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Space—Time Precoding for Mean and Covariance
Feedback: Application to Wideband OFDM

Gwen Barriac and Upamanyu Madhow, Fellow, IEEE

Abstract—We consider optimization of the capacity of a
multi-input single-output wideband cellular ‘“downlink,” in which
the base station has estimates of the statistics of the spatial channel.
Our main focus is on orthogonal frequency-division multiplexed
(OFDM) systems, although some of our results apply to single-car-
rier systems, as well. Prior work has shown that estimates of the
channel spatial covariance can be obtained without overhead for
both frequency-division duplex (FDD) and time-division duplex
(TDD) systems by suitably averaging uplink measurements. In
this paper, we investigate the benefits of supplementing this ‘“free”
covariance feedback with mean feedback, where the latter refers
to estimates of the spatial channel realization in each subcarrier.
Mean feedback can be obtained using reciprocity for TDD sys-
tems, and requires explicit feedback for FDD systems. We first
devise strategies for using both covariance and mean feedback,
mainly restricting attention to beamforming, which is optimal
or near-optimal for many outdoor channels with narrow spatial
spread. Second, since mean feedback degrades rapidly with feed-
back delay for mobile channels, we develop quantitative rules of
thumb regarding the accuracy required for the mean feedback
to be a useful supplement to the already available, and robust,
covariance feedback. Our results validate the following intuition:
the accuracy requirements for mean feedback to be useful are
more relaxed for channels with larger spatial spread, or for a
larger number of transmit elements.

Index Terms—Fading channels, information rates, mul-

tiple-input multiple-output (MIMO) systems.

1. INTRODUCTION

E consider downlink communication in a wideband or-

thogonal frequency-division multiplexed (OFDM) cel-
lular network, in which the base station (BS) transmitter has
an antenna array, while the mobile receiver has one antenna.
Higher throughput is essential for the success of fourth-gener-
ation (4G) and future wireless systems, and the use of feedback
is known to dramatically increase capacity in multiantenna
systems [1]—[5]. It has been shown [6] that for both time-divi-
sion duplexed (TDD) and frequency-division duplexed (FDD)
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systems, robust feedback regarding the second-order statistics
of the spatial channel can be obtained for “free” by averaging
across frequency. In this paper, we provide analytical rules of
thumb quantifying the additional benefits of using first-order
channel statistics, given that second-order statistics are already
available. Key issues that impact system design are the effect
of channel time variations and feedback delay, and the cost
of obtaining feedback.

It can be shown [7], [8] that the space—time channels seen by
different subcarriers are identically distributed random vectors
which decorrelate across frequency. This, in turn, leads to the
observation in [6] and [9] that the covariance of the space—time
channel for any subcarrier is the same. This szatistical reciprocity
enables the BS to obtain the spatial covariance matrix for
use in downlink transmission by averaging over its uplink
measurements. Such implicit feedback regarding the covariance
matrix can be used for space—time transmit precoding on the
downlink. Covariance feedback is particularly effective when
the power-angle profile (PAP) of the channel seen by the BS
is relatively narrow, as is the case for many outdoor systems in
which the BS is far enough, and at high enough elevation, that
signals reaching a given mobile leave the BS in a narrow spatial
cone. In such cases, often one or two channel eigenmodes
are dominant, and the BS can employ transmit beamforming
along these eigenmodes to improve downlink performance while
reducing complexity.

Covariance feedback becomes less effective as the number of
dominant eigenmodes increases. This might occur, for example,
when BSs are located at lower altitudes, not far enough removed
from urban clutter. However, first-order feedback regarding the
space—time channel in each subcarrier, if available, could still
be used to improve performance. We term such feedback mean
feedback, and provide estimates of the performance gains due
to mean and covariance feedback, relative to the performance
with covariance feedback alone. We also investigate the required
accuracy of the mean feedback in order for the gains to be
significant.

Mean feedback could be obtained implicitly using (classical)
reciprocity for TDD systems. For FDD systems, mean feedback
must be obtained by explicitly feeding back measurements at the
mobile receiver to the BS. Since covariance information is av-
eraged across subcarriers, the transmit strategy with covariance
feedback alone is the same across subcarriers. In contrast, a pre-
coding strategy that accounts for mean feedback (which varies
across subcarriers) must be implemented on a per-subcarrier
basis. Mean feedback is also more sensitive to feedback delay
than covariance feedback: the time variation in the space—time
channel realization for a specific subcarrier is much faster than
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the variation of the second-order statistics averaged across sub-
carriers. Keeping the preceding issues in mind, the goal of this
paper is to provide a design framework for evaluating whether
the additional overhead and complexity associated with mean
feedback are justified.

While our interest is in obtaining design prescriptions for
wideband systems, we can examine the fundamental tradeoffs
regarding mean and covariance feedback by considering their
effect on the ergodic capacity for a single subcarrier, which sees
a narrowband flat-fading space—time channel. The parameters
of the narrowband model are related to the array manifold at
the BS, and the channel PAP. For the most part, we restrict at-
tention to beamforming as a transmit strategy, since the chan-
nels we consider have relatively small angular spreads, where
beamforming gives optimal or close to optimal results. In ad-
dition, beamforming is desirable, because it greatly reduces the
receiver complexity.

A. Summary of Results

Information-theoretic results on ergodic capacity are derived.
These, together with the use of analytical models for outdoor
OFDM systems, are then employed to obtain system design
tradeoffs, as follows.

1) We find an upper bound on ergodic capacity when the
transmit strategy is restricted to beamforming and the BS
has access to both mean and covariance feedback. We
then show that beamforming in the direction that max-
imizes receive signal-to-noise ratio (SNR), denoted vy,
gives results that are close to this upper bound. Since the
optimal beamforming direction would be too computa-
tionally complex to compute in real time, the practical
solution for maximizing the expected spectral efficiency
is thus to send along v(. Note that the ergodic capacity
when the transmit strategy is restriced to beamforming
is a lower bound to capacity when the transmitter has no
such restrictions.

