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Abstract—The transceiver separations required for synthesiz-
ing full rank MIMO matrices in line of sight (LoS) geometries
scale as the square root of the product of carrier wavelength
and range. The wavelengths at millimeter (mm) wave carrier
frequencies are small therefore enable LoS spatial multiplexing
with practical node form factors at ranges of 10-100 m, depending
on the carrier frequency. However, such LoS MIMO links become
frequency selective even with small geometric mismatches. Exact
channel inversion in an N × N MIMO system requires frac-
tionally spaced equalization, which is practically infeasible when
operating at the very high data rates (multiple Gbps) that we are
interested in. In this paper, we investigate spatial oversampling
(more receive antennas than transmitted data streams) with
symbol rate sampling, introducing designed delay diversity across
different receive antennas, as a means for removing error floors
when linearly separating the spatially multiplexed streams. We
study the tradeoff between the number of additional receive
antennas and the complexity of temporal equalization, and argue
that an attractive example architecture, compatible with form
factor constraints, is one in which the number of receive antennas
is double the number of transmitted data streams.

Index Terms—mmWave, MMSE equalizer, spatial multiplex-
ing, sampling offset

I. INTRODUCTION

mmWave communication has the potential of providing
wireless data rates approaching those of optical links by
virtue of two key properties. First, the amount of bandwidth
available typically scales linearly with the carrier frequency,
so that we might, for example, have 10-20 GHz of bandwidth
for a link operating at a carrier frequency over 100 GHz.
Second, due to the tiny carrier wavelength, it becomes possible
to obtain spatial multiplexing over point-to-point links (i.e.,
without requiring rich scattering) with transceiver spacings that
are small enough to be accommodated in nodes of compact
form factor. Roughly speaking, for two-dimensional arrays
occupying areas At at the transmitter and Ar at the receiver,
the MIMO channel rank is approximately r = AtAr

(λR)2 , where λ
denotes carrier wavelength and R the link range. Furthermore,
full channel rank can be attained by a sparse array, spacing
r elements (each element can itself be a directive array)
uniformly over the given area. Thus, for fixed form factor,
link range and spectral efficiency, the data rate can scale as
f3
c , where fc = c

λ denotes the carrier frequency: a factor of
f2
c due to spatial multiplexing, and a factor of fc due to the

linear scaling of bandwidth with fc.
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Fig. 1. LoS MIMO system with 4-fold spatial multiplexing

Our work here is motivated by systems such as the example
depicted in Figure 1, which shows 4-fold spatial multiplexing
using 2D arrays at each end, with link speed exceeding 100
Gbps. Such systems have been considered in [7], [8], where
it is pointed out that even small geometric misalignments
result in channel dispersion, which leads to error floors with
conventional linear space-time equalization with symbol-rate
sampling at each receive element. Given the large bandwidth,
sampling beyond the symbol rate to implement fractionally
spaced equalization is unattractive. The solution proposed in
[7] is to employ an analog architecture, using programmable
delays with sub-symbol precision to compensate for the dis-
persion caused by geometric misalignments, while maintaining
symbol rate sampling at each receive element. In this paper,
we investigate an alternative architecture for space-time linear
equalization, compatible with both digital and analog realiza-
tions, which employs spatial oversampling while maintaining
symbol rate sampling. From the point of view of hardware
realization, a key advantage is that additional receive elements
and associated circuits can easily fit within the same form
factor, given that the original set of elements must be widely
spaced (as measured in carrier wavelengths) in order to provide
the required spatial degrees of freedom. Our main goal in this
paper is to demonstrate that such an architecture does eliminate
performance floors using linear space-time equalizers of finite
complexity, and to explore tradeoffs between complexity and
the amount of spatial oversampling. A sweet spot, for example,
is to replace each receive element by a pair of elements whose
sampling times are offset by T /2, which provides enough
“delay diversity” to enable separation of the multiplexed
streams using a relatively small time domain window (e.g.,



