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Abstract—The combination of spatial multiplexing and large
available bandwidths makes line-of-sight (LoS) multiple-input
multiple-output (MIMO) in millimeter wave (mmWave) bands
a particularly attractive approach for ultra high-speed wireless
links. While standard LoS MIMO link designs require transceiver
apertures matched to a nominal link range, along with careful
alignment of transmit and receive antennas, in this paper, we
investigate low-cost, opportunistically deployable LoS MIMO
links, motivated by applications such as wireless backhaul in
urban picocells. In such settings, geometric misalignment between
transmit and receive arrays is inevitable, leading to multi-symbol
delay spreads across the receive aperture. Furthermore, link
ranges may vary significantly in such systems (e.g., from 50 to
150 meters in an urban backhaul), so that conventional LoS
MIMO transceiver design, in which the array geometries are
optimized to match a nominal range, is subject to potential
collapse in the available spatial degrees of freedom (DoF) due to
the sensitivity of the channel matrix to link and array geometries.
For fixed transceiver apertures matched to a nominal range, we
show that spatial oversampling, in which the number of receive
antennas is increased beyond the number of spatially multiplexed
data streams, provides robustness against both geometric mis-
alignment and range variations. We demonstrate that the inter-
and intra-stream interference resulting from misalignment can
be suppressed effectively via spatially oversampled linear space-
time equalization, where the equalizer complexity is controlled
by adapting the time window of samples used for demodulation
across data streams and receive antennas. We also show that
spatial oversampling alleviates potential DoF collapse, quantified
here as the noise enhancement of a zero-forcing equalizer, from
link range variations. Our numerical results are for parameters
corresponding to a concept system with data rate 128 Gbps at
a nominal link range of 100 m, using 4 spatially multiplexed
streams at a carrier frequency of 130 GHz.

Index Terms—mmWave, LoS MIMO, space-time equalization,
adaptive, spatial oversampling, interference vectors, LMMSE sig-
nal recovery, mode collapse, spatial correlation, ZF equalization,
noise enhancement

I. INTRODUCTION

The high data rates offered by millimeter wave (mmWave)
line-of-Sight (LoS) multiple-input multiple-output (MIMO)
communication systems have generated significant recent in-
terest [1]–[3]. The available spatial degrees of freedom (DoF)
for a LoS MIMO link with two-dimensional (2D) transmit
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and receive arrays having areas AT and AR respectively, and
separated by a link distance R is given by [4], [5]

DoF2D ≈ ATAR
R2λ2

+ 1 (1)

Since the available spatial DoF scales inversely with the
square of the carrier wavelength λ, the scaling with the carrier
frequency fc = c/λ (c denotes the speed of light) is quadratic.
Since the transmission bandwidth typically also scales linearly
with carrier frequency, the overall data rates offered by LoS
MIMO links can potentially scale as f3c . Furthermore, (1) also
indicates that the required antenna apertures for a given DoF
scale as λR for a 2D array, corresponding to a spacing between
neighboring antennas scaling as

√
λR. Thus, smaller apertures

corresponding to more compact transceiver form factors, can
be employed as the carrier frequency increases. Exploration
of LoS MIMO for high-frequency mmWave and terahertz
(THz) bands is motivated by these attractive scaling properties.
Advances in silicon RFICs beyond 100 GHz [6] open up
the possibility for low-cost, compact transceivers which can
be opportunistically deployed (e.g., for picocellular wireless
backhaul). However, the current paradigm of LoS MIMO
links must be rethought in order to realize this potential:
flexible deployment means endemic misalignment, and that
the transceiver geometry (designed for a nominal link range)
is not necessarily matched to the actual link range. In this
paper, we show that spatial oversampling at the receiver can
be used to overcome both of these difficulties.
LoS MIMO with critical spatial sampling: The DoF
promised by (1) can be attained by setting the transmit and
receive antennas equal to the number N of multiplexed data
streams. We term this approach critical spatial sampling,
since the number of receive antennas is the minimum needed
for linear separation of the N multiplexed streams. Consider
a symmetric design with equal 2D transmit and receive
apertures, and N = n2 antennas at each end, spaced in a
uniform 2D grid. In this case, the Rayleigh spacing between
adjacent antenna elements, which ensures that the receive
array responses due to different transmitted data streams are
orthogonal, is given by [4], [5]

d =
√
λR/n (2)

For a link range of R = 100 m, a standard 4 × 4 LoS
MIMO (N = 4, n = 2) design at a carrier frequency of
130 GHz corresponds to an antenna spacing of d = 34



Fig. 1. Example deployment scenario where misalignment of panels and
varying link ranges of operation is an inevitable consequence
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Fig. 2. Impact of misalignment in a 4× 4 LoS MIMO system

cm, and data rates in excess of 100 Gbps are attainable,
for example, using 25GHz bandwidth and Quadrature Phase
Shift Keying (QPSK) modulation, even after allowing for
a excess bandwidth factor and lightweight channel coding.
This combination of compact form factors (e.g., enabling
opportunistic deployment on lamp posts) and high data rates
is particularly attractive for the relatively short-range links
required for urban wireless backhaul networks as depicted
in Fig. 1. However, as we discuss below, critically sampled
LoS MIMO is not robust enough to provide the flexibility
required for opportunistic deployment, leading to our proposed
approach of spatial oversampling where additional receive an-
tennas are placed within the given aperture without increasing
the required form factor.
The impact of geometric misalignment: Opportunistically
deployed LoS MIMO must contend with the channel disper-
sion caused by geometric misalignments between the trans-
mit and receive arrays. For example, even a small vertical
misalignment with a tilt angle of 7.5◦ degrees at 20 Gbaud
causes a 6 symbol channel delay spread across the receive

aperture, leading to inter-symbol interference (ISI) within and
between the multiplexed data streams. Fig 2 demonstrates the
effect of geometric misalignment on a ideal 4×4 LoS MIMO
system with singlecarrier modulation. Error floors appear in
the bit error rate curve even with a small misalignment.
The figure also shows that error floors persist even when
we apply fractionally-spaced equalization using T/2-spaced
sampling points. While fractionally spaced sampling suffices
for temporal channel inversion in SISO systems [7], [8], it
does not provide enough degrees of freedom to overcome
spatial interference across streams. Moreover, the challenge
of analog-to-digital conversion at high sampling rates renders
the temporal oversampling required for fractionally spaced
equalization unattractive. We therefore focus on symbol rate
sampling for this study, and show that spatial oversampling
provides the degrees of freedom required to avoid incurring
error floors.
The impact of link range variations: For ideal LoS MIMO
with critical spatial sampling matched to a nominal link range,
the spatial DoF could collapse at specific ranges even smaller
than the nominal range [5]. Our investigation shows that this
phenomenon of mode collapse for fixed transceiver form factor
persists for misaligned LoS MIMO with critical sampling as
well. Clearly, for flexibility of deployment, we would like
to reduce such sensitivity to link range variations. We show
that spatial oversampling provides robustness against such
variations.
Contributions: Our main contributions are summarized as
follows:

