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Abstract—This paper considers noncoherent communication
over a frequency-nonselective channel in which the time-varying
channel gain is unknowna priori, but is approximately constant
over acoherence interval. Unless the coherence interval is large, co-
herent communication, which requires explicit channel estimation
and tracking prior to detection, incurs training overhead which
may be excessive, especially for multiple-antenna communication.
In contrast, noncoherent detection may be viewed as a generalized
likelihood ratio test (GLRT) which jointly estimates the channel
and the data, and hence does not require separate training. The
main results in this paper are as follows

1) We develop a “signal space” criterion for signal and code
design for noncoherent communication, in terms of the dis-
tances of signal points from the decision boundaries.

2) The noncoherent metric thus obtained is used to guide the
design of signals for noncoherent communication that are
based on amplitude/phase constellations. These are signif-
icantly more efficient than conventional differential phase-
shift keying (PSK), especially at high signal-to-noise ratio
(SNR). Also, known results on the high-SNR performance of
multiple-symbol demodulation of differential PSK are easily
inferred from the noncoherent metric.

3) The GLRT interpretation is used to obtain near-optimal low-
complexity implementations of noncoherent block demodu-
lation. In particular, this gives an implementation of mul-
tiple symbol demodulation of differential PSK, which is of
linear complexity (in the block length) and whose degrada-
tion from the exact, exponential complexity, implementation
can be made as small as desired.

Index Terms—Differential phase-shift keying (PSK), differential
quadrature amplitude modulation (QAM), generalized likelihood
ratio test (GLRT), noncoherent communication, noncoherent dis-
tance.

I. INTRODUCTION

T HIS paper presents a framework for signal design for non-
coherent communication over a frequency-nonselective

channel. The channel complex gain is modeled as unknown,
but constant over the duration of the transmitted signal. Such
a model is well suited to time-varying channels which are
difficult to track explicitly, but can be approximated well as
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piecewise constant over acoherence intervalthat spans, say,
several symbol durations. Coherent communication, which
requires a good estimate of the channel complex gain over such
channels would typically require an overhead (e.g., in terms of
unmodulated pilot symbols) that would be excessive unless the
coherence interval is large. While noncoherent detection is a
classical topic in communication theory, the need for efficient
noncoherent coded modulation schemes has become particu-
larly acute in recent years, due to the explosion of interest in
high-speed wireless communication systems, and the potential
use of multiple antennas to enhance performance [1]–[8]. The
overhead required for channel estimation becomes even larger
for coherent detection in multiple-antenna systems, since the
channel gain between each pair of transmit and receive antenna
elements must be measured. Although this paper focuses on
frequency-nonselective channels, the results can be applied
to frequency-selective channels by converting the latter into
a number of frequency-nonselective subchannels by the use
of multicarrier modulation, or by the use of equalization.1 An
existing multicarrier system using noncoherent detection is the
European Digital Audio Broadcasting (DAB) standard which
uses differential 4-PSK modulation on each subcarrier [10]. The
results in this paper point the way for potential improvements
in such a system, through the use of more power-efficient am-
plitude/phase constellations (Section IV), and through reduced
complexity multiple-symbol demodulation (Section IV-B).

Attention is restricted in this work to signal design over a
single coherence interval. Coding over multiple coherence in-
tervals is the subject of future work.

For coherent reception over the additive white Gaussian noise
(AWGN) channel, practical channel codes are now available for
approaching the Shannon capacity for the entire range of band-
width efficiencies [11]–[13], and a number of coding techniques
have been developed for coherent reception over the Rayleigh
faded channel [14], [15]. The state of the art for noncoherent
systems lags far behind, consisting mainly of orthogonal modu-
lation (which is not bandwidth efficient) and differential phase-
shift keying (PSK) (which is less power efficient than ampli-
tude/phase modulation). As shown later in this paper, nonco-
herent detection can be viewed as joint estimation of the channel
and the data. Hence, if properly optimized, we would expect it
to be more efficient, albeit at the expense of higher complexity,
than separate channel estimation followed by coherent detec-
tion. However, in order to realize the promise of noncoherent
communication, much work in signal and code design is needed.
This paper takes some preliminary steps in this direction by de-
veloping systematic design criteria for noncoherent systems that

1While traditional equalization methods attempt to track the channel gain
and therefore may fail in rapidly time-varying environments, recently developed
equalizers based on the differential minimum mean squared error criterion [9],
which avoid tracking the channel gain, go naturally with noncoherent detection.
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are analogous to the signal space concepts that have been so
useful in the design of coherent systems.

Our main results are summarized as follows.

1) Noncoherent detection can be interpreted in terms of the
generalized likelihood ratio test (GLRT); that is, as joint
channel and data estimation. This leads to a geometric
view of the noncoherent decision statistics as the mag-
nitudes of the projection of the received signal on the
complex subspaces spanned by each of the possible trans-
mitted signals.

2) The asymptotic rate of decay of the pairwise error prob-
ability of noncoherent detection on an AWGN channel is
computed based on the preceding view of the decision
regions for the noncoherent detector. The noncoherent
metric governing the rate of decay is given by the distance
of the transmitted signal to the boundary of the decision
region, and provides a systematic criterion for signal de-
sign, analogous to the notion of Euclidean distance be-
tween signal points for coherent systems.

3) It is well known that multiple symbol demodulation
of differentially encoded PSK provides much better
performance than conventional differential demodulation
over two symbols (for example, demodulation over a
block of six symbols provides a gain of about 2.1 dB over
demodulation over two symbols for differential 8-PSK).
Such block demodulation has complexity exponential
in the block length. However, the GLRT interpretation
of noncoherent detection enables realization of the
performance gains of block demodulation at greatly
reduced complexity. In particular, near-optimal block
demodulation of differentially encoded PSK (DPSK) can
be performed at linear complexity.