5 samples).
The rich scattering environments assumed in classical spa-

tial multiplexing [2] do not apply over mmWave channels [1].
Basic theoretical tradeoffs in LoS mmWave MIMO are ex-
plored in [3], while LoS MIMO for prototype 60 GHz systems
with two and four spatially multiplexed streams have been
demonstrated in [4] and [5], respectively. Optimal antenna
placement, with respect to maximizing mutual information,
based on a 3D geometrical model is considered in [6]. As
mentioned, we are motivated here by recent work [7], [8]
aimed at pushing LoS MIMO bandwidths beyond 10 GHz,
where small geometric perturbations lead to frequency selec-
tivity. While [7] considers programmable analog subsymbol
delays to undo the effect of such perturbations, our proposed
architecture is more flexible: it is compatible with both digital
and analog implementations. While our performance evalua-
tion here is focused on the impact of geometric misalignments,
the proposed architecture provides enough degrees of freedom
to accommodate more general models for frequency selectivity
(e.g., due to larger geometric perturbations that might be
caused by reflections).

The rest of the paper is organized as follows. The system
model is introduced in Sec. II. In Sec. III, we derive the condi-
tions on the channel matrix to avoid error floors, which guides
design choices in our proposed architecture. Simulation results
are presented in Sec. IV. Sec. V contains our conclusions.

We use the following notation throughout this paper: a, a,
and A represents a scalar, vector, and matrix respectively. IM
is the identity matrix of size M × M . AT , AH , and A−1

denotes the transpose, Hermitian transpose, and inverse of A
respectively. The mth element of a is represented using a[m]
and the (m,n)th element of A is A[m,n].

II. SYSTEM MODEL

We first review some LoS basics [3]. While we are interested
in 2D arrays in order to maximize spatial multiplexing gain
within a compact form factor, consider first LoS spatial
multiplexing for a linear array at each end with N transmit
and N receive elements, with inter-element spacing of d and R
the distance between transmitter and receiver. Assuming ideal
alignment, the received signal y ∈ CN×1 can be written as

y = Hx + n, (1)

where x ∈ CN×1 is the transmitted signal vector, H ∈ CN×N
is the channel matrix, and n ∈ CN×1 is additive white
Gaussian noise with covariance matrix σ2IN . For R � d,
the (m,n)th entry of H is well approximated as

H[m,n] = exp

(
−jπ(m− n)2 d

2

λR

)
. (2)

This is obtained simply by computing phase differences cor-
responding to the path length differences for different pairs of
transmit and receive elements. (Differences in path loss are
negligible.)

Full channel rank and no inter-stream interference is ob-
tained if the columns of H are orthogonal. This is obtained if
we choose the spacing to be [3]

d =

√
Rλ

N
, or

d

λ
=

√
R

λN
(3)

This provides ideal N -fold spatial multiplexing. By creating a
2D array at each end with N2 elements arranged in uniform
rectangular grid with spacing d, we obtain ideal N2-fold
spatial multiplexing. Typical spacings for attaining full channel
rank are large multiples of the wavelengths, unlike the λ/2-
spacing typical in a beamforming array. Thus, each “element”
in a LoS MIMO array might be an electronically steerable
beamforming “subarray” with sub-wavelength element spac-
ing, or a highly directive fixed beam antenna.
Running example: For N = 2 (i.e., 4-fold spatial multiplex-
ing) at a carrier frequency 130 GHz and a range of 100 m,
we obtain d = 34cm from (3), which is almost 150λ. Using
parameters from [7], [8], a bandwidth of 20 GHz using QPSK
yields an uncoded data rate of 160 Gbps, assuming no excess
bandwidth, which implies that data rates exceeding 100 Gbps
are enabled by such architectures, even when accounting for
excess bandwidth and lightweight channel coding.

Now, we consider the effect of geometric misalignments,
when the transmit and receive arrays are slightly tilted with
respect to each other [7], [8]. At 20 GHz symbol rate, even
a small tilt angle of 7.5◦ can yield a 3 symbol channel delay
spread, creating an FIR space-time channel rather than the
ideal spatial channel model in (1). We therefore consider
space-time linear equalization, with each symbol decision
involving samples from a time window of length W symbols
from all the receive elements.

