholds
for analog-to-information conversion, by effectively discrim-
inating between waveforms corresponding to different bit
sequences. In addition to choosing slicer thresholds as a func-
tion of the channel, spreading slicers over time can improve
upon Nyquist rate sampling. We have shown that there are no
error floors when we take this concept to an extreme, with
one-bit comparators dispersed uniformly over time. We have
also provided an algorithm for choosing slicer thresholds for
TSE and FSE (sampled at twice the symbol rate), which yields
designs that significantly outperform the standard Nyquist-
sampled uniform ADC. In summary, our results show that,
despite the increased dynamic range due to channel dispersion,
it is possible to significantly reduce the number of slicers
(which is taken as a proxy for the power consumption of the
data conversion front end), while recovering the information
encoded in the received signal.

While our focus here has been on communication-theoretic
considerations, investigation of detailed cost/power tradeoffs
in the context of specific circuit designs is an important topic
for future work. From a circuit designer’s point of view, it
is essential to trade off complexity and power consumption
of the analog front end and the associated digital backend
(e.g., using fewer slicers in the analog front end may require
complex digital processing). For example, while the BCJR
algorithm provides a useful benchmark (and may be viable
for short backplane channels with antipodal signaling), it is
of interest to reduce the complexity of the digital equalizer,
and to design the analog-to-information converter accordingly.
In particular, it is of interest to explore if we can improve
performance relative to prior attempts along these lines based
on linear transmit filters and DFE [14]–[16], possibly using a
judicious combination of the simplicity of the DFE with the
more comprehensive exploration of sequence space obtained
using more complex MLSE/BCJR algorithms. This becomes
more important when we extend our framework to larger
constellations.

We assume the availability of channel estimates in our
design. As shown in [11], such estimates can be obtained
even with coarsely quantized observations for time invariant
channels. It is of interest to explore how best to extend

such approaches to time-varying channels. Finally, while our
starting point here is the flash ADC architecture, it is of inter-
est to explore whether the concept of analog-to-information
conversion can be effectively applied to obtain more power-
efficient designs starting from the pipelined or successive
approximation register architectures.

APPENDIX A
BCJR ALGORITHM

The BCJR algorithm relies on a Markov structure [22],
and applies directly to quantized observations with Nyquist
sampling. For faster sampling, the noise correlation can still
be handled by state extension if the observations are unquan-
tized [34], but the Markov structure is destroyed by quantiza-
tion. Thus, for FSE/space-time architectures, we simply ignore
the noise correlations, so that the BER attained is an upper
bound on the minimum possible BER.

For TSE, the state at time k is Sk = {bk, bk−1, ....., bk−L+2}.
From (4), the observation x(k) is a function of Sk−1, Sk and
the noise w(k). The standard BCJR equations for the posterior
probability of the state are given by

p(Sk |xN
0 ) ∝ p(Sk |xk

0)p(xN
k+1|Sk, xk

0)

= p(Sk |xk
0)p(xN

k+1|Sk)

= αkβk (29)

Forward Recursion:

αk = p(Sk |xk
0) =

∑

Sk−1

p(xk|Sk, Sk−1)p(Sk |Sk−1)αk−1 (30)

Backward Recursion:

βk = p(xN
k+1|Sk) =

∑

Sk+1

βk+1 p(xk+1|Sk , Sk+1)p(Sk+1|Sk)

(31)

Note that, for i.i.d. binary signaling, the only computa-
tion required is of p(xk|Sk , Sk−1), since p(Sk |Sk−1) = 0.5.
From (4), (5), the likelihood of the observation given the states
is given by Continuous Observations:

p(x(k)|Sk, Sk−1) ∝ exp

( −1

2σ 2
‖x(k) − μ‖2

)
(32)

Quantized Observations:

p(xq(k)|Sk, Sk−1) = = Q

(
l − μ

σ

)
− Q

(
u − μ

σ

)
;

l ≤ x(k) ≤ u (33)

where μ = 〈h, bk−L+1
k 〉. The quantized observation xq(k) is

specified via the interval [l, u]. Q(·) denotes the standard nor-
mal Q-function. Note that bk

k−L+1 is specified completely via
Sk and Sk−1. Note that MLSE using the Viterbi algorithm [23]
can be run in similar fashion, since it also involves the same
core computation of the observation likelihoods (33). Since we
are ignoring noise correlations, the preceding approach extends
directly to FSE with quantization.
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APPENDIX B
PROOF OF LEMMA 1

To prove the lemma, we utilize bounds on information
rate derived by Zeitler et al. [13], which are valid for both
unquantized and quantized measurements, assuming i.i.d. bits
and symbol spaced sampling (independent noise samples).

