
UNIVERSITY OF CALIFORNIA
Santa Barbara

Networked Estimation and Communication with
Minimalist Models

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Sriram Venkateswaran

Committee in Charge:

Professor Upamanyu Madhow, Chair

Professor João P. Hespanha

Professor Michael Liebling

Professor Bangalore S. Manjunath

Professor Kenneth Rose

Professor Subhash Suri

December 2011

The Dissertation of
Sriram Venkateswaran is approved:

Professor João P. Hespanha

Professor Michael Liebling

Professor Bangalore S. Manjunath

Professor Kenneth Rose

Professor Subhash Suri

Professor Upamanyu Madhow, Committee Chairperson

December 2011

Networked Estimation and Communication with Minimalist Models

Copyright c© 2011

by

Sriram Venkateswaran

iii

Acknowledgements

Over the course of the last five years, Professor Madhow has changed the way I

think and express myself. For this, I am deeply thankful to him. I have learnt

from him that it is vital to understand the larger picture before solving specific

problems. His insightful feedback on the paper drafts I sent him and the oral

presentations I made has taught me the importance of clarity and structure while

conveying ideas in any form.

Translating ideas from this dissertation into a demonstration for the source

localization and UAV routing project involved a lot of work. Jason and Danny

provided great company that made this work enjoyable. I would like to thank

Professor Hespanha for his guidance on this project and all my committee mem-

bers for their feedback. Many ideas in this dissertation were shaped and refined

during discussions with my labmates and I thank them for their inputs.

I would like to thank Professor Koilpillai at IIT Madras for the extraordinary

lengths he went to help me and his guidance.

Amidst a very busy life, my parents have always done their best for me. They

have invested time and effort in making the right choices, taught me numerous

things, given constructive advice and been generous with love and encouragement.

Thanks for all this and much more. My grandparents, Kamba and Thatha, have

iv

given me unconditional love and unstinting support. My uncle acted as the cata-

lyst in my shift to a healthier lifestyle. Thanks to all of them too.

Each one of my housemates over the years – Karthik, Vivek, Prakash, Sandeep,

Jefy, Bala, Ajay and Jalan – has made daily life, far away from family, enjoyable

in his own way. Sumit has been a great sounding board and I would like to thank

him for this. Thanks also go to many friends who have shared parts of what has

been a very interesting journey.

v

Curriculum Vitæ
Sriram Venkateswaran

Education

December 2011 Doctor of Philosophy, Electrical and Computer Engineering
University of California, Santa Barbara

December 2007 Master of Science, Electrical and Computer Engineering
University of California, Santa Barbara

August 2006 Bachelor of Technology, Electrical Engineering
Indian Institute of Technology Madras

Publications

Journals • S. Venkateswaran and U. Madhow. “Localizing multiple events
using times of arrival”, IEEE Transactions on Signal Processing
(submitted)

•D.J. Klein, S. Venkateswaran, J.T. Isaacs, J. Burman, T. Pham,
J.P. Hespanha, U. Madhow. “Source Localization in a Sparse
Acoustic Sensor Network using UAV-based Semantic Data Mules”.
ACM Transactions on Sensor Networks (submitted)

Conferences • S. Venkateswaran and U. Madhow. “Collaborative Estimation
in Dispersive Environments: A Frequency Domain Approach”.
Asilomar Conference on Signals, Systems and Computers, Novem-
ber 2011, Asilomar, CA

• S. Venkateswaran and U. Madhow. “Space-time localization
using Times of Arrival”. Allerton Conference on Communica-
tion, Control and Computing, September 2011, Monticello, IL

• S. Venkateswaran and U. Madhow. “Implicit Network Tim-
ing Synchronization With Phase-Only Updates”. Conference on
Information Sciences and Systems, March 2011, Baltimore, MD

• S. Venkateswaran, S. Singh, U. Madhow, R. Mudumbai. “Dis-
tributed Synchronization and Medium Access in Wireless Mesh
Networks”. Information Theory and Applications (invited pa-
per), February 2011, San Diego, CA

• J. Burman, J. Hespanha, U. Madhow, T. Pham, J. Isaacs and S.
Venkateswaran. “Bio-inspired UAV Routing, Source Localization
and Acoustic Signature Classification for persistent surveillance”.
SPIE Defense, Security and Sensing Symposium, 2011, Orlando,
FL

vi

• J. Burman, J. Hespanha, U. Madhow, D. Klein, J. Isaacs, S.
Venkateswaran and T. Pham. “Heterogeneous battlefield sensor
networks : a bio-inspired overlay architecture”. Military Sensing
Symposium, 2010

• J. Burman, J. Hespanha, U. Madhow, D. Klein, T. Pham, J.
Isaacs and S. Venkateswaran. “Heterogeneous sensor networks :
a bio-inspired overlay architecture”. SPIE Defense, Security and
Sensing Symposium. 2010, Orlando, FL

• H. Zhang, S. Venkateswaran and U. Madhow. “Channel Mod-
eling and MIMO Capacity For Outdoor Millimeter Wave Links”.
Wireless Communications and Networking Conference, April 2010,
Sydney, Australia

• S. Venkateswaran and U. Madhow. “Distributed Detection
With A Minimalistic Signal Model : A Framework For Exploiting
Correlated Sensing”. International Symposium on Information
Theory, July 2008, Toronto, Canada

vii

Abstract

Networked Estimation and Communication with Minimalist

Models

Sriram Venkateswaran

We provide three examples to show that we can solve complex problems in

sensor networks even with minimalist observation and communication models.