In principle, it is possible to handle frequency selectivity
using standard techniques such as OFDM or frequency domain
equalization. However, given the large bandwidths, implemen-
tations of the FFT or IFFT operations associated with such
techniques become unattractive. For the short channels arising
in our context, single carrier modulation with time domain
equalization has significantly lower computational complexity.

Considering linear arrays at each end for simplicity of
exposition, and now allowing a possibly different number
of transmit and receive elements, denoted by Nt and Nr,
respectively, the received signal over a window of length W
is given by

ỹ = H̃x̃ + ñ, (4)

where

ỹ =
[
yTK yTK−1 · · · yTK−W+1

]T ∈ CNrW×1

H̃ =


H0 · · · HL−1 · · · 0 0
0 H0 · · · HL−1 · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · H0 · · · HL−1

 (5)

x̃ =
[
xTK xTK−1 · · · xTK−L−W+1

]T ∈ CNt(L+W−1)×1

ñ =
[
nTK nTK−1 · · · nTK−W+1

]T ∈ CNrW×1



Here, xk ∈ CNt×1 and yk ∈ CNr×1 are the transmitted and
received signals at time kTs respectively, where Ts is the
sampling time, H̃ ∈ CNrW×Nt(L+W−1) is a block Toeplitz
matrix, and Hl ∈ CNr×Nt , l ∈ [0, L − 1] denote the L-tap
frequency selective channel. The (m,n)th entry of Hl is

Hl[m,n] =

√
1

Nt
exp

(
−jπ(m− n)2 d

2

λR

)
exp(−j2πfc(µm + τn))p(lTs − µm − τn), (6)

where,
√

1
Nt

is the normalization factor, the term

exp
(
−jπ(m− n)2 d2

λR

)
represents the channel gain without

misalignment, µm and τn are the additional delays occurred
at the receiver m and the transmitter n respectively, and p(t)
is the transmitted pulse. In the next section, we study the
linear equalizer for the system in (4).

The block Toeplitz structure naturally also holds for 2D
arrays at each end, but the detailed specification of the channel
matrix is messier, and is therefore omitted. Our numerical
results, however, are for 2D arrays.

III. LINEAR SPACE-TIME EQUALIZER

The space-time equalizer considers the received signals
at Nr receive antennas over a time duration of W symbol
intervals, and estimates Nt transmitted symbols in which every
symbol is from a different transmit antenna. Then the space-
time window slides by one symbol to estimate the next Nt
transmitted symbols. We assume that the receiver knows the
channel H̃.

General criteria for the existence of finite-complexity linear
space-time zero-forcing (ZF) equalizers are provided via the
generalized Bezout identity [9], which states that H̃(Z) (the z-
domain representation of H̃) must be right co-prime. However,
we find that detailed design insights are easier to obtain by
working in the time domain.

For a given time window of length W , we must choose the
Nt decoded symbols, one for each transmitted stream, from
among the Nt(L + W − 1) transmitted symbols contributing
to the received samples in the window, as shown in (4). Let us
denote the positions of the decoded Nt transmitted symbols
by Γs, s ∈ {0, 1, · · · , Nt − 1} and Γs ∈ {iNt + s; i ∈
{0, 1, · · · , L + W − 2}}. We employ a simple heuristic for
selecting the values of Γs: for each transmitted stream, choose
the symbol with the maximum energy contributed to the
current window of space-time samples:

Γs = arg max
j=iNt+s;i∈{0,1,··· ,L+W−2}

‖H̃j‖2, (7)

where H̃j is the jth column of H̃.
The ZF equalizer satisfies

c̃sH̃ =
[
01×(Γs−1) 1 01×Nt(L+W−1)−Γs

]
, (8)

where c̃s =
[
cs0 · · · csW−1

]
, csl ∈ C1×Nr , l ∈ {0, · · · ,W−

1} is the linear weight vector to decode the symbol transmitted
from sth antenna.
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Fig. 2. 2X spatial oversampling within the same form factor.

A sufficient condition for a solution to exist for (8) is given
by the following lemma.