4) While a straightforward extension of differential en-
coding to amplitude/phase constellations yields poor
performance, a modified block differential encoder that
accounts for the noncoherent metric is shown, for rela-
tively small coherence intervals, to achieve better power
efficiency than PSK, just as is the case for coherent com-
munication. At high SNRs, a 16-QAM alphabet gives
a gain of about 2 dB over 16-PSK for a noncoherent
AWGN channel with blocks of six symbols. Further, it is
shown that, asymptotically for large coherence intervals,
the performance of noncoherent block demodulation
of DPSK and amplitude/phase constellations (with the
modified block encoding) approaches that of coherent
detection.

The performance gains from multiple symbol demodulation
of DPSK were pointed out by Divsalar and Simon [16]. They
derive a noncoherent metric for DPSK that is a special case
of ours. However, their derivation is based on a Bayesian
interpretation of noncoherent detection, and involves the
asymptotics of the Marcum’s function, in contrast to the
geometric derivation given here. In view of the exponential
complexity of multiple symbol demodulation, much work
has gone into finding suboptimal procedures for multiple
symbol demodulation that are easier to implement [17]–[20].

In particular, feedback of decoded symbols has been studied
in great detail, although the error propagation characteristics
are not well understood [21]–[23]. In contrast to the somewhat
ad hocapproaches followed previously, the linear complexity
near-optimal detector proposed here follows directly from the
GLRT interpretation, and can be designed to have an arbitrarily
small level of degradation from the optimal performance.

Coding (over multiple coherence intervals) for DPSK with
multiple symbol demodulation has been studied in some detail
[24]–[29]. This topic is not addressed in this paper, since our
focus here is on signal design within a coherence interval. How-
ever, as mentioned in Section V, a systematic approach to coding
for noncoherent communication is an important topic for future
work.

In contrast to the literature on DPSK, much less is known
about amplitude/phase modulation for noncoherent systems,
with most work to date concentrating on demodulation based on
symbol windows of size two (analogous to conventional DPSK)
and on the effects of fading channels and diversity [30]–[35].
This prior work did not have the advantage of designing
with a noncoherent metric in mind (which, as we shall see,
motivates a modification of the standard differential encoder
for amplitude/phase modulation), hence the anticipated gains
in power efficiency over PSK were not realized. Coding over
quadrature amplitude modulation (QAM) alphabets for fading
channels withcoherentdetection has been considered in [36].
Frequency shift keying (FSK) is a popular modulation scheme
for noncoherent systems, especially since orthogonal signals
can be obtained for particular parameter values [37]–[42].

The properties of the GLRT have been studied from a statis-
tical point of view. In particular, for finite alphabets and for a
search set consisting of all memoryless channels, the GLRT can
be shown to be equivalent to the maximum mutual information
(MMI) estimator [43]. A comparison of the GLRT with the op-
timal maximum-likelihood (ML) estimator is made in [44]. The
GLRT has also been effectively utilized for multiuser detection
[45], [46].

Typical information-theoretic models used for noncoherent
systems are the compound channel model [43], [47] and the
block fading channel model [3], [48], [49], which is considered
here as well.

Since the signals in noncoherent detection can be identified
with the complex subspaces they span, design of signals for non-
coherent detection may be viewed as a packing problem in pro-
jective space. Thus, results on the packing of planes in space,
optimized according to certain distance criteria, can be applied
for noncoherent space-time codes [50], [51]. Work has also been
done on finding good packings of planes using gradient search
methods [2], [8], [52].

This paper primarily deals with single-antenna systems.
However, more recent research [53], [54] has revealed tech-
niques to use one-dimensional (1-D) codes to get good
noncoherent space-time codes using orthogonal transforma-
tions. These will be considered in detail in a future publication.

Section II contains the interpretation of noncoherent detec-
tion as a GLRT, and uses this to obtain reduced complexity
near-optimal detectors. An application to multiple symbol de-
modulation of DPSK is described. The geometry of pairwise
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decision making for noncoherent detection is considered in Sec-
tion III, where the noncoherent metric governing the pairwise
error probability is derived. The notion of differential encoding
is generalized to amplitude/phase constellations in Section IV,
and it is shown that a modification is required to obtain good
values of the noncoherent metric. Simulation results for mod-
erate coherence intervals are presented to show the performance
of QAM and PSK alphabets in noncoherent systems using the
suboptimal algorithm. Asymptotic results are presented in Sec-
tions IV-C and IV-D to show that the performance of nonco-
herent detection can approach that of coherent detection for
large coherence intervals. Conclusions are provided and issues
for future study identified in Section V.

II. THE GLRT APPROACH ANDITS CONSEQUENCES

For single antenna transmission, the received signal over one
coherence interval is given by

(1)

where

• is the received vector,2

• is the SNR,
• is the transmitted vector,
• is a vector of complex AWGN with , and
• is an unknown complex channel coefficient.

All vectors are of size where is the length of the co-
herence interval.

A. GLRT Detection

Over the AWGN channel, ML estimation corresponds to min-
imizing the Euclidean distance between the received and the hy-
pothesized signals. The GLRT detector computes the joint ML
estimate of the channel and the transmitted signal. Thus, the
GLRT estimate for the transmitted signal satisfies

(2)

where is the family of transmitted signal vectors, referred to
as a codebook. The elements of the vectors ofbelong to an
alphabet denoted by . The optimum channel estimate, corre-
ponding to the inner minimization in (2), is achieved by pro-
jecting the received vector onto the 1-D complex subspace
spanned by as follows:

2Throughout this paper, boldface notation with lower case letters is used to
denote vectors and boldface notation with upper case letters to denote matrices
e.g.,x is a scalar,xxx is a vector, andXXX is a matrix.III denotes an identity matrix
of sizek � k. xxx denotes the conjugate of the transpose of the vectorxxx. For a
setA, jAj denotes its size.