(i) We propose and investigate spatial oversampling as a
means of providing robustness against both geometric
misalignment and link range variations. For our con-
cept system with 4 spatially multiplexed streams at
100 m nominal range, the overall area of the receive
array including the original set of 4 receive elements
is approximately 1472λ2 to satisfy the required spatial
degrees of freedom. Additional receive elements (beyond
the number of transmit streams) can therefore be easily
integrated into the receive array within this available
form factor.

(ii) We show that spatial oversampling is effective for com-
bating the dispersion due to geometric misalignment
while maintaining symbol rate sampling. The linear
space-time equalizer for each data stream uses a pos-
sibly different time window of samples at each receive
antenna, adapted to the relative delays seen by the stream
at different receive antennas. This coarsely aligns the
received signals in time, reducing the complexity of
space-time equalization. We show that linear space-time
equalizers of reasonable complexity, designed by em-
ploying a suitable combination of spatial oversampling
and adaptive time windowing, eliminate the error floors
caused by geometric misalignment.

(iii) We illustrate that mode collapse due to link range vari-
ations is greatly alleviated by spatial oversampling. We
quantify this phenomenon by studying the variation in



noise enhancement for zero-forcing space-time equaliza-
tion as a function of link range. The impact of receive
element geometry on the array aperture is also explored
and it is shown that by intelligently picking the receive
geometry, mode collapse can be circumvented at a given
link range by using a smaller spatial oversampling factor.

We focus on singlecarrier modulation with relatively small
constellations in our modeling and evaluation, since these pose
moderate requirements on dynamic range (which is a challenge
at high carrier frequencies and large bandwidths) compared to
OFDM. However, our observations on the benefits of spatial
oversampling are broadly applicable to a variety of time-
frequency signal designs.

As an important aside regarding the feasibility of our
concept system of 4×4 LoS MIMO at 130 GHz, we note that
the link budget for the envisioned system is easily attainable
with emerging low-cost CMOS radio frequency integrated
circuits (RFICs) in the upper mmWave bands and is illustrated
in Appendix A.

II. RELATED WORK

Current LoS MIMO systems launched by industry (such as
[9], which employs a 2.5 GHz bandwidth in E-band (70 −
80 GHz carrier frequency) require bulky antenna structures
and highly skilled installation. We focus on higher frequencies
and shorter ranges, targeting transceivers with compact form
factors that do not require expert installation. For opportunistic
deployment in applications such as urban picocellular fron-
thaul, midhaul and backhaul, ensuring robustness to geometric
misalignment of transceiver panels and link range variations
is critical for reliable operation.

While the impact of geometric misalignment in LoS MIMO
systems is a topic of growing interest [10]–[13], to the
best of our knowledge, the proposed combination of spatial
oversampling combined with adaptive time windowing has not
been explored previously. In [10], for 2 × 2 single-polarized
and 4 × 4 dual-polarized LoS MIMO, various training-based
algorithms and blind algorithms for equalization are ana-
lyzed. The simulation results provided for the considered LoS
MIMO systems operating at a carrier frequency of 19GHz
and symbol rate of 50MHz indicate the need for complex
space-time equalizers with time windows of more than 40
symbols in order to handle the frequency selectivity of the
channel. A sequential channel equalization method for LoS
MIMO, where the channel is factorized into a product of three
matrices with the middle one dominated by an inverse discrete
Fourier transform (DFT) matrix, is considered in [11]. The
equalization is subsequently performed in the reverse order of
factorization. Our setting differs as the operating bandwidths
are much larger (10s of GHz), causing multi-symbol delay
spread even for small misalignment angles. This symbol level
dispersion is not taken into account in [11]. In addition, by
employing the adaptive time-windowing strategy along with
spatial oversampling, the space-time equalizer complexity is
reduced significantly in comparison to [10]. The use of spatial
oversampling to overcome sub-symbol delays was shown in

[13], which is closest to our current work. However, the model
considered in [13] assumes random delays at each receive
antenna, whereas in this work, a more realistic delay spread
model based on the specific system geometry corresponding
to the misalignment angles and array size is considered.
Moreover, our work provides far more detailed insight into the
signal space considerations for avoiding error floors with linear
equalization, highlighting the trade off between the number of
additional receive antennas and the temporal window size used
for equalization.

The optimal antenna spacing at a particular carrier fre-
quency for standard LoS MIMO link designs with transceiver
apertures matched to a nominal link range of operation is
well studied [5], [14]. The use of non-uniform array struc-
tures to overcome mode collapse as a result of operating at
non-optimal link ranges is explored in [15]–[18]. In [17], a
uniform cross array is proposed to ensure stable and high
channel capacity for a LoS transmission feeder link which
involves communication between a ground station and a
high altitude platform station (HAPS) which is subject to
degradation in the channel capacity due to movement of the
HAPS causing changes in the distance and angle. The work in
[18] discusses optimized non-uniform antenna array structures
for autonomous unmanned aerial vehicles (UAV) based LoS
MIMO transmission. While using non-uniform arrays has
been proven to be an effective solution to enhance robustness
to link range variations, our work focuses on using regular
array geometries for spatial oversampling within the available
aperture to combat mode collapse while operating at ranges
different from the nominal. For example, while a standard 4×4
LoS MIMO link designed for 100 m suffers mode collapse
at 50 m, 3X spatial oversampling within the same receive
aperture can be designed to prevent mode collapse at link
ranges down to 10 m. In [19], it is shown that by utilizing a
general expression for the optimum antenna separation product
(ASP) which consists of multiple solutions, robustness to a
subset of certain link range values between 10-100 m can be
obtained for a given inter-antenna spacing. This is achieved
by picking the solution to the ASP equation that does not
necessarily correspond to the smallest inter-antenna separation
(and hence the most compact form factor) for a given link
range.