Lemma 1: The ZF weight vector cs can always be found if
the following conditions are satisfied:

1) Nr ≥ Nt
2) The window length

W ≥W0 =

⌈
L− 1(
Nr

Nt

)
− 1

⌉
(9)

3) H̃ has full column rank
Proof: The condition in (8) is a linear system of equations with
NrW unknowns and Nt(L+W − 1) equations. A nontrivial
solution exists if the number of unknowns is greater than or
equal to the number of equations, and if H̃ is full rank. This
is possible if Nr ≥ Nt and

NrW ≥ Nt(L+W − 1)

W ≥W0 =

⌈
L− 1(
Nr

Nt

)
− 1

⌉

�

The conditions in Lemma 1 satisfy the criteria in Theorem 2
of [9]. However, unlike at lower carrier frequencies, we cannot
rely on rich multipath to satisfy the full rank condition. In the
next subsection, we propose the use of sampling offsets across
receivers to satisfy this condition.

A. Spatially oversampled reception

Starting with N2-fold spatial multiplexing with d-spaced 2D
arrays, we propose to add receive elements on the “inside” of
the array, so that we do not increase the overall area occupied
by the array. Recognizing that each element may itself be
a subarray, the new receive elements must be placed many
wavelengths away from the original elements. The output of
each receive element is sampled at the symbol rate, but in
order to provide a “different enough view” of the physical
channel via the additional elements, we may need to sample
them at an offset from those in the original elements.

An example of the proposed architecture at the receiver
is given in Fig. 2. In this figure, receivers 1 through 4 are
the original antennas, separated at a distance d that provides
full spatial rank, while the additional receivers 5 through 8
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Fig. 3. The variation of delays at the different receive antennas

provide spatial oversampling. Here d′ can be set to d/4 to
get the maximum separation among the receivers within the
original form factor. It is important to sample the additional
receivers at an offset (T/2 being a good choice) from the
original receivers in order to achieve full rank. To see this, we
plot in Fig. 3 the delays incurred by different transmitters at
the receivers (as a multiple of symbol time T ) for two different
small misalignments. The values of d, λ, R, and T (50 ps) are
as in the running example. We observe that the delays at the
additional receiver 5 are close to those at the nearest original
receiver 1, and hence so are the channels. We therefore sample
the additional receivers at an offset of T/2 in order to ensure
that the full rank condition is satisfied.

While the preceding approach is intuitively pleasing for
Nr = 2Nt, optimizing placement and sampling offsets for
more general settings is an interesting problem for future
investigation.

B. MMSE Equalizer

While the ZF equalization condition guides our archi-
tecture, in order to account for noise, our performance
evaluations consider the MMSE equalizer, which minimizes
E
[
‖ (c̃s)

H
ỹ − x̃[Γs]‖2

]
for the sth input stream.

c̃sMMSE =
(
H̃H̃H + (σ2/P )INrW

)−1

H̃Γs
, (10)

where P is the signal power at each transmit antenna. The
decision statistics for the Nt transmitted input symbols are
then given by

x̂est = (c̃sMMSE)
H
ỹ. (11)

C. Trade-off between W and Nr
The time window W0 for equality in (9) is a decreasing

function of the number of receivers Nr, assuming that the
number of data streams Nt and the channel length L are
fixed. From (11), we see that the number of complex-valued
operations per transmitted symbol for MMSE demodulation is
given by NrW0. This actually decreases as Nr increases, as
we see from the equality condition in (9):

NrW0 = Nt(L− 1) +NtW0.

Table I shows the trade-off between Nr and W0 with L = 6
and Nt = 4 LoS MIMO system.

TABLE I
TRADE-OFF BETWEEN Nr AND W0 FOR L = 6 AND Nt = 4

Nr 5 6 7 8
W 20 10 7 5

IV. SIMULATION RESULTS

In this section, we simulate the average SINR and BER
of the proposed system for different window lengths and
sampling offsets. We consider the LoS system in Fig. 2 and
the parameters d, λ, and R as in the running example. We
generate the additional delays µm and τn by assuming small
random rotations (less than 5◦) at the transmitter and receiver.
Each data stream uses QPSK modulation with a raised cosine
pulse p(t) with roll-off factor 0.25. The SINR of the sth stream
is computed as

SINRs =

∣∣∣c̃sMMSEH̃Γs

∣∣∣2∑
i 6=Γs

∣∣∣c̃sMMSEH̃i

∣∣∣2 + σ2

P

∣∣∣(c̃sMMSE)
H
c̃sMMSE

∣∣∣2 .
In order to obtain BER estimates, we run the simulations
until we see 500 errors and at least 104 different channel
realizations. We define SNR as P/σ2, the (SISO benchmark)
SNR per receive antenna for a given transmitted stream.