Substituting back in (2), we obtain

(3)

as compared to the coherent ML estimate given by

(4)

Remark 1: The GLRT decoding rule is independent of the
energy of the signal, which is given by . For large coher-
ence intervals, the information in the energy of the signal is typ-
ically insignificant, e.g., see the Shannon-theoretic analysis of a
block-fading channel model in [3].

Remark 2: For the metric in (3)

Thus, if there exists a complex scalarsuch that both and
belong to , then the GLRT rule cannot differentiate between
them. Hence, the information contained inand must be
the same.

A distinction has to be made between the coherent ML de-
tector in (4) and the noncoherent ML detector, which assumes
no knowledge of the exact value of the channel state, but does
assume knowledge about its probability distribution. The non-
coherent ML detector works as follows:

(5)

where the expectation is with respect to the assumed distribution
of . For a single transmit antenna, the noncoherent ML detector
is identical to the GLRT detector, as long as the channel phase

is uniformly distributed over and the signals are
of equal energy. Indeed, the noncoherent detector considered
here is usually derived under the latter set of assumptions in
standard texts on detection [55]. For multiple-antenna transmis-
sion, noncoherent ML detection and GLRT detection are iden-
tical, for example, for equal energy signaling with the channel
gains from the transmit elements to the receive element(s) mod-
eled as independent and identically distributed (i.i.d.) circular
Gaussian random variables [3].

B. Overlapped Block Encoding

The original codebook can be divided into equivalence
classes, each equivalence class consisting of vectors which are
scalar multiples of each other. We denote the set of such equiv-
alence classes by . Any vector in , say , is uniquely spec-
ified by its equivalence class in , say , and its first element,
say . This mapping is denoted by . The
GLRT decoding rule of (3) can distinguish between the equiva-
lence classes of , but not between vectors within an equiva-
lence class in . Hence, (3) can be written as

(6)
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Fig. 1. Noncoherent detection with overlapping blocks.

Example 1: For , and uncoded trans-
mission

The vector . In this case,
.

From Remark 2, only bits of information can be
conveyed in a noncoherent setting for every block ofchannel
uses. If the channel remains constant over an interval of size

and varies arbitrarily between intervals, then is the
best rate that can be achieved. However, it can be assumed in
practice (e.g., in a slow fading channel) that the channel coeffi-
cient remains approximately constant over an interval of size
and varies slowly between intervals. Under this assumption, we
can consider blocks overlapping by one symbol in the following
manner. The source generates bits, which specify the
equivalence class to be transmitted, say. Now, the last symbol
from the previous transmitted block, say, is used as a reference
symbol along with to get the new vector to be transmitted, i.e.,

. The first element of this vector is, which need not be
transmitted again and hence only additional channel
uses are required to transmit bits. The rate achieved
is thus , which is an improvement over the rate without

overlap of , and can, in certain cases, be equal to the
maximum achievable rate usingof . (For example, for
the sets in Example 1, the maximum achievable rate of 1 bit
per channel use is achieved by overlapping as in Fig. 1) This
improvement in rate comes at no additional cost in terms of dis-
tance properties since the signal set used is the same as the orig-
inal one. However, it relies on the slowly varying nature of the
channel.

At the receiver, overlapping blocks of received vectors are
used for detection as follows:

where

and

are, respectively, the sequence of transmitted and received sym-
bols. The decoding procedure will not uniquely determine the
bit sequences but will determine the equivalence class of
that they belong to.

C. Differential Modulation

As described in Section II-B, a sequence of bits of length
is used to obtain an equivalence class in, which

along with the first element, determines the modulated vector to
be transmitted. Differential modulation provides a simple and
systematic method for implementing this transformation. The
incoming sequence of bits is parsed into blocks of bits

, each of size . In a differ-
ential modulation scheme, theth modulated symbol ,

is determined by an operation
on the previous symbol and the information bits . The
reverse operation is done at the receiver
to get back the information bits. From Remark 2, a noncoherent
differential modulation scheme must satisfy the following con-
dition.

Condition 1: If and belong to for some complex
scalar , then must satisfy:

Example 2: For uncoded MPSK modulation,

and

The members of an equivalence class in are obtained by
taking any one of the vectors in it and multiplying by all values
of . Let denote the mapping from a sequence of



WARRIER AND MADHOW: SPECTRALLY EFFICIENT NONCOHERENT COMMUNICATION 655

bits, say , to the corresponding symbol in. Then,
conventional differential PSK employs

We can check that satisfies Condition 1 for all values of
.

Differential modulation schemes for -QAM are discussed
in Section IV. We now develop a linear complexity decoding
scheme for -PSK, based on the differential modulation
scheme above.

D. Linear Complexity Multiple Symbol Detection of DPSK

Multiple symbol demodulation of standard differ-
ential -PSK gives substantial gains over conventional differ-
ential detection with , for [5]. However, for

-PSK, the cardinality of the search set for the optimization
in (6) grows exponentially with : . In the fol-
lowing, we present a near-optimal linear complexity block de-
modulator for uncoded DPSK. The extension of this concept to
more general noncoherent codes is currently under investiga-
tion.