This paper builds on our preliminary results presented in a
conference paper [20], in which the use of spatial oversam-
pling combined with adaptive time windowing was shown to
be an effective strategy to combat the effects of geometric
misalignment between transceiver panels in LoS MIMO sys-
tems. The present paper goes significantly beyond [20] in two
key aspects. While [20] assumed explicit channel knowledge
at the receiver, in the present paper, we consider an MMSE
space-time equalizer adapted based on a training sequence.
In addition, we investigate the use of spatial oversampling to
enhance robustness to link range variations.
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Fig. 3. Geometric misalignment configuration for the 4 × 4 LoS MIMO
system

III. SYSTEM MODEL

Consider a 25 GHz bandwidth LoS MIMO system with
NTX transmit and NRX receive antennas at a link distance of
Ro operating at a carrier frequency of fc = 130 GHz. As
shown in Fig. 3, we assume NTX = 4 transmitters placed
at the four corners of a d = 34 cm sided square aperture
separated by Ro = 100m from the NRX ≥ 4-element receiver
of the same aperture for our running example. Symbol rate
sampling is assumed with a symbol duration of Ts = 50 ps
and per stream symbol rate of 1/Ts = 20Gigabaud. Each
of the four transmit antennas independently transmit symbols
drawn from the QPSK alphabet with linear MIMO reception
at the receiver. We can characterize the impulse response of
the channel between the transmitter m and receiver n as

hnm(t) = δ(t− τnm). (3)

where τnm is the time of flight, which varies across (m,n) due
to geometric misalignment. The QPSK data streams are pulse
shaped using a raised cosine pulse train filter with a roll-off
factor β = 0.25. At the receiver, the energy of each symbol
spreads across the time domain over multiple samples due to
ADC sampling times not being aligned with the peak of the
pulse shaping waveform. We therefore consider a window of
LP = 5 samples for each pulse, which captures most (about
99%) of the pulse energy. The discretized signal at the ADC
output of receiver n at time kTs = k is then described by

yn[k] =

NTX∑
m=1

(Lp−1)/2∑
l=−(Lp−1)/2

e−j2πfcτnmsm[k − τ̄nm + l]

p(τ̃nm − l) + wm[k]

(4)

where sm[k] denotes the unit-amplitude QPSK symbol trans-
mitted from antenna m at discrete time k (|sm[k]| = 1),
wm[k] ∼ CN (0, σ2) are the i.i.d. additive complex Gaussian
noise terms, and p(t) is the raised cosine pulse function
evaluated at a time offset t.
The elevation and azimuth rotations of the transmit array are
denoted by θT and ϕT, respectively. In a similar fashion, for
the receive array, the elevation and azimuth rotation angles
are denoted by θR and ϕR as shown in Fig. 3. When there is
no misalignment of the transmit and receive panels, i.e., when

Fig. 4. Geometry of additional receive elements in groups of four within the
same form factor

the antennas face each other, the small path length differences
between the transmitter-receiver pairs result in only sub-
symbol-period delays. However, even a slight misalignment
of either panel can cause delay spread across the aperture,
necessitating space-time equalization for accurate decoding.
In order to model this geometric misalignment of the panels
we consider rotations drawn randomly within the range of
[−7.5◦, 7.5◦] degrees, which result in up to a 6-symbol delay
offset across the receive aperture.
Spatial oversampling for Geometric Misalignment: We
consider symbol rate sampling with spatial oversampling to
furnish the necessary dimensions for effective space-time in-
terference suppression. We consider different factors of spatial
oversampling in our system ranging from 1 (no oversampling)
to 4 which then corresponds to the number of receivers
varying between 4 and 16 respectively in groups of four.
Fig. 4 shows the placement of these additional receive antenna
groups labeled from ‘a’ to ‘d’ on the receive aperture. In
order to achieve an adequate link budget, each “receiver“
can be implemented either as a fixed beam directive antenna
or as a sub-wavelength spaced subarray employing electronic
beamsteering, such as RF beamforming directed towards the
transmitter.
Motivation for Adaptive windowing: For the range of mis-
alignments considered in our numerical examples, aggregating
the effect of temporal pulse spread (due to off-peak sampling)
and delay variation (due to platform tilt), the maximum spread
in terms of samples for any given symbol across the receive
array is at most equal to tspread = 5 + 6 = 11. A naive
space-time equalizer that employs a fixed window of time
domain samples across all receive elements to make a decision
on a given symbol would therefore need to employ a time
window of 11 samples, leading to excessive complexity with
increase in the number of receive elements. As we discuss
in the next section, adaptive windowing together with spatial
oversampling sidesteps this difficulty, leading to substantial
savings in computation.
Spatial Oversampling for Varying Link Ranges: For
the targeted deployment scenarios (e.g., wireless fron-



thaul/midhaul/backhaul in urban picocells), robustness to link
range variations is critical. For our concept system at fc = 130
GHz, we set the nominal link range to Ro = 100 m as a
typical value in a dense urban environment. Even with ideal
alignment, DoF collapse can happen as the operating link
range varies from Ro, and misalignment does not help. We
show that spatial oversampling alleviates mode collapse, using
design guidance (choosing the number and locations of receive
elements from Fig. 4) based on a single metric that is easy
to compute: the noise enhancement of a Zero-Forcing (ZF)
equalizer for an ideally aligned system. The designs are shown
to work for both ideally aligned and misaligned systems, as
long as the latter uses a suitable adaptive space-time equalizer.

IV. ADAPTIVE SPACE-TIME EQUALIZATION

In this section, we describe adaptively-windowed space-
time equalization for misaligned LoS MIMO. We consider
the following example for concrete illustration of our design
approach: 4×8 LoS MIMO (i.e., spatial oversampling factor of
2) with misalignment angles between the transmit and receive
arrays given by: θT = 3.67◦, ϕT = −4.30◦, θR = 6.36◦, and
ϕR = 7.19◦. (These were randomly generated.)

Consider a “desired symbol” x1[k] transmitted from trans-
mit antenna 1 that we wish to demodulate. As indicated by
the black-colored pulses in Fig. 5, the time of arrival of this
desired symbol at each receiver is different due to the different
link distances between the transmit antenna 1 and the 8 receive
antennas. The fainter pulses shown in Fig. 5 are the receive
responses corresponding to past and future symbols emitted
by transmit antenna 1 and the integer values on the x-axis
correspond to the sampling points of the ADC at each receive
antenna.