2) For an OFDM system, we provide a simple model in
which the quality of the available mean feedback is
approximately characterized using a single parameter
p, whose value is related to the goodness of minimum
mean-squared error (MMSE) estimation of the channel
in the desired time-frequency bin as a function of
the available feedback. Restricting attention to beam-
forming as the transmit strategy, we find an approximate
threshold on p for mean feedback to provide appreciable
gains over the use of covariance feedback alone. The
threshold depends on the number of transmit antennas
and the channel eigenvalues. As the number of antennas
increases, or the PAP becomes more spread out, the nec-
essary accuracy decreases (i.e., mean feedback becomes
more valuable).

3) Even when the transmitter is not restricted to beam-
forming, the general trends delineated in 2) still hold,
i.e., mean feedback is more valuable for systems with
larger N1 and wider PAPs.

T cluster 1
—

. receiver
transmitter

Fig. 1. Channel model setup. Specular rays from the BS to the mobile are
grouped together in one or more clusters. The BS may have multiple antennas,
while the receiver is restricted to a single antenna element.

B. Relation to Previous Work

The use of feedback in multiple-antenna systems has received
considerable attention in the literature. Visotsky and Madhow
[3] find the optimal transmit directions when the mobile has a
single antenna and the BS has either mean feedback or covari-
ance feedback. Jafar er al. [4] extend these results to systems
where the mobiles have multiple antennas. Covariance feedback
has been considered as a means of improving performance in
[5], [10], and [11], and mean feedback has been used in [2]
and [12], to name but a few. Downlink beamforming using co-
variance information has also been extensively studied in the
context of multiuser systems, where the aim is to maximize the
performance of a desired user while minimizing interference to
other users [13]-[15]. The problem of maximizing performance
while simultaneously minimizing interference is also consid-
ered in [16], except the BS is assumed to know the channel re-
sponse to the user of interest. To the best of our knowledge, this
is the first paper to consider optimizing capacity when the BS
can separately obtain both mean and covariance feedback, and
to consider how accurate mean feedback need be in order to be
useful when covariance feedback is already available.

C. Paper Organization

The channel model is described in Section II. Optimization
of beamforming capacity, given both mean and covariance feed-
back, is considered in Section III. Section IV provides a measure
of how accurate mean feedback must be, in order to be useful.
Section V concludes the paper with a discussion of how the an-
alytical framework in the paper can be applied to some practical
scenarios in order to determine the utility of mean feedback.

II. SYSTEM MODEL

The space—time precoding strategies we consider can be un-
derstood in terms of a per-subcarrier mathematical model, de-
scribed in Section II-A. This mathematical model follows from
a physical model for a wideband OFDM system, described in
Section II-B.

A. Mathematical Model for One Subcarrier

Consider a BS with Np antennas sending to a mobile with
a single antenna, as shown in Fig. 1. For a particular time-fre-
quency bin of interest in an OFDM system, the received signal
can be written as

y=hs+n (D
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where s is the Ny x 1 transmitted symbol vector, h is the
Nr X 1 channel response, and 7 is circularly symmetric com-
plex Gaussian noise, denoted n ~ C'N (0, 02). (Note that o2 is
the total noise variance, not the noise variance per dimension.)

Model for Covariance Feedback Alone: When there is no
feedback regarding the mean of the channel, h is modeled as
a zero-mean complex Gaussian vector with covariance C

h ~ CN(0,C). )

Since the channel spatial covariance C can be accurately esti-
mated by averaging uplink measurements [6], [9], it is assumed
that the BS knows C.

Note that C can be written

C = UAUH (3)

where U is the eigenvector matrix [u; ...up,], and A is the
diagonal channel eigenvalue matrix, where the eigenvalues {; }
are arranged in decreasing order.

Model for Mean and Covariance Feedback: In addition to
knowing C, the BS also has some direct feedback x regarding
the channel response h. As discussed in Section II-B, x might be
a vector comprised of measurements of channels in other time-
frequency bins. Assuming that x is jointly complex Gaussian
with the channel in the time-frequency bin of interest, the con-
ditional distribution of h is given by

h ~CN(m,K) 4

where m is the MMSE estimate of h given x, and K is the
corresponding error covariance. Note that for consistency with
the unconditional distribution of h in (2), E[m] = 0 and
Emm*" + K] = C.

The relation of m and K to the physical channel model is
discussed in detail in Section II-B, where it is shown that as
long as the feedback has sufficiently large signal-to-noise ratio
(SNR), the conditional distribution (4) of the channel, given the
feedback, can be approximated as follows:

h~ CN(pf,(1 - pZ)C). ®))
In other words, we can write

m = pf
K =(1-p%C (6)

where f ~ CN(0, C) and is an auxiliary random vector related
to the MMSE estimate of h given x, and p is a normalized cor-
relation that measures the goodness of this MMSE estimate.

B. Model for a Wideband System

In this section, we connect the per-subcarrier models (4) and
(5) to an OFDM system model. The system we consider is as in
Fig. 1. The BS is assumed to be far away from the mobile, and
at high enough altitude that there is little to no local scattering
around it. Thus, both uplink and downlink signals for a given
mobile are restricted to a fairly narrow spatial cone, from the
viewpoint of the BS antenna array. In contrast, the mobile is
assumed to be in a rich scattering environment.
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A common approach to statistically modeling wideband
space—time channels is to generate a large number of specular
rays at random, so as to conform to a measured power-delay
profile (PDP) and PAP, as well as measured delay and angle
distributions. In [8], we developed an alternative vector tap
delay line (TDL) model with complex Gaussian taps which
is more amenable to analysis. The TDL model arises from
classical arguments: paths which are spaced less than 1/W
apart (where W is the bandwidth), cannot be distinguished,
and hence, sum together to form taps. Since the paths are
independent, with uniformly distributed phases, their sum is
complex Gaussian (as long as there are enough paths for the
central limit theorem to be effective). The channel model can be
made consistent with measured PDP and PAP by appropriately
choosing the distributions of the vector taps. A typical channel
impulse response is then given by

pw (t,7) =Y Avi(t) <7' - %) )
1=0

where §(t) denotes the Dirac delta, and where the tap weights
A; are proportional to the square root of the PDP, and are nor-
malized so the channel has unit power. The vectors v;(t) are
independent zero-mean complex normal random vectors

vi(t) ~CN(0,C) VI Vt ®)
where C is the expected value of the outer product of the antenna

array response, where the expectation is taken over the PAP,
Pa(:)