Lower Bound

I (b, z) ≥ lim
N→∞

1

N

∑

i

I
(

bi , zi+L−1
i |bi−1

i−L+1

)

stationarity= I
(

bi , zi+L−1
i |bpast

)
(34)

= H (bi) − H
(

bi |zi+L−1
i , bpast

)

= 1 − H
(

bi |zi+L−1
i , bpast

)
(35)

Upper Bound

I (b, z) ≤ lim
N→∞

1

N

∑

i

I
(

bi , zi+L−1
i |bi−1

i−L+1, bi+L−1
i+1

)

stationarity= I
(

bi , zi+L−1
i |bpast, bfuture

)
(36)

= H (bi) − H
(

bi |zi+L−1
i , bpast, bfuture

)

= 1 − H
(

bi |zi+L−1
i , bpast, bfuture

)
(37)

Here z denotes measurements at the symbol rate: z = x
(unquantized), z = xq (quantized). The lower bound is the
average mutual information between a bit (bi ) and the set of
observations it affects (which are zi+L−1

i ), conditioned on the
past bits (bpast = bi−1

i−L+1). If we further condition on the future
bits (bfuture = bi+L−1

i+1 ) we get the upper bound.
We set the noise variance to zero, and consider the nor-

malized channel g = (g1, ...., gL)T with g j ≥ 0 for all j .
Setting i = 0 without loss of generality, let y = zL−1

0 = xL−1
0

denote the portion of the continuous-valued output containing
contributions from b0:

y( j) = ... + g j−1b1 + g j b0 + g j+1b−1 + ...

or

y = G pbpast + G f bfuture + b0g (38)

where G p and G f are appropriately defined matrices of size
L × (L − 1).

In order to derive the lower bound Nl , consider the upper
bound (37) on information rate. Let y+1 denote the value of
y conditioned on b0 = +1 and y−1 denote the corresponding
value for b0 = −1. Conditioned on the past and future bits,
�y = y+1 − y−1 = 2g. Since ‖g‖1 = 1, each output sample
y( j) is confined to [−1, 1] (since the input bits are from ±1).
For a uniform ADC with N thresholds covering this range, the
size of each quantization bin is 2

N+1 . If the thresholds separate
even one component of �y, we can distinguish between b0 =
+1 and b0 = −1, and the conditional entropy term in (37) is
zero. This happens if N is large enough that the bin size is
smaller than the biggest separation, given by max

k
2gk :

2

N + 1
≤ max (2g) ⇒ N ≥ 1

max(g)
− 1 (39)

If N is smaller than the preceding value, it is easy to see that
there is at least one set of values for the past and future bits
(e.g., set them all to one) for which b0 = +1 and b0 = −1
cannot be distinguished.

For deriving Nu , we consider the lower bound (35) on the
information rate. Conditioned on the past bits, the possible
values of the components of y+1 and y−1 are given by

y+1( j) = .. + g j−2bl
2 + g j−1bl

1 + g j + g j+1b−1 + ..;
y−1( j) = .. + g j−2bk

2 + g j−1bk
1 − g j + g j+1b−1 + ..

where the superscripts l and k are used to denote that the future
bits b1, b2, ... need not be the same. The minimum value of
y+1( j) and the maximum value of y−1( j) are given by

y∗
1 (i) := min

b j
future

y1(i) = −
i−1∑

t=1

gt + gi + gi+1b−1 + ..;

y∗−1(i) := max
bk

future

y−1(i) =
i−1∑

t=1

gt − gi + gi+1b−1 + ..

We have an open eye at sample j if y∗+1( j) − y∗−1( j) > 0,

which happens if 2
(

g j − ∑ j−1
t=1 gt

)
≥ 0. If there is a threshold

between y∗+1( j) and y∗−1( j), then we can separate b0 = +1
and b0 = −1 irrespective of the value of the future bits. This
corresponds to the following condition on N :

2

N + 1
≤ 2

⎛

⎝gi −
j−1∑

t=1

gt

⎞

⎠ ⇒ N ≥ 1

g j − ∑i−1
t=1 gt

− 1 (40)

We get a set of upper bounds on N for each j = 1, . . . , L,
along with a corresponding set of bounds for the time-reversed
channel. Minimizing across these gives the bound Nu stated
in the lemma.
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