In (2) for the GLRT, the exponential complexity occurs be-
cause of the maximization over. However, if the orders of the
optimization are interchanged, we have

The inner maximization is now a coherent detection procedure.
For uncoded PSK, coherent detection can be done symbol-by-
symbol, and is therefore of linear complexity in. The com-
plexity of the outer optimization can be reduced by restricting
the choice of to a finite family, incurring a controlled loss in
optimality that depends on the granularity of the quantization.

The decision regions for coherent detection of PSK are inde-
pendent of the amplitude scaling induced by the channel. Thus,
it suffices to consider only the phase distortioncaused by the
channel. In this case

Let be an estimate offrom the family , which is obtained by
quantizing an interval of candidate phase estimates. For demod-
ulation of -DPSK, it suffices to quantize the interval ,
because the remainder does not change the estimated equiva-
lence class. In this case,could be chosen as

The size of can be tuned to approach the optimal perfor-
mance as closely as required.

The algorithm proceeds in two steps.

1) Coherent step:
For each phase estimate , perform symbol-by-
symbol coherent demodulation based on the phase-cor-
rected received vector . This yields an esti-
mate for the transmitted vector.

2) Noncoherent step:
Among the candidates choose the one that
yields the largest noncoherent decision metric, that is, the
estimate such that

The complexity of the preceding detector is linear in the resolu-
tion , which is independent of . The complexity is linear in

, which is, of course, the minimum possible complexity ex-
pected for processing symbols. Simulation results show that
the loss in performance from using this procedure as opposed
to the original GLRT is negligible for reasonable values of the
phase resolution (e.g., for 8-PSK).

In Section IV-B, the notion of differential encoding is gener-
alized to amplitude/phase modulation. In this case, the subop-
timal algorithm can no longer ignore the amplitude scaling of
the channel. However, as shown in this section, the complexity
can be reduced somewhat.

Remark 3: In its pure form, the GLRT requires computa-
tions of exponential complexity, since animplicit estimate of
the channel is made for each possible transmitted signal. We
have usedexplicit channel estimates to reduce this complexity,
thus reducing noncoherent detection tocoherent detectors in
parallel. The key distinction between coherent and noncoherent
detection is, however, that we have no reason to have more con-
fidence in any one of these parallel channel estimates. An in-
teresting direction for future research is to attempt to use side
information about the channel to reduce the number of parallel
coherent detectors, and to adapt the set of channel estimates
over time. However, the lack of an absolute phase reference (in
the absence of training or pilot symbols) implies that it would
still be necessary to employ codes that optimize a noncoherent
metric such as the one in Section III.

III. SIGNAL SPACE CONCEPTS

Every decoding rule partitions the space of all received
vectors into decoding regions corresponding to each candidate
transmitted vector. The performance of the rule can be char-
acterized by the properties of these decoding regions. We are
interested in determining a good measure of the performance
of signaling schemes under the GLRT decoding rule. Since the
channel is noncoherent Gaussian, conditioned on the amplitude
over the coherence interval, we look at the GLRT decoding
regions for the AWGN channel to derive such a measure. The
received vector in this case is given by where is a
vector of AWGN with covariance .

Theorem 1: For an AWGN channel, in the high-SNR regime,
the pairwise error probability for the GLRT decoding rule de-
cays exponentially with SNR, that is,
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where is the estimated signal vector and denotes the
shortest distance from the transmitted signalto its decoding
region boundary and is given by

and (7)

The proof appears in Appendix A.

Further, for any SNR, the following theorem holds for the
Chernoff bound on the error probability.

Theorem 2: For an AWGN channel, under the GLRT de-
coding rule, the pairwise error probability is bounded by

(8)

The proof appears in Appendix B.

These results motivate the consideration of this distance as
a measure of the performance of a signaling scheme under the
GLRT decoding rule.

An intuitive picture is presented in Fig. 2, which can be ex-
plained as follows. Denote the 1-D subspaces spanned by
and to be and , respectively. Further, let be the
minimal angle between any two vectors picked from these two
subspaces. Then

and the square of the distance fromto the decoding region
boundary is then

When is sent, the distance is . In general, the goal
of signal design is to control the minimum of the two distances
(normalized by the bit energy ) given by

(9)

For a given codebook and the corresponding set of equiva-
lence classes , the performance measure in a noncoherent
setting is given by the worst case distance

(10)

The distance corresponding to (9), for coherent detection, is
given by

(11)

Fig. 2. Signal space geometry.

The following result holds for the coherent distance, in relation
to the noncoherent distance.

Proposition 1: For any two vectors and

Proof: Equation (11) can be expressed as

The desired result is obtained by comparing individual terms
above with those in (9) and using the following relations:

and

The two distances are equal only when the inner product
is real and the signals are of equal energy. Hence,

noncoherent signal design can yield quite different results from
those obtained by coherent signal design. However, from the
proposition above, it is clear that signals designed using the non-
coherent metric will provide the desired performance even when
the channel is known and coherent detection is employed. The
converse does not hold, i.e., signal designs based on the coherent
metric are not necessarily amenable to noncoherent detection.

A. Applications to DPSK

The distance measures obtained in the previous section can
be used to evaluate the performance of multiple symbol demod-
ulation of DPSK. The results in this section have been previ-
ously derived in [16] and [56] using a more complex approach
involving the asymptotics of the Marcum’s-function. Simi-
larly, results for the noncoherent distance for continuous phase
modulation (CPM) signals have been derived in [34]. Our pur-
pose here is to demonstrate that the results for equal energy sig-
nals can be evaluated as special cases of (10).
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In Appendix C, it is shown that the minimum in (10) for an
-PSK alphabet is achieved by the pair

(12)

and

(13)

The following conclusions result from this observation.

1) For (differential BPSK)

independent of for all .