C = E[la()a(Q)"] = / a(Q)a( )" Po()dY. (9)

Throughout this paper, we use for illustration an exponential
PDP and a linear BS array with equally spaced antennas. The BS
array response as a function of the angle of departure is given
as follows:

a(Q)=ar...ar...an,]"
ay(Q) = D2/ D)) p 1 Ng o (10)
where d is the interelement spacing, and A the carrier wave-
length.

Now, consider an OFDM system with Np transmit antennas,
one receive antenna, and N frequency bins. One OFDM
symbol transmitted at time ¢; consists of N symbol vectors
s(fistr),2 = 1,..., N of length N, each transmitted at a
different frequency. We can write

y(fi7tk) = h(fi7tk)Hs(fi7tk) + n(fi7tk) (11)

where f; denotes frequency ¢ and ¢; denotes time k. In other
words, y( fi, tx) is the received data vector for the ith tone of the
kth OFDM symbol, h(f;, tx) is the N7 x 1 channel frequency
response at the ith tone at the time of the £th OFDM symbol, and
n(fi, tx) is additive white Gaussian noise (AWGN) satisfying
E[n(fi,te)n(fj,ty) ] = 026;;6ke, where &;; is the Kronecker
delta (6;; = 1if i = j; 6;; = 0, otherwise).
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Approximating the v;(t) as constant over one OFDM symbol
period, and denoting the start of the kth symbol period by x, the
channel frequency response for symbol k at tone ¢ is

h(fi,t) = Z Apvi(ty)e 27 ft/W
=0

(12)

It follows that the {h(f;,x)} are well-modeled as identically
distributed N7 x 1 proper complex Gaussian random vectors
with zero mean and covariance matrix C

h(f;,tx) ~CN(0,C) Vi Vk. (13)
We can now justify our assumption that the BS knows the
channel covariance C. Because the channel responses are iden-
tically distributed, if the BS measures the channel from uplink
measurements spaced further apart than the coherence band-
width, it can reconstruct an accurate estimate of C [6], [9].
In the context of Section II-A, if the BS wishes to estimate

the channel at frequency f; and time £,, we have

h= h(fj7t(1)'

If the BS has no mean feedback, then (14) and (13) lead to the
channel model given in (2).

We now show how the channel decorrelates in frequency and
time; it is this decorrelation that fundamentally limits the effi-
cacy of mean feedback. For wide-sense stationary (WSS) taps
{vi}, we have

(14)

E[vi(t1)vE (t2)] = re(A,)C (15)

where A; = ty — t1, and k(A;) is the correlation coef-
ficient. Due to the mobile’s rich scattering environment, in
our numerical results, we will employ Clarke’s Rayleigh
fading model [17] for the channel taps {v;} in (7). Thus,
ke(Ar) = Jo(2m fpAy), where Jy(+) is a zeroth-order Bessel
function of the first kind, and f; is the maximum Doppler
frequency.
Using (12) and (15), we have that

Eh(fi, te)h(fi, tg)"] = re(A)C (16)
where A; = t; — ;. On account of the WSS across frequency
bins which follows from our channel model, we can also write

Eh(fi, to)h(f,te)?] = ks (Af)C

where Ay = f; — f; and ks(Ay) depends on the PDP. For
our running example of an exponential PDP, kf(Af) = 1/(1+
J2mTems Ay). Using (15) and the fact that the {v;} are indepen-
dent, it follows that the correlations in frequency and time are
separable, i.e., we can write

E[b(fi, te)h(f;,t)"]) = ki (Af)re(Ar)C.

Example (Noiseless Channel Measurement in One Time-Fre-
quency Bin): We now consider a simple example that illustrates
how the conditional mean and covariance of the desired channel,
given mean feedback, relate to the preceding wideband channel
model. Suppose that the BS has an exact channel measurement

a7

(18)

h(f;,tx), with which to estimate the channel h(f;,¢,) in the
desired time-frequency bin. In the notation of Section II-A

h:h(fjttq)t x:h(fi7tk)'
Letting h denote the MMSE estimate of h given x, given by
h = E[h|x] (19)
= Knx Koo % (20)
where
Kux = E[hx?] 1)
Kyx = E[XXH] . (22)
In this case, we have
Kpx =pC (23)
Kxx =C (24)
where p = k(t, — tg, fi — f;), and thus
h = px. (25)

Since X is complex Gaussian with zero mean, the MMSE
estimate h is also zero-mean complex Gaussian. Using (20), it
can be seen that its distribution is given as follows:

h ~ CN(0, KnxKyx  Kyn)
=CN(0,p*C).

(26)
27

The distribution of h conditioned on the feedback is then

h ~ CN(h, (1 - p)C)

(28)

where we have used the fact that h ~ CN (0, C). Hence, refer-
ring back to (4), we have, in this case

m=h = px
K =(1-p)C.

(29)
(30)

Since x ~ C'N (0, C), this corresponds to the model (6) in Sec-
tion II-A with f = x. Note that the accuracy of mean feedback
is summarized by a single parameter p, thus simplifying design
considerations such as whether or not to use mean feedback.
In the following proposition, we state that this feature holds
more generally for noiseless channel measurements from sev-
eral time-frequency bins, and also holds approximately for noisy
channel measurements at high enough SNR.