Since the peak response of the desired symbol x1[k] corre-
sponds to a different time index at different receive antennas,
each receiver adapts its window of samples to align with the
peak response from x1[k] at that antenna. From Fig. 5, we
infer that the considered misalignment causes up to 5-symbol
delay offsets across the receive aperture, and a time window
of size W = 3 has been employed at each receive antenna to
align with the peak response of the desired symbol. Note that
the time window at each receive antenna can, in principle, be
adapted for each pair of transmit and receive elements.

The strategy behind the choice of the window size W is
based on the twin goals of capturing enough energy from
the desired symbol and providing sufficiently high signal
space dimension for space-time interference suppression. The
choice of W = 3 suffices to capture about 95% of the
energy of the desired symbol for the raised cosine pulse
considered. The length of the resulting space-time equalizer
would then be WNRX . It is important to ensure that this
length provides a large enough “signal space” dimension such
that linear interference suppression suffices for handling ISI
due to past and future symbols from the transmit antenna
emitting the desired symbol as well as the impact of cross-
stream interference (CSI) due to symbols emitted by the other
transmit antennas. Keeping in mind this complexity trade-off,
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Fig. 5. Adaptive window, W = 3 described across NRX = 8 receivers

one might choose a larger window if the number of receive
antennas is small, or a smaller window if the number of receive
antennas is large. However, for fixed WNRX , different choices
of W and NRX lead to signal space geometries corresponding
to different interference suppression capabilities.

In order to demodulate a given symbol from a given stream,
say x1[k], the kth symbol from stream 1, each receiver
employs an adaptive time window, collecting the W ADC
samples with the maximum contribution from x1[k]. Collect-
ing these samples from the different receivers, we obtain a
vector of length NRXW . The space-time equalizer for stream
1 operates on this vector to obtain a decision statistic for x1[k].
While W can be varied across transmit-receive pairs to meet
the twin goals of capturing enough energy from the desired
symbol and providing a signal space geometry that permits
effective interference suppression, we find that our choice of
considering a fixed window size W across all transmitter-
receiver pairs (Figure 5), adapted to capture signal energy in
Figure 5, provides excellent performance.

Even though we consider a Nyquist raised cosine pulse
and no channel dispersion, since we employ a fixed clock
common to all receivers, geometric misalignment implies that
the sampling times are, with probability one, not aligned with
the peak of the raised cosine pulse at any of the receivers,
which results in intersymbol interference (ISI) For example,
in Figure 5 the output of receive antenna #4 at time k has
contribution from other previous and next symbols in the



sequence as well as the main contribution from the desired
symbol at time k. Geometric misalignment also implies that
the received space-time responses for different streams are
no longer orthogonal, resulting in cross-stream interference
(CSI).1

We can count the number of ISI and CSI symbols falling
into the space-time window selected to demodulate the desired
symbol in our example as follows:

• A given symbol spans LP samples (e.g., we may set
LP = 5 for the raised cosine pulse). A spread of
L = LP + W − 1 symbols from each antenna stream
thus have non-negligible contribution to the samples in
the observation window of size W . It is important to note
that since we choose the window at each receive antenna
to align around the peak response to the desired symbol
transmitted from transmit antenna #1, the same set of
ISI and CSI symbols fall into the chosen window for all
receivers.

• Given W and LP , the number of ISI symbols falling into
the chosen window can be found from LP +W − 2 =
L−1. For our running example with LP = 5 and W = 3,
the number of ISI symbols is then equal to 6.

• The number of CSI symbols falling into the window of
size W is L(NTX − 1) which for our example equals 21.

• The total number of interfering symbols (ISI + CSI)
falling into the space-time window used to demodulate
a desired symbol is then given by LNTX −1 and is equal
to 27 symbols for the considered example.

The vector response to each such interfering symbol within
the space-time window is called an interference vector, while
the vector response to the desired symbol is called the desired
signal vector. The goal of linear space-time equalization is
to suppress the interference vectors without incurring exces-
sive noise enhancement. The dimension of the signal space
in which we are operating is the length of the space-time
equalizer and can be given as WNRX.

The preceding model is concisely represented by defining
the channel Hs that produces the windowed observation vector
for a desired symbol from stream s as:

(ys)NRXW×1 = (Hs)NRXW×NTXL
(xs)NTXL×1

= [hs,1 Hs,ISI Hs,CSI]

 x1
xISI
xCSI

 , (5)

where hs,1 is the NRXW × 1 response of the desired symbol
x1 on the window, Hs,ISI is the NRXW × (L− 1) channel
response of the L − 1 ISI terms xISI, and Hs,CSI is the
NRXW × (NTX − 1)L channel response of the L−1 CSI terms
xCSI on the observation window.

At high SNR, the linear Minimum Mean Squared Error
(MMSE) equalization tends to the linear zero-forcing (ZF)
equalizer, assuming that the zero-forcing equalizer, which

1We hope that, given the very different context, the use of an acronym
commonly employed for channel state information will not cause confusion.

TABLE I
NUMBER OF INTERFERENCE VECTORS AND THE DIMENSION OF THE

SIGNAL SPACE FOR DIFFERENT W WHEN LP = 5 PER STREAM

Interference Dimension of Signal Space
W Vectors NRX = 4NRX = 6NRX = 8NRX = 12NRX = 16
1 19 4 6 8 12 16
3 27 12 18 24 36 48
5 35 20 30 40 60 80

projects the received vector orthogonal to the subspace
spanned by the interference vectors, exists. Since we wish
to operate at relatively high SNRs without incurring error
floors, we target regimes in which the ZF equalizer does exist.
Assuming linearly independent interference vectors (a worst-
case assumption maximizing the dimension of the interference
subspace which is usually satisfied), a necessary condition
(which is often also sufficient) for the existence of the ZF
equalizer is that the dimension of the signal space should be
higher than the number of interference vectors. We can now
obtain simple design rules to predict whether linear interfer-
ence suppression will work well, by counting the number of
interference vectors, and comparing it with the length of the
space-time equalizer.