Remark 4: In terms of error exponents, there are no gains
in increasing the window size beyond for differential
BPSK.

2) For large values of

which is equal to the distance obtained by coherent detec-
tion using an -PSK alphabet. Meanwhile, for
(conventional differential detection)

Since for large

Remark 5: There is a gain of about 3 dB in using large values
of over conventional differential detection of -PSK for
large values of .

In the next section, the noncoherent metric is applied to obtain
new results on the design and evaluation of signals based on
amplitude/phase constellations.

IV. DIFFERENTIAL AMPLITUDE/PHASE MODULATION

QAM alphabets3 are known to be more energy efficient than
PSK for coherent systems, especially at high SNR. In this sec-
tion, we demonstrate that this advantage is applicable to non-
coherent systems as well, by using the noncoherent metric in
Theorem 1 as a guide to signal design based on QAM con-
stellations. QAM alphabets for systems with unknown phase
have been considered before [22], [23], [30], [31]. However,
our use of the noncoherent metric enables us to identify con-
straints necessary for QAM constellations and for the parti-
tioning thereof. We demonstrate that the use of QAM constel-

3While the term QAM is generally reserved for alphabets with signal points
at the corners of squares, the term is used in this paper to mean any modulation
scheme with both amplitude and phase information.

lations in this manner helps realize the potential performance
gains of QAM over PSK.4

First, a differential modulation scheme, analogous to that for
-PSK in Section II-C, is proposed for -QAM alphabets as

follows. The -ary constellation is divided into subcon-
stellations, such that each subconstellation is a (possibly offset)

-PSK alphabet and . Out of the bits
used to label a symbol, the first bits are used to label
the subconstellation and the remaining bits are used to
label each point within it. This labeling is shown for 8-QAM

and 16-QAM in Figs. 3
and 4, respectively.

Information is encoded in the transitions between symbols as
follows. Let the previous symbol have a bit labelingof length

bits parsed into two parts and of length
and , respectively. Also, let the information bit sequence
be of length bits parsed into two parts and . Then,
the next symbol is given by

where denotes the bitwiseXOR operation. Some examples
of differential modulation using this scheme are presented in
Fig. 5. This provides a natural extension of differential PSK to
amplitude/phase modulation. It can be checked that sat-
isfies Condition 1.

We wish to generate a codebook consisting of vectors with
elements drawn from this QAM alphabet. For PSK alphabets, it
was assumed that all possible vectors are included in the code-
book (hence, ), but the following example illustrates
that a codebook with all the possible vectors from a QAM al-
phabet has poor noncoherent performance. For the rest of this
section, we focus attention on an 8-QAM alphabet as in Fig. 6.

Example 3: Consider and an 8-QAM alphabet with
. Let

and

Then , which compares poorly with

where consists of vectors of 8-PSK symbols.

An intuitive explanation for the poor performance of uncon-
strained QAM is as follows. The signal is of low energy com-
pared to the other signals, so that it has a very high probability
of being decoded wrongly, irrespective of its correlations with
other signals. This suggests that the signals in the codebook have

4An approach similar to our Gray labeling based approach for partitions of
QAM constellations is used by Weber [33]. However, in Weber’s work, the
nearest neighbors are selected based on the Euclidean distance. This leads to
the division of the signal space into pie-shaped sectors, where each sector is la-
beled using a subset of the information bits and signal points within each sector
are labeled using the remaining bits. Our identification of the worst case vectors
based on the noncoherent metric gives us a better division of the signal space.
Note, for instance, in Fig. 8, that the first two bits are common for the outermost
circle, the two middle semicircles, and the innermost circle. Such a division is
not possible using pie-shaped sectors.



658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 3, MARCH 2002

Fig. 3. Bit labeling for an 8-QAM alphabet.

to satisfy certain minimum energy constraints. The need for en-
ergy constraints is quantified in Section IV-C using asymptotic
results.

We consider the following method for implementing the en-
ergy constraint. A vector of symbols is constrained to have at
least symbols from the higher amplitude level. This con-
straint is easily implemented since, if a given vector does not
satisfy the constraint, one that satisfies the constraint can be ob-
tained by simply inverting the amplitude bit.

Example 4: Consider two blocks of information
symbols with and an 8-QAM alphabet with
and , as follows:

and

Let the reference symbol for the first block be . By the
differential modulation procedure above

The resulting signal vector

satisfies the minimum energy criterion and can be transmitted
as is. (Note that overlapping blocks can be used as described
in Section II-B. Hence, only symbols are transmitted
and the last symbol of the previous block is prefixed to each
transmitted block for detection purposes.)

For the second block, the reference symbol is . By the
encoding procedure

This block does not satisfy the minimum energy criterion and,
hence, all the amplitude bits are flipped to give

as the signal vector to be transmitted.
If the reference signal for the first block and all the transmitted

signals are decoded correctly, the decoded information bits will
be

Comparing with the original information bits, it is observed that
one bit is incorrectly decoded because the energy constraint had
to be satisfied at the encoder. Hence, the first amplitude bit of
every block has to be ignored, resulting in a loss of rate ofbit
per channel use, as a result of the energy constraint.

The rate obtained for an -QAM alphabet with overlapping
blocks and a coherence interval length of, in terms of number
of bits per channel use, is given by

odd

even
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Fig. 4. Bit labeling for a 16-QAM alphabet.

compared to a rate of for an uncoded -PSK con-
stellation. The loss in rate (approximately as is seen in the
example above and in the expression for the rate) due to the en-
ergy constraints is, therefore, negligible for large values of.