Proposition 1: Let h = h(f;,t,) denote the channel the BS
wishes to estimate. If the feedback x consists of (possibly noisy)
channel realizations in a set of time-frequency bins, then the

channel h is conditionally circularly Gaussian
h~ CN(m,K) 31

where m is the MMSE estimate of h and K is the error covari-
ance for the MMSE estimate. For “noiseless” feedback

m = pf ~ CN(0,p°C)
K =(1-,"C

(32)
(33)

where p is a parameter describing the goodness of the noiseless
feedback. For “noisy” feedback (i.e., the channel measurements
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available to the BS are corrupted by complex WGN with vari-
ance UJZC (the subscript f stands for feedback)

m ~CN(0,p°C - 07Q)
K=(1 —p2)C+(7J2£Q

(34)
(35)

where Q is as defined in (84) in the proof, and p is, as before,
a parameter measuring the goodness of the MMSE estimate for
the corresponding noiseless feedback scenario.
Proof: See the Appendix.
Remark: From the proposition, we see that the conditional
channel distribution can be written approximately as

h ~ CN(pf, (1 - p*)C) (36)

when the SNR on the channel measurements available to the BS
is high enough. This noiseless feedback model also provides an
upper bound on the performance obtained using mean feedback;
thus, if mean feedback is not useful under the noiseless model,
then it should certainly not be used when the feedback is noisy.
In our discussions in Section IV, we restrict attention to (36),
since it enables us to quantify the value of mean feedback under
rather general assumptions using the single parameter p.

III. ACHIEVING BEAMFORMING CAPACITY

We now investigate how to maximize the expected spectral
efficiency when both mean and covariance feedback are avail-
able, and the transmit strategy is restricted to beamforming. We
consider beamforming for two main reasons. First, the chan-
nels we consider have narrow enough angular spreads (typical
of outdoor cellular systems) such that, even with covariance
feedback alone, beamforming gives optimal or close to optimal
results [18]-[20]. (We consider an antenna spacing of half the
carrier wavelength; with this spacing and the channel models
of interest, beamforming performs well.) Second, beamforming
greatly reduces the receiver complexity.

In [20], it is shown that for systems with covariance feed-
back, for a given covariance matrix, beamforming is always op-
timal up to a certain SNR, at which point it becomes optimal
to transmit in multiple directions. Using the approach in [20], it
can be shown that if the main eigenmode has 80% of the channel
power, then the SNR must be higher than 20 dB for nonbeam-
forming strategies to be optimal. Similarly, if the main eigen-
vector has 70% of the power, then the SNR must higher than 10
dB. Furthermore, in [19], it is shown that the maximum capacity
gain achievable over beamforming when transmitting in more
than one direction is bounded by 0.577 nats/s/Hz, and that even
for covariance matrices with multiple dominant eigenmodes op-
erating in high-SNR regimes, transmitting in multiple directions
gives minimal gains over beamforming. Hence, in realistic out-
door scenarios where complexity is an issue and angular spreads
are narrow, it makes sense to restrict the transmitter to beam-
forming strategies.

For a given beamforming direction v (normalized to unit

norm), the ergodic capacity of a narrowband channel is
Cy = max Fp[log(1 + Phfvrh)] (37)

= max By[log(1 + PIh"w]’) (38)
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where the expectation is taken over h, as denoted by the sub-
script h in Ey,, and h is distributed as given in (4). (We some-
times use a subscript for the expectation operator where it may
be unclear as to what the expectation operator refers. We also
use the subscript b f to differentiate beamforming capacity from
standard capacity. We have also set the noise power to 1 without
loss of generality.) (38) can be written as

Cyy = max I(v) (39)

where I(v) is the expected mutual information when beam-
forming along the direction v, i.e.,

I(v) = By[log(1 + P|hfv|?)].

The expectation is taken over the channel h, given a fixed value
for the feedback, (i.e., m is fixed). Letting z = h¥v, we can
also write the average mutual information (given the feedback)
as a function of the complex Gaussian random variable z (note
that |z| is a Rician random variable)

1(z) = E:[log(1+ P|2|*)].

(40)

(41)

A. Max SNR Beamformer

Because the maximization in (39) to locate the optimal v,
Vopt, is prohibitively complex for real-time calculations, we
propose that, as a practical way of achieving near-optimal mu-
tual information, the BS sends along the direction v, which
maximizes the receive SNR. (This strategy is commonly used
[1], [13], [16], as receive SNR is often the desired performance
metric.) The vector vy is easily determined, and we show later
that the expected mutual information I(v) is close to the max-
imum beamforming capacity Cy 5 (39). Writing v as

vo = argmax En[PrPhhfy] (42)

= arg max Primm? + Ky (43)

it is clear that v is the dominant eigenvector of M = mm* +
K, which can readily be computed by the BS.

B. An Upper Bound on Beamforming Capacity

To show that I(vy) is close to Cy s, we find an upper bound
on capacity, and show that I(v) is close to this bound. In order
to do so, we need the following lemma.