We calculate and tabulate in Table I the number of inter-
ference vectors and the corresponding dimension of the signal
space, for different W values, varying the spatial oversampling
factor between 1 and 4. For 4 × 4 LoS MIMO without
oversampling, it can be seen from Table I that the dimension
of the signal space is less than the number of interference
vectors for all window sizes considered (W ∈ {1, 3, 5}).
Thus, linear space-time equalization is expected to perform
poorly without spatial oversampling. On the other hand, for a
4×8 system (i.e., 2X spatial oversampling) with a window of
size W = 5, the signal space dimension clearly exceeds the
number of interfering vectors, so that the LMMSE receiver
is expected to perform well. It is important to recognize that
in some cases where the signal space dimension is less than
the number of interference vectors, the LMMSE receiver may
still perform adequately, since some of the interference vectors
could be relatively weak, and the residual interference due to
the inability to completely suppress them is small enough to
avoid discernible error floors at the SNRs of interest (and for
the small constellations considered).
A. Adaptive Channel Equalization: We consider a block
least squares implementation for the adaptive LMMSE re-
ceiver, which is calculated separately for each stream s ∈
{1, . . . , NTX} based on that stream’s adapted window. For L
training symbols for each stream (we use L = 250 randomly
drawn QPSK symbols for each stream in our numerical
results), the WNRX × 1 LMMSE equalizer for stream s is
given by [21]

cs = R−1ps (6)

where R with dimension WNRX ×WNRX and ps of size
WNRX × 1 are calculated by taking empirical averages over



the block of L received vectors yl as

R =
1

L

L∑
l=1

yl(yl)
H (7)

and,

ps =
1

L

L∑
l=1

b∗[l −∆s]yl (8)

where, ∆s is the decoding delay per stream s and is equal to
(W + 1)/2 where W is the adaptive time-window employed
for that stream. Thus, we computeNTX LMMSE receivers, one
for each transmitted stream.

After the training phase, the decision statistic for a given
symbol of stream s is given by the linear correlator output:

x̂s = cHs ys (9)

where ys is the vectorized representation of the received signal
window for that symbol.

In order to evaluate the performance of the adaptively
windowed misaligned LoS MIMO system for various window
sizes and spatial oversampling factors, we consider two per-
formance metrics: i) average per-stream bit error rate (BER),
and (ii) ratio of SINR to nominal (ideal) beamformed SNR.
The nominal beamformed SNR, denoted by SNRbf, is

SNRbf =
NRX

σ2

based on the assumption of unit amplitude (average) channel
gains and unit energy transmit symbols. Note that the SNRbf is
a factor NRX higher than the SISO SNR. The SINR of stream
s is evaluated based on our extended channel model and the
output of the LMMSE receiver as follows:

SINRs =
|cHs Hsδ1|2∑

i∈Γs
i ̸=1

|cHs Hsδi|2 + σ2|cHs cs|2
(10)

where δi is a |Γs|-long input vector with ”1” on index i and
zeros everywhere else. Based on our convention, note that the
index ”1” corresponds to the desired symbol or signal vector
of stream s that is falling into the adaptive window for that
stream.

We average our results over 103 misaligned link realizations,
where each realization has random horizontal and vertical
tilts at the transmitter and receiver, drawn uniformly from
[−7.5◦, 7.5◦] for the nominal system model described in
Section III. From our interference vector counting analysis, it
is expected that for system realizations with insufficient spatial
oversampling and/or window size, we should see BER floors
at high SNRs due to the lack of sufficient dimensionality for
full interference suppression.

Fig. 6 plots the BER curves for different oversampling rates
corresponding to NRX = 4, 8, 12 and 16 and window sizes
W = 1, 3, 5. As expected, without any spatial oversampling
(NRX = 4), there are error floors even with larger window
sizes. With spatial oversampling, however,error floors are
avoided even with a relatively small window size W . As the
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Fig. 6. Bit error rate versus SISO SNR for different values of NRX and W .
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Fig. 7. SINR to beamformed SNR ratio versus SISO SNR for different values
of NRX and W

spatial oversampling factor increases, smaller window sizes
suffice for avoiding error floors. The observations from Fig. 6,
for the most part, are consistent with the interferer counting
arguments summarized in Table I. An apparent exception is
NRX = 8 and W = 3, for which there are no discernible
error floors in Fig. 6, despite the signal space dimension being
smaller than the number of interference vectors in Table I.
However, the additional interferers appear at the peripheries
of the time window, corresponding to severely attenuated
tails of the raised cosine pulse. Thus, the adaptive LMMSE
receiver does not need to “expend signal space dimension”
for suppressing these interference vectors. While the residual
interference is too small to impact the BER plot for QPSK
signaling, the SINR to SNR gap can be more informative
regarding its size.

The SINR to beamformed SNR ratio of the different cases
is plotted in Fig. 7. In cases where the full interference



TABLE II
OPTIMAL ELEMENT SPACING FOR VARYING LINK RANGE VALUE FOR A

4× 4 LOS MIMO SYSTEM OPERATING AT 130 GHZ

R (m) 25 50 100 150
d (cm) 0.17 0.23 0.34 0.42

suppression/zero forcing is not possible due to the lack of
dimensionality, this gap grows arbitrarily large. With sufficient
dimensionality however, the noise enhancement from the zero-
forcing receiver causes this gap to converge to a constant loss.
The predictions of Table I are more clearly validated in this
figure as the scenarios with a larger dimensionality deficit
fall off quicker as the system progresses from a noise-limited
regime to an interference-limited regime.

V. ROBUSTNESS TO LINK RANGE VARIATIONS

For opportunistic deployment, the link range may differ con-
siderably from the nominal range Ro for which the transceiver
apertures are designed (See Fig. 1). In particular, it is pos-
sible for columns of the channel matrix to become linearly
dependent at certain ranges smaller than nominal, causing
mode collapse and unacceptable noise enhancement due to
interference suppression. In this section we discuss in detail
how spatial oversampling with regularly spaced additional
receive elements provides robustness to mode collapse as
well as geometric misalignment. Analytical guidelines like
the amount of spatial oversampling and the optimal choice
of the additional receive element groups to circumvent mode
collapse at non-optimal link ranges is presented for an ideally
aligned system (4× 4 LoS MIMO system with no geometric
misalignment). We show that geometric misalignment of the
panels does not help us while operating at varying link ranges
and the guidelines presented for the ideally aligned system
also work for misaligned systems, as long as the adaptive time
window for space-time equalization is chosen based on the
guidance of the previous section.

For the running example an ideally aligned system operating
at a carrier frequency of 130 GHz at a link distance of
Ro = 100 m is considered with the optimal inter-antenna
spacing set based on the Rayleigh criterion [14], [22] as 34
cm to obtain a well-conditioned spatial channel. Table II lists
the optimal element spacing based on this criterion for the
considered LoS MIMO system with square arrays at different
link range values. When the Rayleigh criterion is fulfilled,
the channel matrix becomes scaled unitary, allowing for the
recovery of the noisy transmitted signal through linear spatial
equalization without degradation in the signal-to-noise ratio
(SNR).