For and an 8-QAM alphabet, the worst case vectors,
in terms of the noncoherent metric (found by exhaustive search)
are

(14)

and

(15)

The distance corresponding to this pair affords a further im-
provement of about 0.65 dB over 8-PSK with . (For
a 16-QAM alphabet, finding the worst case vectors involves
a computationally intensive search. We rely on actual channel
simulations, instead, to evaluate performance.)

Thus, QAM alphabets can be used with certain power con-
straints to improve upon the performance of PSK alphabets. The
theoretical results obtained using distance arguments in this sec-
tion are substantiated using simulation results in the following
section.

A. Gray Bit Labeling

So far, we have considered strategies to minimize the prob-
ability that one codevector is mistaken for another. However,
given that a demodulation error occurs, the number of bit errors
can be minimized using Gray bit labeling. Examples of Gray
bit labeling are provided for PSK and QAM constellations in
Figs. 7 and 8.

Note that the Gray bit labeling gives a different result from
the bit labeling for differential modulation (called “differential
labeling” for short). (Compare, for instance, the bit labeling for
8-QAM in Figs. 3 and 7.) The difference is owing to the different
philosophies associated with the two schemes.

1) Gray labeling is intended to reduce the difference in the
number of bits between the representations of two equiv-
alence classes in that are close by the noncoherent
metric. For example, for 8-QAM and , a worst
case vector pair is given by:

and
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Fig. 5. Differential modulation for 8-QAM and 16-QAM.

Fig. 6. 8-QAM alphabet.

Thus, the difference in representation is in only 1 bit for
the worst case vectors. However, vectors within the same
equivalence class may have bit representations by Gray
labeling that are quite different and a connection between
them is not obvious. For example, for 8-PSK and

and

belong to the same equivalence class, but the relation be-
tween the bit representations for the two vectors is not
clear.

2) Differential labeling is purely a matter of convenience,
used to get simple implementations of the ideas of over-
lapped block encoding, differential modulation, and en-
ergy constraints. (Indeed, if simplicity of implementation

is not an issue, the ideas of overlapped block encoding,
differential modulation, and energy constraints can be
thought of just in terms of the complex symbols and the
modulation labeling scheme can be dispensed with.) Vec-
tors within the same equivalence class have very similar
representations by this labeling. For example, for 8-PSK
and

and

belong to the same equivalence class and adding
to each of the bit representations in the first

vector gives the second vector. However, equivalence
classes that are close in the noncoherent metric may be
very disparate in bit representations, thus causing a large
number of potential bit errors for a worst case symbol
vector pair. For example, for 8-QAM and , a worst
case vector pair is given by

and

Thus, there is a difference of 3 bits in the representation
as opposed to just 1 bit for Gray labeling.

In order to gain the benefits of Gray labeling, while preserving
the simplicity of implementation due to differential labeling, we
consider a communication system with a block diagram repre-
sentation as in Fig. 9 for our simulations. Raw information bits
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Fig. 7. Gray bit labeling for 8-PSK and 8-QAM alphabets.

Fig. 8. A 16-QAM alphabet with Gray bit labeling.

are first parsed and reverse Gray coded.5 Then, we obtain the
differential labeling, which is used to implement energy con-
straints and to do overlapped block encoding. At the receiver,
after demodulation, we get the differential labeling of the equiv-
alence class, which is Gray coded to get the estimates of the in-
formation bits.

While the preceding scheme is general enough to apply to
both QAM and PSK constellations, it reduces to the following
standard implementation for DPSK.

1) Map the information bits to a sequence of PSK informa-
tion symbols using Gray coding.

2) Generate the transmitted symbols using differential mod-
ulation as .

The multiplication operation involved in the differential mod-
ulation performed in Step 2) is equivalent toEXCLUSIVE-OR of
the bitwise representation of the PSK symbols using a natural
labeling. Step 1) can, therefore, be interpreted as reverse Gray
coding, mapping from the information symbols to the natural
bitwise representation of the PSK alphabet.

5Traditionally, the Gray coding procedure refers to the conversion from the
natural bit labeling to the Gray bit labeling, e.g.,exp(j ) or 010! 011 and
exp(j�) or 100! 110 for 8-PSK. So, the reverse procedure, which is done at
the encoder, is referred to as reverse Gray coding.

B. Simulation Results

The suboptimal scheme of Section II-D can also be extended
for the case of amplitude distortion introduced by the channel
for QAM-type alphabets. However, the unbounded set of all
possible amplitudes cannot be substituted by a set of finite am-
plitude estimates without significant loss of optimality, unless
some estimate of the SNR over the block is available. Hence,
we consider a decoder that works in two steps and is very sim-
ilar to the decoding procedure for PSK in Section II-D.

1) Coherent step:
Choose a possible realization of the amplitude bits and
a phase estimate. For the chosen amplitude realization
and phase estimate, perform symbol-by-symbol coherent
demodulation on the received vector to obtain an estimate
of the transmitted vector.

2) Noncoherent step:
From among the candidate estimates (one for each phase
estimate and amplitude realization), choose the one that
yields the largest noncoherent decision metric.

The complexity of the algorithm is exponential in the number of
subconstellations (but not in the total alphabet size ). A
comparison of the performance of 8-QAM and 8-PSK in sim-
ulations using the suboptimal algorithm (with a resolution of

for the channel phase shift) is now presented. The ratio
of the amplitudes used for the 8-QAM alphabet can be
tuned to provide the optimal performance for a given coherence
interval. For the simulations presented here, the ratio was main-
tained at , which is near-optimal for a large range of
coherence intervals.