Lemma 1: 1 (z), as defined in (41), is an increasing function
of both m, and o, where

m. =|E[z]]| (44)
crz = %var[z]. (45)

Proof: See the Appendix.
We now use Lemma I to find an upper bound on capacity.
Theorem 1: Consider a narrowband channel distributed as in

“)

h~ CN(m,K) (46)

and let z* be a complex Gaussian random variable with
E[z"] = ||ml| (47)
var[z*] =k (48)
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where k; is the largest eigenvalue of K. Then an upper bound
for the beamforming capacity is given by

Cyp < I(2%). (49)
Proof: From (40), we can write I(v) = El[log(l +
P|z(v)|?)], where z(v) = h®v, and is characterized by
E[z(v)] = E[hfv] = mPv (50)
var[z(v)] = v Kv. (51)
If E[z2(v)] < ™, and var[z(v)] < ¥, then by Lemma 1
I(v) < I(z*) (52)

where E[z*] = m, and var[z*] = ¥,. Unlessm = 0, K = 0,
or K is white, the inequality in (52) is strict, because it is not
possible to maximize the mean and variance of z(v) simultane-
ously. It now remains to find 7, and v,. From (50), it can be
seen that F/[z(v)] is maximized when v lies along the direction
of m, giving . = ||m)||. From (51), var[z(v)] is maximized
when v is equal to the dominant eigenvector of K, and hence,
v, = k. Taking the maximum of both sides of (52), and using
(39), we have the desired result. .

C. Beamforming Capacity for Extreme Cases

We can recover prior results in the literature [3], [18], [21]
regarding beamforming capacity when the BS has only mean
feedback, or only covariance feedback, as corollaries of The-
orem 1. For completeness, these results are presented below.

Corollary 1: When the BS has covariance feedback, but no
mean feedback, (i.e., m = 0), then capacity (Cyy) is achieved
when the BS sends along the dominant eigenvector of K, which
we denote v¢ (i.e., when v = vy).

Moreover

I(v1) = I(vg) = I(2") = Cyy. (53)
In other words, the beamforming direction that maximizes re-
ceive SNR also maximizes capacity.

Corollary 2: When there is only mean feedback (i.e., K = 0,
or K is white), then capacity is achieved when sending along the
direction of the feedback

I <ﬁ> = I(vo) = I(2*) = Cyy. (54)

Again, the beamforming direction that maximizes receive SNR
also maximizes capacity.

D. Numerical Results

In this section, we provide numerical results showing that max-
imum SNR beamforming along v is close to optimal in the in-
formation-theoretic sense. For notational simplicity, for the rest
of the paper, we use the “noiseless” channel model given in (6),
which results when the BS has exact channel measurements at
various time-frequency bins with which to estimate the channel
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Fig.2. Upper bound to average beamforming capacity, B3, versus p, along with
I(uy), I(£/||f]]) and I(vo). N+ = 6, the PAP is Laplacian with zero mean
and angular spread 10°, and P = 10.

of interest. Results using the “noisy” channel model have been
shown to be very similar, provided the noise variance is small.

To recapitulate, the conditional channel distribution given
feedback (6) is given by h ~ CN(pf, (1 — p?)C), where
f can be thought of as the feedback and has distribution
f ~ CN(0,C), and p measures the accuracy of the feedback.
Note that for this model, sending in the direction of the mean
m = pf is equivalent to sending in the direction of f, and v
is the main eigenvector of M = p?ff™ + (1 — p?)C. Note
also that the dominant eigendirection of K is u;, the dominant
eigendirection of C (i.e., vi = uy).

Let us define

I(v) = E¢[I(v)]
B = E¢[I(2")]

(55)
(56)

where the expectation is taken over the feedback f. Note that
I(v) depends on f not only because » may be a function of f, but
also because the channel distribution, given feedback, depends
on f, as shown above. Note also that z* is a function of f because
its mean depends on f. I(v) is the expected mutual information
when beamforming along direction v. By construction, B is an
upper bound on the average capacity.

As an example, we consider a system with N = 6
transmit-antenna elements at half-wavelength spacing. The
channel has a single cluster, with a Laplacian PAP of zero
mean and angular spread 10°. (We measure angular spread as
2Qqpread Where Q2 4 = var[Q]/2. For this PAP and antenna
spacing, the resulting covariance C is such that beamforming is
the optimal transmit strategy, even if only covariance feedback
is available. This can be verified using the sufficient and nec-
essary conditions for beamforming given in [18]. Fig. 2 shows
that 7(vg) is close to the upper bound B, regardless of the cor-
relation p between the mean feedback and the actual channel.
Also displayed are I(uy), which is the average beamforming
capacity with covariance feedback alone, and I(f/||f]|), which
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is the average beamforming capacity with mean feedback alone
(see Corollaries 1 and 2). As expected, when p is close to 1,
I(f/||f||) approaches capacity, and as p gets close to 0, I(uy)
approaches capacity.

Extensive computations, not reported here due to lack of
space, show that the mutual information with maximum SNR
beamforming is close to the upper bound of beamforming
capacity for all choices of Ny, SNR, and PAP that we con-
sidered. Since v( can be easily computed, given mean and
covariance feedback, in contrast to the complexity of com-
puting the optimal beamformer, maximum SNR beamforming
would probably be the best practical strategy for exploiting
mean and covariance feedback together. However, obtaining
mean feedback can be costly in terms of resource consumption,
and obtaining accurate feedback may even be infeasible. Since
covariance feedback is implicitly available to the BS, it is de-
sirable to know how good the mean feedback has to be in order
to see significant performance benefits over using covariance
feedback alone. This issue is addressed in the next section.

IV. WHEN TO USE MEAN FEEDBACK

In this section, we find an approximate measure of the accu-
racy needed for mean feedback to give appreciable gains over
covariance feedback, in terms of the number of transmit an-
tennas and the channel eigenvalues, given that beamforming is
the transmit strategy. As the number of antennas increases, or
the PAP becomes more spread out, the necessary accuracy de-
creases, meaning that mean feedback becomes more valuable as
Nr increases and the channel becomes less spatially correlated.
This remains true even when the transmitter is not restricted to
beamforming.