A. Spatial correlation between streams: Operating at
ranges different from the nominal results in correlation be-
tween the columns of the LoS MIMO channel matrix, H. For
an ideal N ×N LoS MIMO system, the channel matrix with
entries h̃m,n corresponding to the complex channel gain from
the nth transmit element to the mth receive element is defined
as
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Fig. 8. Correlation among the columns of the channel matrix H as a function
of link range for transmit elements separated by a distance d

h̃m,n = e−j2πl(m,n)/λ (11)

where, l(m,n) is the path length between the two above men-
tioned elements and λ is the corresponding carrier wavelength.
Since only the relative phase shifts between the elements of H
are of interest, the entries h̃m,n can be normalized by a factor
of ej2πRo/λ which results in the following form

hm,n = e−j2π(l(m,n)−Ro)/λ = e−j2π∆l(m,n)/λ (12)

where the differential distance ∆l(m,n) is equal to l(m,n)−
Ro. If the coordinate location of the nth transmit element is xn
and the mth receive element is xm, the path length difference
(relative to Ro) for an inter-element spacing of d is

∆l(m,n) =
√
(xm − xn)2 +R2

o ≈ (xm − xn)
2 d2

2Ro
(13)

where (xm − xn)d << Ro. The entries of the channel matrix
H is then given by

hm,n ≈ e−j(xm−xn)
2πd2/(λRo) = e−j(xm−xn)

2ψ (14)

where
ψ =

πd2

λRo
. (15)

When the operating link range R is not equal to the optimal
link range, we can substitute for d using (2) to yield,

ψ =
π

2

(
Ro
R

)
(16)

For the ideally aligned system in consideration, the spatial
correlation between the receive array responses to the kth
transmit element and the nth transmit element with k ̸= n
is given by [15]

ρ(k, n) =
|hHk hn|

||hk||||hn||
(17)

Fig. 8 plots the correlation ρ(k, n) of the receive array re-
sponses to transmit elements k and n as the link range is varied
from R = 0.2Ro to R = 2Ro for an ideally aligned system and
its misaligned counterpart. We use the notation ρ(d) to depict
the normalized correlation among the receive responses to
neighboring transmit elements i.e., transmit elements separated
by a distance d. Using 14, this correlation in terms of the
phase difference between the neighboring elements ψ can be
expressed as

ρ(d) = cos(ψ) (18)



Similarly, the normalized correlation between the diagonal
transmit elements, i.e., the transmit elements separated by a
distance

√
2d is denoted by ρ(

√
2d), and can be expressed in

terms of ψ as
ρ(
√
2d) = cos2(ψ) (19)

The detailed derivation of the final forms presented in (18) and
(19) is described in Appendix B. From Fig. 8, the correlation
between two or more columns of H approach unity for certain
values of link range R that leads to an ill-conditioned channel.
It is observed that the columns of the channel matrix are
almost entirely correlated at R = 0.25Ro and R = 0.5Ro
as seen by the blue curve for the ideally aligned system.
The high normalized correlation values between streams in-
dicate the susceptibility of the system to suffer mode collapse
while operating at these link range values. The misaligned
system follows a similar trend to the ideally aligned system
as indicated by the dotted curve in Fig. 8. It is important
to recognize that the misaligned system is faced with some
residual correlation even at R = Ro validating our statement
that geometric misalignment does not help our case when
operating at varying link ranges. A similar analysis can be
made for the normalized spatial correlation ρ(

√
2d) for the

ideally aligned and misaligned systems that has been excluded
for brevity.

B. Effective Noise Enhancement: To explore the impact
of spatial correlation on system performance, we study the
resulting noise enhancement at the output of a zero-forcing
(ZF) spatial equalizer. The ZF correlator is expressed as [23]:

CZF = H† = HH(HHH)−1 (20)

Alternatively, the ZF correlator can be expressed as a scalar
multiple of the projection of the desired signal stream (say x1)
onto the interference subspace (spanned by x2, . . . ,xN ). The
fraction of signal energy lost as a consequence of this projec-
tion is equal to the inverse of the effective noise enhancement
and is given as [24]

||P⊥
I x1||2

||x1||2
= 1− 1

||x1||2
ρIQ

−1
I ρI (21)

where P⊥
I x1 is the projection of the desired signal orthogonal

to the interference subspace, QI is the matrix of correlations
between the interference vectors and ρI is the vector of corre-
lations between the desired stream and the interference vectors.
For the ideal 4 × 4 LoS MIMO system, ρI corresponding
to desired stream x1 can be expressed in terms of ρ(d) and
ρ(
√
2d) as

ρI =

 ρ(d)

ρ(
√
2d)

ρ(d)

 (22)

and the interference correlation matrix QI is

QI =

 1 ρ(d) ρ(
√
2d)

ρ(d) 1 ρ(d)

ρ(
√
2d) ρ(d) 1

 (23)

The effective noise enhancement is then found by computing
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Fig. 9. Noise enhancement as a function of normalized link range for 4× 4
LoS MIMO system

TABLE III
NORMALIZED CORRELATION BETWEEN STREAMS IN TERMS OF ψ

ρ group ‘b’ group ‘c’ group ‘d’
ρ(d) cos(ψ/2) cos2(ψ/2) cos2(ψ/4)

ρ(
√
2d) cos2(ψ/2) cos(ψ) cos(ψ/2)

the inverse of (21). For the ideally aligned system the noise
enhancement at various link range values is plotted in Fig. 9.
In our simulations, the calculated noise-enhancement values
have been capped at 60 dB. A sharp increase in the noise
enhancement is observed as soon as operating link range
deviates from the optimal link range and, the overall noise
enhancement is highest at Ro = 0.25R and Ro = 0.5R. This
behavior is consistent with the increased spatial correlation
between the columns of the channel matrix for these values
of R as seen in Fig. 8. The high noise enhancement values
at a range R can be used as stand-in to predict the possible
mode-collapse of the system and thus provides us with a single
number value to predict the effectiveness of the system when
operating at a range R ̸= Ro.