For the AWGN channel, the bit-error probability exhibits the
following behavior:

(16)

where is the SNR. Thus, the distance in (10) determines the
asymptotic slopes of the curves in Fig. 10. The probability of a
bit error for 8-QAM is noted to decay faster with SNR than that
for 8-PSK, as predicted by the distance values.

The disparity in performance between QAM and PSK alpha-
bets can be seen more clearly from the case of 16 signal points.
A standard 16-QAM constellation as shown in Fig. 8 is com-
pared with a 16-PSK constellation. An energy constraint is im-
posed upon the vectors from the QAM alphabet that ensures that
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Fig. 9. Block diagram for a system implementation.

Fig. 10. Bit-error probabilities for 8-QAM and 8-PSK alphabets (AWGN).

the number of elements from the lowest amplitude level in any
vector is no more than the number of elements from the highest
amplitude level. A valid codeword can be obtained from an in-
valid one by simply inverting the first bit in all of them, as was
done in the 8-QAM case. Gray labeling is used to minimize
the bit-error probability for both 16-QAM and 16-PSK. From
the curves in Fig. 11, it is observed that 16-QAM affords an
improvement of 2 dB over 16-PSK at high SNR, which is the
regime of interest for such large constellations.

Fig. 11. Bit-error probabilities for 16-PSK and 16-QAM alphabets (AWGN,
N = 6).

In the next section, theoretical results are presented to show
that the coherent gain of QAM over PSK can be realized even in
the noncoherent case as the coherence interval size gets large.

C. Asymptotic Results for the Noncoherent Distance

We present asymptotic results in this subsection and the next
that prove that, as the coherence interval gets large, the perfor-
mance of noncoherent detection can get arbitrarily close to that
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of coherent detection. In particular, it is shown that the non-
coherent distance (which, in general, is less than the coherent
distance by Proposition 1) approaches the coherent distance for
large . In the next subsection, it is shown that, for the block
fading channel model [3], the information rate for noncoherent
detection approaches that for coherent detection for large co-
herence intervals. Together, the communication-theoretic and
information-theoretic arguments imply that even for large co-
herence intervals (for which separate channel estimation fol-
lowed by coherent detection does not require excessive over-
head), signal designs based on the noncoherent metric should
give performance competitive with those designed for coherent
communication.

The worst case vector pair for PSK (as given by (12) and (13))
and those for QAM (as given by (14) and (15), for instance) have
the following common property. They can be parsed into smaller
parts which are scalar multiples of each other, i.e., they can be
written (after a rearrangement of elements, if necessary) as

where

and

for some complex scalars and independent of such that
and . The vectors are of length and

, are of length , where the length remains
constant while increases.

For such vectors, the following connection exists between the
Euclidean distance and the GLRT metric.

Theorem 3: If

i.e.,

then

Thus, in the asymptotic limit, the noncoherent metric and
the Euclidean distance are equivalent for such vector pairs. The
proof is presented in Appendix D.

The following remarks follow from this result:

1) For an -PSK alphabet, the asymptotic distance is given
by

which is the same as the coherent distance for-PSK.

2) For an 8-QAM alphabet without any constraints, the
vector pair of

and

gives a normalized asymptotic distance of

which evaluates to a lower value than the corresponding
distance for 8-PSK. This reiterates the need for energy
constraints on signals constructed using the QAM al-
phabet.

With the application of our minimum energy criterion, the
all-ones vector is removed. Now, for an 8-QAM alphabet,
the minimum asymptotic distance (normalized) can be
shown to be

The evaluation of this minimum distance shows that the
asymptotic gain obtained by using 8-QAM over 8-PSK is
about 1.35 dB.

Thus, for an entire class of alphabets, the noncoherent
distance asymptotically approaches the coherent distance. This
generalizes earlier results [16] on the relation between the
noncoherent and coherent metrics for PSK alphabets.

D. Asymptotic Results for the Block Fading Channel

In this subsection, we investigate the block fading channel
model for slow-fading channels and show that the information
rates per channel use are asymptotically the same for coherent
and noncoherent detection as the coherence interval becomes
large.

Consider a system with transmitter antennae and one re-
ceiver antenna. (The case of multiple receiver antennas can be
treated easily as an extension of the theory developed here.)
Under the block fading channel model, the transmitted signal
from each antenna is multiplied by a fading coefficient and,
then, summed up at the receiver antenna along with AWGN. The
fading coefficients are mutually independent circular Gaussian
random variables. Further, they are assumed to remain constant
for the coherence interval , and, then, change to independent
new values.

Mathematically

(17)

where

• is the transmitted signal matrix of size with the
energy constraint

• is the vector of channel coefficients of size which
are zero mean, circular Gaussian with ;

• is a vector of AWGN of size with ;
• is the received vector of size ; and
• is the SNR.

The mutual information between and for the coherent
and noncoherent cases are respectively given by

and the corresponding achievable rates per channel use are
and , respectively. We now compare these quantities for
large values of the coherence interval (see also [48]). The
following relations hold:

Thus,

(18)
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The left-hand side of the inequality in (18) gives the loss in in-
formation from using noncoherent detection as opposed to co-
herent detection. The inequality says that this loss is no more
than the amount of information carried by the channel state

about the received signal that cannot be obtained from
the transmitted signal . Our next step is to prove that this
extra information becomes negligible as the coherence interval

gets large.
The term on the right-hand side in the inequality in (18) can

also be viewed as the mutual information of a coherent “dual”
channel, which hasas the input and as the channel response.
This mutual information is maximized whenis special com-
plex Gaussian (see [1] for details), so that

(19)

Denoting the eigenvalues of by
and using Jensen’s inequality

By the energy constraint on

Thus,

Substituting in (19), we have

which yields

This implies that, while noncoherent detection may be most
useful in practice for small coherence intervals, codes designed
for noncoherent detection will perform well even for large co-
herence intervals.