The accuracy of the mean feedback can be gauged by its cor-
relation with the true channel response. For some value pg of
the correlation coefficient p, the average beamforming capacity
with mean feedback alone equals the average beamforming ca-
pacity with covariance feedback alone. When p > po, i.e., the
mean feedback is more accurate, using mean feedback gives
better results than using covariance feedback, while the oppo-
site is true when p < po. More precisely, when p = pg, I(u;) =
I(f/||f]]). In Fig. 2, it can be seen that py ~ 0.68. We say that
the mean feedback is accurate enough to be useful as long as
p > po, and offer the following intuitively pleasing estimate
of pg, denoted by pg. At p = pg, the receive SNR is the same
whether the BS beamforms along the direction of the dominant
channel eigenmode, or along the direction of the channel mean.
Mathematically, this is expressed as

(1)

where z(v) = h#v. Note that the above expressions depend on
p, since the distribution of h depends on p. Proposition 2 shows
how pg can be calculated from N7 and the eigenvalues of C.
Proposition 2: When the mean feedback and the channel
have correlation coefficient p = pg, the receive SNR is the same

2

Engllz(u1)]?|p = po)] = Eng

o= ﬁo)] (57)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 1, JANUARY 2006

whether the BS beamforms along the direction of the dominant
channel eigenmode, or along the direction of the channel mean.
We can approximate p in terms of the number of transmit an-
tennas and the channel eigenvalues, as follows:

L A — A
00—4,7NT_A

where A = Z 1 A2 /N and the {)\;} are the eigenvalues of
C, sorted in decreasmg order (3).

Proof: We first find FEy¢[|z(u1)?|p] and Eng[|z(f/
IIEINI2|p] in terms of p, Nz, and {);}. Given feedback f with
correlation p, the channel can be written as

h = pf + /1 - p2e

where € ~ CN(0, C). Expanding f and € in the basis of the
eigenvectors of C, u; ... uy,, we have

(58)

(59)

(60)

NT NT
h= paZaiui ++/1 —pQZbiui
i=1 i=1

where o = ||f|| and ZL 1 a;u; = £/||f]]. The {a;} and {b;} are
independent, zero-mean complex Gaussian random variables
with E[|az|2] = )\i/NT and E[|bb|2] = )\;. Thus

g f

)
(61)
<||f|| [I£]1
Ny
:pa+\/1—p22b;‘ai (62)
=1
and
£ 2 Nt 2
=(jig)| =t a0 S
+par/1—p X:baZ pay/1 — p? Zba*. (63)

Taking expectations with the feedback f fixed
2
DN

f
b l - (1m7)
(64)
where we have used that the {a;}, {b;}, are independent with
zero mean. Taking expectations over the feedback, we can write

[ (&)

Similarly

|,0,0é,{ai}‘| _p Oé +

(65)

Nt
(1 - /02) 2
N 2
=1

2
Ip] = p*Nr +

Ellz(u)[*]p] = M

Equating the right-hand sides (RHS) of (65) and (66), we have
the desired result. O

(66)
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Fig. 3. Solid and dashed lines show po and po, respectively, versus the

angular spread of the PAP for a Laplacian profile centered at 0°. (The angular
spread corresponds to 2§ preada). Po is calculated using the formula given in
Proposition 2. Ny = 6 and the SNR = 10 dB.

Fig. 3 shows pg, as defined in Proposition 2, as a function of the
angular spread of the PAP (2{2sprcad), for our running example
of a one-cluster channel with a Laplacian PAP centered at 0°.
As before, N7 = 6, and P = 10. Since p¢ is decreasing, the
feedback need be less accurate for larger angular spreads. This is
intuitive, since covariance feedback becomes less valuable as the
channel correlations decrease. Also plotted is pg (the correlation
at which I(uy) = I(f/||f||)), as obtained via simulation. As
long as N7 is not too small, pg is a good approximation for
Po-

A clearer picture of how mean feedback compares to covari-
ance feedback can be seen in Fig. 4. (The parameters are the
same as in Fig. 3.) The expected beamforming capacity with
mean feedback alone, I(f/||f]|), is plotted versus angular spread
for various values of p between 0.1 and 1, together with I (uy),
the expected beamforming capacity with covariance feedback
alone (plotted as a solid line). Having mean feedback with
correlation coefficient 0.7 gives negligible gain over having
only covariance feedback when the angular spread is around
10°, but delivers significant gains over covariance feedback
(almost 1.5 b/s/Hz) when the angular spread is around 60°.
This is expected, since the larger the angular spread, the less
useful the covariance information. The dashed line in Fig. 4
shows the capacity when the BS only uses covariance infor-
mation, but is not restricted to beamforming. Comparing this
with the capacity attained when the BS uses only covariance
information, but is restricted to beamforming, it can be seen
that the added complexity produces minimal improvement. (If
the mobile were equipped with multiple antennas, or if there
were multiple clusters, using a more complex transmission
strategy than beamforming would be much more beneficial
[6].) The main conclusion is that for larger angular spreads,
obtaining mean feedback may be worthwhile, even though
covariance information is implicitly available.

Besides being a function of the {\;}, and hence the PAP, pg
is also a function of Np. Thus, the accuracy required for mean

551 4

Average Capacity b/sHz

3 L 1 1 1

30 40 50 60
angular spread (degrees)

Fig.4. Dotted lines show I(f/||f]|), the average beamforming capacity when
only mean feedback is available, versus the angular spread of the PAP for
values of p between 0.1 and 1 in increments of 0.1. (The curves move up for
increasing p.) The solid line is 7(u; ), the average beamforming capacity when
only covariance feedback is available. Also shown is the average capacity
when there is only covariance feedback, but the transmitter is not restricted to
beamforming (the dashed line). N = 6 and the SNR = 10 dB.