We can extend a similar analysis to the spatially oversam-
pled system. As seen from Fig. 4, we induce 2×, 3× and
4× spatial oversampling at the receiver by adding additional
receive elements in groups of 4 labelled ‘a’ to ‘d’ and
placing them in a symmetric manner within the receive form-
factor. Here, group ‘a’ corresponds to the base set of receive
elements corresponding to an ideally aligned system with
critical spatial sampling. The sequence in which we spatially
oversample (e.g., selecting group ‘c’ instead of group ‘b’ to
introduce a spatial oversampling factor of 2×) does not affect
system performance under geometric misalignment. However,
the effective correlation between streams is influenced by the
geometry of the additional receive antennas as seen from
(14). Therefore, it is crucial to answer the question: which
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Fig. 10. Noise enhancement as a function of range for the spatially oversampled system for different receive geometries for (a) 2× and (b) 3× spatial
oversampling

configuration of receive antennas for a given spatial over-
sampling factor yields the lowest correlation between streams
at a desired range of operation R? The normalized spatial
correlation between streams can be calculated in a similar
manner as the ideally aligned system in terms of ψ, for each
of the the spatial oversampling groups described in Fig. 4. The
resulting expressions for ρ(d) and ρ(

√
2d) as a cosine function

of ψ are found in Table III. An example derivation of this
form for group ‘b’ is provided in Appendix B. We can now
utilize these groups as building blocks to curate an optimal
receive geometry with the goal of minimizing the overall noise
enhancement at a link range R for a given spatial oversampling
factor. For example, a 2× spatially oversampled system has
three possible choices for the receive geometry starting with
the base group ‘a’ as described in Fig. 4. Using Table III, the
effective normalized spatial correlation for the choice of group
‘b’ is found as

ρab(d) = (cos(ψ) + cos(ψ/2))/2

ρab(
√
2d) = (cos(ψ) + cos2(ψ/2))/2

}
(24)

In general, the expression for the normalized spatial
correlation for a particular spatial oversampling factor
and receiver configuration is built by summing up the
corresponding expressions from Table III and diving the
resulting expression by the spatial oversampling factor. The
overall noise enhancement as a function of link range for
the 2× and 3× spatially oversampled system corresponding
to different receive geometries is plotted in Fig. 10(a)
and Fig. 10(b) respectively. Some key design insights are
as follows: 1) With sufficient spatial oversampling the
peaks in noise enhancement seen in the ideally aligned
system are significantly brought down. 2) For a given
spatial oversampling factor, the choice of the receiver
geometry becomes vital to ensure the lowest possible noise

enhancement at a given link range. For example, with 2×
spatial oversampling, the receive geometry formed by the
choice of Group ‘a’ followed by Group ‘b’ yields a lower
noise enhancement compared to the choice of Group ‘a’
followed by Group ‘c’ at R = 0.5Ro as seen in Fig. 10(a).
Further, the lowest noise enhancement at R = 0.5Ro with
Nrx = 8 receivers is achieved with the receiver geometry
choice of Group ‘a’ followed by Group ‘d’. 3) From
Fig. 10(a) it is apparent that none of the geometric receive
element combinations with Nrx = 8 elements is sufficient
to circumvent the high noise enhancement at R = 0.25Ro.
However, with 3× spatial oversampling and the right choice
of receive geometry (picking Group ‘d’ over Group ‘c’), the
high noise enhancement is reduced, as seen in Fig. 10(b).

In order to understand the cost of operating at link distances
R ̸= Ro with spatial oversampling, we define an effective link
margin relative to an ideally aligned critically sampled link,
as follows:

Required Link Margin (dB) = Noise Enhancement at R (dB)
−10 log10(Nrx/Ntx) + 20 log10(R/Ro)

(25)
where, 10 log10(Nrx/Ntx) is the receive beamforming gain
in dB from spatially oversampling at the receiver and
10 log10(R/Ro) is the propagation gain in dB from operating
at a link distance R. We define this link margin solely as
a means of quantifying the impact of range variations; link
margins to account for other effects must be budgeted sepa-
rately. At ranges smaller than nominal, we thus “get credit” for
reduced propagation loss while dealing with fluctuations in the
noise enhancement, while for ranges larger than nominal, we
are penalized due to increases in propagation loss and noise
enhancement. We plot this required link margin as a function



of the spatial oversampling factor and corresponding receiver
geometry for various link ranges in Fig. 11, utilizing, for a
given oversampling factor, the best geometries as determined
from the results in Figs. 10(a) - 10(b). These results are
shown to be consistent with the BER plots in Fig. 12, which
shows BER versus SISO SNR for a selection of settings. The
behavior for link ranges smaller than nominal (R < Ro) and
larger than nominal (R > Ro) is qualitatively different:

• Drastic DoF collapse can happen at ranges smaller than
nominal, and is alleviated by spatial oversampling. For
the ideally aligned system without oversampling, there
are significant peaks in noise enhancement (and hence
required link margin) at ranges smaller than the nominal,
specifically at R = 0.5Ro and R = 0.25Ro. From
Fig. 11, we see that 2× spatial oversampling (8 receive
antennas) removes the peak in required link margin at
R/Ro = 0.5 but not at R/Ro = 0.25. Correspondingly,
there is no error floor in Fig. 12 for R/Ro = 0.5, but
there is an error floor for R/Ro = 0.25. 3× oversampling
(12 receive antennas) removes the peaks in required link
margin at both R/Ro = 0.5 and R/Ro = 0.25. This is
consistent with the absence of an error floor in Fig. 12
forR/Ro = 0.25.

• At link ranges greater than the nominal, the increase in
required link margin is gradual, corresponding to gradual
increases in propagation loss and noise enhancement
(due to correlation between receive array responses for
the different transmitted streams). For an ideally aligned
system, spatial oversampling provides a gain due to
noise averaging, but we do not see the full array gain
because the noise enhancement also increases: at ranges
larger than nominal, as we add more receive antennas,
the normalized correlations between arrays responses for
different streams also go up. This gain is reduced by the
increased spatial correlation Thus, moderate levels (2×
and 3×) of spatial oversampling offers limited benefits
for ideally aligned systems at ranges larger than nomi-
nal. Of course, spatial oversampling remains crucial for
geometrically misaligned links in these regimes as well.