V. CONCLUSION

The geometric interpretation of noncoherent detection via the
GLRT gives insight into the form of the decision regions, and
the noncoherent metric identified thereby provides a systematic
framework for signal design within a coherence interval. In par-
ticular, the generalization of the notion of differential encoding
to QAM constellations enables power- and bandwidth-efficient
transmission for time-varying channels with high SNR. It was
shown that the complexity of noncoherent detection could be re-
duced by approximating it by a number of parallel coherent de-
tectors. Extensions of these ideas that take into account channel

side information and specific signal structure are subjects for
further investigation. Noncoherent detection is of particular in-
terest in the multiple-antenna case, where channel estimation
may incur a significant overhead. Extensions of the techniques
considered here to the multiple-antenna case will be presented
separately.

While noncoherent communication may well be the only
practical option for channels with rapid time variations, we
speculate that, in general, it is a good approach to detection
even for channels with slow or no time variations. In particular,
the results of this paper show that design based on a nonco-
herent metric provides good performance even when (complete
or partial) channel information is available. For example,
Proposition 1 implies that the pairwise error probability for a
given pair of signals can only improve if channel information is
available. Further, it is shown in Sections IV-C and IV-D that,
for large coherence intervals, the performance and capacity
of noncoherent communication approaches that of coherent
systems. However, there are two main obstacles to realizing the
promise of noncoherent communication:

1) Noncoherent detection is typically more complex than co-
herent detection (e.g., for linear modulation, block non-
coherent demodulation is more complex than symbol-by-
symbol coherent demodulation).

2) In coherent communication, systematic design principles
that attain information-theoretic limits are now available
[57], at least for the classical AWGN channel. However,
progress on coding for noncoherent communication has
been largelyad hocin its nature, typically based on stan-
dard differential demodulation followed by standard dif-
ferential decoding.

Thus, important topics for future investigation include reduc-
tion of detector and decoder complexity in noncoherent systems,
and coding (over multiple coherence intervals) for noncoherent
communication that approaches the Shannon capacity of impor-
tant channel models, such as the block fading channel consid-
ered in Section IV-D. An approach that may be promising in this
regard is the use of turbo-like codes, in conjunction with joint
noncoherent demodulation and decoding using iterative tech-
niques, as in [26] and [28].

APPENDIX A
BOUNDS ON THEPAIRWISE ERRORPROBABILITY FOR AN

AWGN CHANNEL

The proof for Theorem 1 is provided here.
We first evaluate the distance from the signal pointto its

decoding region boundary. This distance is given by

where

If where is in the span of and and is
perpendicular to it, then

Hence, for the optimal .
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Let represent the unit vector in the direction of for
. Now, if , where and are com-

plex scalars, then, after some algebra, it can be shown that the
following relation holds:

(20)

where . Thus, the original problem reduces to

Solving, using Lagrange multipliers, the optimal values are

(21)

(22)

and

(23)

The minimum distance is given by

(24)

as required.
We can derive an upper bound on the error probability (and

the error rate) by noting that an error will only occur if the noise
vector has energy larger than the squared minimum distance ob-
tained in (24). Accordingly

(25)

Evaluating the error rate

(26)

For a lower bound on the error probability, we use a particular
error event (noise along the minimum distance direction) which
is most likely to happen in the asymptotic regime and has an
error rate close to the squared minimum distance.

Let denote a unit vector in the direction , as in
Fig. 12, given by

(27)

and denote the vector perpendicular to it in the span of
and . Only the noise components in the span ofand
need to be considered, and, hence, we can assume, without loss
of generality (w.l.o.g.), that the received vector is of the form

for some values of and . We now consider a vector ob-
tained by a slight perturbation frominto the decoding region
for , given by

Fig. 12. Signal space geometry.

where . Then, from (20), the following strict inequality
holds:

By the continuity of the inner product in its arguments, we can
find a ball of radius (where ) around , de-
noted by , that is inside the decoding region for

, or

Also, since

we have

and

Finally, for a received vector , the components of
noise along and are, respectively, and

. Thus,

and

and

and and

where .
Evaluating the error rate
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using . Since and can be made
arbitrarily small

(28)

Combining (26) and (28)

as required.

APPENDIX B
AN UPPERBOUND TO THE PAIRWISE ERRORPROBABILITY

USING THE CHERNOFFBOUND

The proof of Theorem 2 is provided here.
If is the transmitted signal, a decoding error is made if

there exists such that and

The pairwise probability of error is, then, given by

By the Chernoff bound, an upper bound to this probability is
given by

For a fixed value of , the expectation above gives

if . Using

an upper bound to the probability of error is given by

Thus, the same exponential factor as is given by the GLRT in
(7) is obtained here.

APPENDIX C
NEARESTNEIGHBORS FORDIFFERENTIAL -PSK

Consider vectors and from two different equivalence
classes in , given by

and

where and are of the form , for all
. From (10), since

we only need to find a pair such that is max-
imized

where is also of the form ,
for all .

Since and are not equivalent, not all are equal to .
In order to maximize the inner product under this condition, it
suffices to have

and

Thus,

and

achieve the minimum value of for .

APPENDIX D
PROOF OF THEASYMPTOTIC EQUIVALENCE OF THE GLRT

METRIC AND THE EUCLIDEAN DISTANCE

The proof of Theorem 3 is provided here.
Assume, w.l.o.g., that

The GLRT metric of (9) then simplifies as follows:

Simplifying individual terms

Thus,

(29)

where . Now

and, hence,
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Using these

Substituting in (29), the required result is obtained.
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