55 b

p=1

Average Capacity b/sHz
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Fig. 5. I(f/||f||) versus angular spread for values of p between 0.1 and 1
in increments of 0.1 (the dotted lines). The solid line is I(u; ), the average
beamforming capacity when only covariance feedback is available. Also
shown is the average capacity when there is only covariance feedback, but the
transmitter is not restricted to beamforming (the dashed line). N+ = 4 and the
SNR = 10 dB.

feedback to be more effective than covariance feedback depends
on the number of transmit antennas. Since pg is a decreasing
function of Np, the requirements on the accuracy of mean feed-
back get relaxed as the number of transmit antennas increases.
This can be seen when comparing Fig. 4 with Fig. 5. Both sim-
ulate the same one-cluster channel, but the number of transmit
antennas is six in Fig. 4 and four in Fig. 5. Whether the BS uses
beamforming, or the optimal transmit strategy, mean feedback
gives better results than covariance feedback for lower values of
p when the number of antennas is greater. For instance, at an an-
gular spread of 10°, mean feedback is helpful for p > 0.7 when
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Fig. 6. Dotted lines show I(f/||f||) versus Q for values of p between 0.1
and 1 in increments of 0.1. The solid line is T (uy), and the dashed line is the
average capacity when there is only covariance feedback, but the transmitter is
not restricted to beamforming. N7 = 6 and the SNR = 10 dB.

there are six antennas, whereas it is helpful for p > 0.8 when
there are four antennas.

So far, we have only considered one cluster channels. Fig. 6
shows results for a channel with two equipowered clusters, each
with an angular spread of 10°. The number of transmit antennas
is six. The center of the first cluster’s PAP is fixed at 0°, while
the center of the second cluster’s PAP is varied. I(f/|/f]) is
plotted versus the center angle of the second cluster for var-
ious values of p between 0.1 and 1, together with I (uy), the ex-
pected beamforming capacity with covariance feedback alone,
plotted as a solid line. The capacity when only covariance feed-
back is used, but the transmission strategy is optimal, is shown
in the dashed line. In this particular scenario, since both clusters
have narrow spreads and contribute equally to the PAP, capacity
using only covariance information is achieved by sending along
two eigendirections. It can be seen that mean feedback is more
useful (in comparison with covariance feedback) when there are
two clusters than when there is a single cluster, even when the
optimal transmit strategy is used. (The single-cluster case cor-
responds to the second cluster being centered at 0°.) Note, how-
ever, that in this example, even when there are two clusters, we
must have correlation p > 0.7 to offer improvements on the
order of 0.5 b/s/Hz. In view of the overhead that may be required
to obtain such accurate estimates, it is probably preferable to use
only covariance information in this situation.

V. DISCUSSION

We have provided a simple analytical framework for eval-
uating the gains of mean feedback in systems where covari-
ance feedback is already available. The simplicity of this frame-
work results from our use of a noiseless feedback model which
provides an upper bound on performance with mean feedback,
while capturing the fundamental problem with mean feedback:
decorrelation of channel realizations across time and frequency.
We now consider some examples which illustrate when mean
feedback is of practical use in such systems. These examples
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Fig. 7. TDD system with TDMA on the uplink and TDM on the downlink.

are similar to those in [1], where the author investigates mean
feedback in the absence of covariance feedback. We assume an
OFDM framework with 1024 subcarriers spaced 25 kHz apart,
and centered at 1 GHz. We also assume the channel has a single
cluster with an exponential PDP having a root mean square
(rms) value of 0.5 us.

A TDD system with time-division multiple access
(TDMA)/time-division multiplexing (TDM) on the up-
link/downlink is shown in Fig. 7. Each user sends to the
BS using the entire frequency band for a certain amount of
time, and subsequently the BS takes turns sending to the mo-
biles over the whole band. The BS can measure the channel
on the uplink, and use these measurements to estimate the
downlink channel. The longest a user will have to wait until it
hears back from the BS is approximately the number of users in
the system multiplied by the time the BS sends to each user. For
a rate of 20 Mb/s and 10 packet payloads of 10000 bits each,
the time the BS sends to each mobile is approximately 5 ms. If
there are 10 users, this means the total delay is around 50 ms.

Now, consider that the BS uses channel measurements from
10 frequency bins to estimate the channel of a particular bin. The
frequencies used are as close as possible to the frequency of in-
terest, but the measurements have a time delay of 50 ms, due
to the nature of TDD systems. For a mobile traveling at vehic-
ular speeds, the maximum Doppler frequency is on the order of
100 Hz, and hence, the correlation between the mean feedback
and the desired channel is 0.1 (we calculate time decorrelation
using Clarke’s model, and frequency decorrelation using an ex-
ponential PDP, as discussed in Section II-B). Clearly, it is not
worthwhile to try and estimate the first-order channel statistics
in this case. For pedestrian mobile speeds, and a corresponding
Doppler spread of 3 Hz, the correlation is 0.79. If the BS has six
antennas and an SNR of 10 dB, then it can be seen from Fig. 4
that using mean feedback instead of covariance feedback gives
gains ranging from 0.1 to 1.5 b/s/Hz, depending on the PAP of
the channel. For a narrow angular spread of 10°, the cost of the
mean feedback probably does not justify the benefits, but for
larger angular spreads, the improvement is significant.

While our overall conclusion is that covariance feedback
alone is very effective on typical outdoor mobile channels,
the preceding results also illustrate that mean feedback can
further enhance capacity for slow-moving users, especially
if the channel has a large angular spread. Mean feedback is
particularly attractive for high-bandwidth applications (e.g.,
file downloads or gaming) involving users who are sitting in
one place. For FDD systems, the use of mean feedback is
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more onerous in terms of implementation, standardization,
and overhead, since it must be sent back explicitly. It may be
attractive in FDD systems, therefore, to selectively request
mean feedback from slow-moving users (which the BS should
be able to identify using Doppler estimation).