Figs. 4 and 5 show the SINR and BER of the pro-
posed oversampled system for different window lengths of
W0,W0/2, 3W0/4, and 2W0 with Nr = 8 and Nt = 4,
where W0 denotes the window length for equality in (9). The
additional receive antennas (5-8) are sampled at an offset of
T/2 from the main antennas. The benchmarks associated with
the original system (Nr = 4) are for ideal alignment as in (1),
as well as with geometric misalignments. In the latter setting,
the channel is not invertible using an FIR equalizer, but we still
limit the time window to 4 in order to compare performance
with limited computational complexity. From these figures,
we observe that i) all of the systems with Nr = 8 perform
better than the system with Nr = 4; ii) performance improves
with window length until W0 and saturates thereafter; iii) the
performance of W = W0 and Nr = 8 has no error floors and
is about 2 dB better than ideal alignment system with Nr = 4.

We conclude that, while a window length of W0 is necessary
to avoid error floors, the noise enhancement is small enough
at W = W0 that (a) further increases in temporal complexity
do not help, (b) the 3 dB improvement due to noise averaging
implies that a misaligned system with Nr = 8 performs better
than an ideally aligned system with Nr = 4.

Figs. 6 and 7 plot the SINR and BER for Nr = 8 and
W = W0, showing that no sampling offsets at the additional
receivers leads to error floors, unlike the proposed offsets of
T/2. This behavior is explained by the full rank condition on
H̃ in Lemma 1.

V. CONCLUSION

We have shown that spatial oversampling, along with de-
signed delay diversity, is an effective approach to combat the
frequency selectivity caused by geometric misalignments in



SNR in dB

0 10 20 30 40 50

S
IN

R
 in

 d
B

-5

0

10

20

30

40

50

60

W
0
/2, N

r
 = 8

3W
0
/4, N

r
 = 8

W
0
, N

r
 = 8

2W
0
, N

r
 = 8

W = 4, N
r
 = 4

Ideal, N
r
 = 4

N
t
 = 4, QPSK, T/2 sampling offset

Fig. 4. SINR of the proposed oversampled LoS MIMO system for different
window lengths with Nt = 4 and QPSK

SNR in dB
6 8 10 12 14 16 18 20 22

B
E

R

10-5

10-4

10-3

10-2

10-1

100

W
0
/2, N

r
 = 8

3W
0
/4, N

r
 = 8

W
0
, N

r
 = 8

2W
0
, N

r
 = 8

W = 4, N
r
 = 4

Ideal, N
r
 = 4

N
t
 = 4, QPSK,

T/2 sampling offset

Fig. 5. BER of the proposed oversampled LoS MIMO system for different
window lengths with Nt = 4 and QPSK

SNR in dB

0 10 20 30 40 50

S
IN

R
 in

 d
B

0

5

10

15

20

25

30

35

40

45

50

0 sampling offset

T/2 sampling offset

N
t
 = 4, QPSK, W

0

Fig. 6. SINR of the proposed oversampled LoS MIMO system for different
sampling offsets at extra receive antennas with Nt = 4 and QPSK

SNR in dB
6 8 10 12 14 16 18 20 22

B
E

R

10-5

10-4

10-3

10-2

10-1

100

0 sampling offset

T/2 sampling offset

N
t
 = 4, QPSK, W

0

Fig. 7. BER of the proposed oversampled LoS MIMO system for different
sampling offsets at extra receive antennas with Nt = 4 and QPSK

LoS MIMO. A time-domain zero-forcing condition is used
to identify the tradeoff between the number of additional
receivers and the equalizer time window, and a particularly
attractive architecture is to double the number of receivers
within the same form factor. An important topic for future
work is to investigate tradeoffs between all-digital and hybrid
analog-digital implementations of such architectures.
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