Overall, for ranges smaller than nominal, spatial oversam-
pling allows us to extend the regime without mode collapse.
In this regime, the smaller propagation loss compensates for
small fluctuations in noise enhancement, and we do not require
any additional link margin relative to an ideally aligned,
critically sampled link at nominal range. This holds, for
example, for 2× oversampling for 0.25 < R/Ro ≤ 1, and
for 3× oversampling for 0.13 < R/Ro ≤ 1. On the other
hand, in order to operate at ranges larger than nominal, we do
require additional link margin to compensate for the increased
propagation loss and noise enhancement for the moderate
levels of spatial oversampling that we consider, but a 10 dB
link margin allows us to extend the range up to R/Ro = 2.5
for both 2× and 3× oversampling. In concrete numbers, if
we are willing to expend 10 dB of link margin for range
extension, the regime of robust operation for a 4 × 4 LoS
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MIMO link dimensioned for a nominal range of Ro = 100
m can be extended to 25 m < R ≤ 250 m with 2×
spatial oversampling, and to 13 m < R ≤ 250 m with 3×
oversampling. These design guidelines hold for geometrically
misaligned links with the understanding that an appropriate
adaptive space-time window, as designed in Section IV, is
employed for equalization.

VI. CONCLUSION

Our work opens up the possibility of opportunistically
deployed wireless networks with spatially multiplexed links,
with spatial oversampling at the receiver providing robustness
against both geometric misalignments and link range varia-
tions. We have shown that the intersymbol interference and



cross-stream interference caused by geometric misalignments
can be overcome using a powerful combination of spatial
oversampling combined with adaptive time windowing. De-
sign rules for the required spatial oversampling factor and
the temporal window size can be derived by simple signal
space arguments, comparing the number of interference vec-
tors against the dimension of the space-time equalizer. For
instance, for our running example of 4 spatially multiplexed
streams, a spatial oversampling factor of 2 (8 receive antennas)
and a temporal window of 3 suffices to prevent error floors
at high SNR, and for a spatial oversampling factor of 4 (16
receive antennas) a window size of 1 suffices.

Spatial oversampling with appropriately chosen receive el-
ements also prevents DoF collapse when operating at link
ranges different from the nominal range for which the
transceiver apertures are dimensioned. We use the effective
noise enhancement of the ZF spatial equalizer for an ideally
aligned LoS MIMO system to design the spatial oversampling
factor and the placement of additional receive elements. We
then verify that such designs also provide robustness against
mode collapse for geometrically misaligned links, provided
that the adaptive time window of samples is chosen to be
large enough for the ZF space-time equalizer to exist.

Simulation results for our system model (not included in this
paper due to lack of space) show that spatial oversampling
also reduces the required analog-to-digital converter (ADC)
precision, consistent with results presented for simplified mod-
els in [25]. An interesting open problem is to understand the
fundamental limits of required ADC precision as a function of
constellation size in our setting. Another interesting direction
for future work is to investigate the combination of transmit
precoding with receive space-time equalization in order to
reduce computational complexity and dynamic range require-
ments.

APPENDIX A
LINK BUDGET CALCULATION

Link budget calculation for the 4×4 LoS MIMO system for
square transceivers with 4 subarrays each at the transmitter and
receiver respectively is detailed in this section. Each subarray
at the transmitter contains Nt elements and each subarray at
the receiver contains Nr elements. We evaluate the link budget
for different subarray sizes with the following considerations:

• antenna element gian covering a hemisphere is 3 dBi
• a total transmit beamforming gain of 10 log10(Nt) dB,

plus a 10 log10(Nt) dB power pooling gain is obtained
from the Nt element subarray at the transmitter

• a total receive beamforming gain of 10 log10(Nr) dB is
obtained from the Nr element subarray at the receiver

• the noise figure of each RF chain is 7 dB
• the thermal noise of 30 GHz BW is about −71 dBm
• SNR of 10.2 dB is required for QPSK modulation
• link margin of 10 dB is desired
• a rain attenuation of 7 dB/Km which corresponds to a

rain rate of 50mm/hr [26], [27] (moderate rainfall) is also
included in the path loss calculation
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Fig. 13. Minimum required transmit power at varying link ranges and subarray
sizes for the considered 4 × 4 LoS MIMO system with fixed inter-antenna
spacing of 34 cm

We then obtain a receiver sensitivity of −54 dBm. Fig. 13 plots
the minimum required transmit power at varying link ranges
and subarray sizes for the considered system model with fixed
transceiver form factors. From Fig. 13, for Ro = 100 m we
require a minimum transmit power of 17 dBm with 16 element
subarrays at both the transmitter and receiver. Additionally,
without adjusting the transceiver form factors we see that only
modest values for transmit power are required to operate even
at non-optimal link ranges.

APPENDIX B
SPATIAL CORRELATION FOR DIFFERENT RECEIVER

GROUPS

In this section we aim to explicitly derive the forms de-
scribed in Table III for some of the varying receive element
groups shown in Fig. 4. The spatial correlation between
streams is given as ρ(d) and ρ(

√
2d) can be expressed in terms

of cosine functions of ψ using (14) for the four streams in the
considered 4× 4 LoS MIMO system.

A. Group ‘a’

The effective phase difference experienced by the four
receive elements ‘a1’ - ‘a4’ corresponding to different transmit
streams is given as

hT1 = [1 e−jψ e−j2ψ e−jψ]

hT2 = [e−jψ 1 e−jψ e−j2ψ]

hT3 = [e−j2ψ e−jψ 1 e−jψ]

 (26)

The normalized spatial correlation ρa(d) is then calculated
using (17) between h1 and h2 as

ρa(d) = (ejψ + e−jψ + e−jψ + ejψ)/4 = cosψ (27)



Similarly, ρa(
√
2d) is calculated as the normalized correlation

between h1 and h3 by antenna geometry as

ρa(
√
2d) = (ej2ψ + 1 + e−j2ψ + 1)/4 = cos2 ψ (28)

B. Group ‘b’

The effective phase difference seen across the receive ele-
ments ‘b1’-‘b4’ is dependent on the receive geometry depicted
in Fig. 4 and takes the following form

hT1 = [e−jψ/8 e−j5ψ/8 e−j9ψ/8 e−j5ψ/8]

hT2 = [e−j5ψ/8 e−jψ/8 e−j5ψ/8 e−j9ψ/8]

hT3 = [e−j9ψ/8 e−j5ψ/8 e−jψ/8 e−j5ψ/8]

 (29)

Then, the normalized spatial correlation ρb(d) is calculated in
a similar manner to Group ‘a’ as

ρb(d) = (ejψ/2+e−jψ/2+e−jψ/2+ejψ/2)/4 = cosψ/2 (30)

It follows that ρb(
√
2d) is then

ρb(
√
2d) = (ejψ + 1 + e−jψ + 1)/4 = cos2 ψ/2 (31)

While the calculations for Group ‘c’ and Group ‘d’ have been
excluded for the sake of brevity, it is easy to extend the same
analysis across the other receive groups.
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