APPENDIX

A. Proof of Proposition 1

Let the BS have knowledge of M different channel estimates,
{0, Diskys ..., 0y, } from different time and frequency
bins, with which to estimate the channel at frequency 7 and time
¢, denoted h;, = h. (Note that h ~ CN(0,C), and that we
have switched to subscript notation for the time and frequency
indexes for convenience.) Let x denote the N+ M x 1 stacked
vector of these realizations

X = [fl?: Ky h’

iokgr s

7. (67)

ik

We assume the estimates are equal to the true channel real-
ization plus some AWGN. In other words

- 1 )
where ¢ is AWGN with covariance UJ%I andvy = ,/1+ 0]% isa

normalization constant. The MMSE estimate of h, denoted fl,
is given by

h= Elhjq|x]
= I<th<xx71X

(69)
(70)

where K, and K}, are as defined in (22) and (21), respec-

tively.
Since the {h; _, } are jointly complex Gaussian with zero

mean, then h is also zero-mean complex Gaussian. Using (70),
it can be seen that its distribution is given as follows:
h ~ ON(0, KpxKxx "Kxn)- (71)

From standard estimation theory, the conditional distribution
of his
h ~ CN(h,C — KnyKyx ' Kyn). (72)

Equations (71) and (72) can be massaged into a more mean-
ingful form as follows. Writing out Kj,», we have

(73)

where the {x;} are correlation coefficients. This can be written
more compactly as

1
Knx = ¢ ®C (74)

where ¢ is a 1 x M vector of correlation coefficients {x; }, and
® denotes Kronecker product. Similarly, we can write

1
~2

Kux = —(T® C + 071) (75)
gl

where T is an M x M matrix of correlation coefficients with
ones along the diagonal, and I is the M Ny x M Ny identity
matrix.

Noiseless Feedback: Let us for the moment assume that
JJ% = 0 (y = 1). In this case

Kix=T®C (76)

and
Kix '=T'C. (77)

Hence, we have that
KnxKxx 'Ky =T ¢ C. (78)
Letting p2 = ¢X~'¢¥, we now have that

h ~ CN(0, p°C) (79)

and
h ~ CN(h, (1 - p?)C) (80)

where the value of p indicates the accuracy of the feedback.
(p = 1 would indicate perfect feedback.) Hence, we can write
m = pf, where f ~ CN(0,C)and K = (1—p?)C, as desired.

Noisy Feedback: Let us now consider 07 # 0. Then Ky
is as given in (75). The error term (the second term) in (75)
results in the covariance of h, (79) having an extra term which
is proportional to O'ch. This can be seen as follows. We first write
K,(x_1 as follows, so as to separate out the terms due to noise:

Kyx '=72Y 10 C 1-1202Y 1@ C 1Y © C+o2I) 1.

Substituting (81) and (74) in (71) and (72), we get that (81
h ~ CN(0,°C - 0%Q) (82)
and
h ~ CN(h, (1 - p*)C +5%Q) (83)
where

Q=(20) (T oC (TeC+a) ) (coC)
(34)
Hence, m ~ ON(0,p’C—07Q) and K = (1 - p*)C+07Q)
as desired. Note that, to first order, we can approximate UJ%Q as
follows:

3Q ~ o3 (<®C)(YT 'eC H (T 'eC™)(c@C)" (85)
=03cY AL (86)
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Thus, for small o;, JJ%Q is small (this also relies on the struc-
ture of ¢ and '), and thus (82) and (83) are well approximated
by (79) and (80). O

B. Proof of Lemma 1

The complex Gaussian random variable z can be written as

z~m, +o,wy + jO'z’U}Q (87)
where w; and ws are independent and identically distributed
(i.i.d.) standard Gaussian random variables. We now show that
dI(z)/dm. > 0.(WLOG we set P = 1.) Substituting the RHS
of (87) into (41), and noting that the expectation is now over wy
and ws, we have that

dI(z)

om.,

—E 2m + o:w1) > 0.
14 (ms 4 o.w1)? + (0.w2)?

(88)

To see why the inequality holds, note that w; is symmetrically
distributed around 0 and m_ > 0. Fix the value of ws, and con-
sider a negative value of w; that makes m, + o,w; < 0; for
instance, let wqy = —aq make m, + o,w; = —xz. (Of course,
a1,x > 0.) Then, there exists an as < a; (az > 0) such that
when wy = ag, m, + o,w; = x. The value inside the expecta-
tion in (88) is equal to some y (y > 0) when w; = as, and —y
when w1 = —a1. However, since as < a1, the positive value is
more probable (az is more probable since w; is Gaussian with
zero mean), and therefore, the expected value in (88) over w;
with fixed wy is greater than or equal to zero. Since this holds
for all values of wy, we have the desired inequality.
We show that 91(z)/do. > 0 in a similar manner

dI(z) = [ 89)

2wy (m, + o, wy) + 20,w3
00,

1 + (mz + Uzw1)2 + (Uzw2)2

The denominator of (89) can be written as

2 z z
1+ m? + o?w? + o?w3 (1+ 7=t >

1L+ m?+ o2w? + 02w}
Letting

20,w1m,
2 2,2 2,2
14+ ms 4+ oZwi + oZw;

VA
Il

and using the inequality

1
>1-—s
1+s

we have from (89) and (90) that

oI(z) SR [le(mz +o.wy) + 20.w3 (1- s)] o)

do, 14+ m2 + o2w? + o2w?
2wim. + 20zw% + 20zw§
[ 1+ m? + ofwi + oZw; }
_ [4w%mzaz +dowim, + do2wiwim,
(1+m2 + o2wi + ofw3)?

} 92)
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_ 20.w? + 20,w3
- [1 +m2 +oZui + ozw%]
4ozw%mz
- [(1 +m? + 02w + ozw%V]
:E[Zozw%—i—ZUzw%+2(ozw%—i—ozw%)(agw%—i—ogw%)}
(1+m? + o?wi + o2w3)?
o [—2(azw% + o w3)m? + 4o, wim?
(1+m? + o?wi + o2w3)?

(93)

} (94)

where we have again used that w1, w2 are symmetrically dis-
tributed around 0. The second term in (94) is equal to 0, since
wj and wy are i.i.d., and the first term is positive, hence

oI
(2) > 0. (95)
do,
0
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