First, we propose a scheme to maintain synchrony in a Time Division Multi-

plexed network with minimal overhead. Each node estimates the offset in its clock

phase with its neighbors based on the differences between the expected and ac-

tual times at which it receives communication packets. Using such estimates, the

nodes adjust their clock phases every time they receive a packet and also adjust

their clock frequencies on a slower timescale. We provide insight by analyzing a

simpler “averaged” system and use simulations to demonstrate the efficacy of the

algorithm.

Next, we consider the problem of localizing multiple events that are closely

spaced in time, based solely on their Times of Arrival (ToAs) at different sensors.

The challenge is to identify and group the ToAs belonging to a given event. The

naive approach of trying all possible groupings suffers from excessive complexity.

We design a three-stage algorithm to sidestep such bottlenecks. The simplification

viii

comes from the first stage, where we discretize the times at which events occur to

reduce the set of event candidates considerably. However, some of these candidates

are “phantoms” that arise because we do not know the correct groupings. We

refine the estimates in a Bayesian manner and solve a matching problem on a

graph to reject the phantoms and group the ToAs. We use simulations to illustrate

the near-optimal localization performance.

Finally, we consider the problem of estimating an unknown signal recorded

at multiple sensors through an unknown dispersive environment. We parallelize

the problem by solving it in the frequency domain. We first estimate the sig-

nal over small bands efficiently, up to a scale factor. We then estimate the scale

factors by choosing the small bands to have significant overlap. We show via ex-

periments and simulations that the algorithm is effective in reconstructing signals

with “moderate” bandwidths. For signals with larger bandwidths, we demon-

strate fundamental ambiguities in the form of multiple source signals explaining

the recorded observations.

ix

Contents

Acknowledgements iv

Curriculum Vitæ vi

Abstract viii

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Implicit network timing synchronization 4
1.2 Localizing multiple events from Times of Arrival 7
1.3 Collaborative Estimation in Dispersive Environments 11
1.4 Outline . 14

2 Distributed Implicit Network Timing Synchronization 15

2.1 Related Work . 18
2.2 System Model . 21
2.3 Phase-only Adjustments . 28

2.3.1 Averaged System . 29
2.3.2 Actual System . 32

2.4 Design of Phase-Frequency Adjustments 35
2.4.1 Choosing round sizes . 38
2.4.2 Convergence of frequency adjustment algorithm 41

2.5 LLN Arguments . 54
2.6 Simulation Results . 63

2.6.1 Phase-Only Adjustments 65

x

2.6.2 Phase & Frequency Adjustments 67

3 Space-time localization using times of arrival 81

3.1 Related Work . 84
3.2 System Model . 85
3.3 Feasibility of localizing multiple events 87
3.4 Algorithm Overview . 97
3.5 Stage 1: Generating Candidate Events 102
3.6 Stage 2: Refining the Estimates 113
3.7 Stage 3: Picking true events from the palette 115
3.8 Simulation Results . 124

4 Collaborative Estimation in Dispersive Environments 128

4.1 Related Work . 130
4.2 System Model . 132
4.3 Signal Estimation Algorithm . 137

4.3.1 Frequency domain channel model 138
4.3.2 Stage 1: Estimation within a band 139
4.3.3 Stage 2: L-to-R Stitching Algorithm 144
4.3.4 Reconstructing the source signal 150

4.4 Experimental Results . 151
4.5 Simulation Results . 159
4.6 Multiple Explanations . 163

4.6.1 Distorting the outputs of Stage 1 165
4.6.2 Global Stitching Algorithm 166
4.6.3 Simulation Results . 172

5 Conclusions 176

5.1 Implicit Timing Synchronization 176
5.2 Localizing multiple events from ToAs 178
5.3 Collaborative Estimation In Dispersive Environments 179
5.4 Minimalism all the way . 180

Appendices 184

A 185

A.1 An expression for the excess phases ϕex[s] in the averaged system 185
A.2 Linear Programming Formulation 187

xi

A.3 Actual System - Phase Only Adjustments 191
A.4 Estimating skews from raw phases 193
A.5 Expression for the skew estimate - Averaged system 194
A.6 Evolution of the excess phases across a round 195
A.7 Recursive bounds on the excess phases 196
A.8 LLN arguments for the actual system 198

B 203

Bibliography 205

xii

List of Figures

1.1 Three events, that we call “Blue (B)”, “Green (G)” and “Red (R)”,
happen close to one another in time and produce ToAs at 8 sensors.
The ToAs at each sensor are sorted in ascending order. The red arrows
connect the ToAs produced by the red event and so on. Note that the
events need not arrive at the sensors in the same order: for example, the
order of ToAs at sensor 1 is RGB, whereas it is BRG at sensor 2. We
ask: (a) under what conditions can we group the ToAs appropriately
– draw the arrows that connect ToAs produced by the same event –
and localize the events and (b) how do we do this in a robust fashion
with low complexity? Note that we can have outlier ToAs at some
sensors, such as the ToA in the orange bubble at sensor 1, which must
be discarded. Additionally, some sensors might miss an event and not
have a corresponding ToA, but this is not shown in the figure. 9
1.2 A source is recorded at multiple sensors through dispersive chan-
nels. We design an estimation algorithm to reconstruct the source from
the faded signals. 12

2.1 Nodes make phase jumps each time they receive a packet. However,
they change their frequencies (slope of the lines) only at the end of a
round consisting of “many” slots. 26
2.2 Splitting the nodes into 10 sets based on their excess frequencies.
Nodes in S1 and S2, that are “far” from convergence, are guaranteed
to reduce their frequencies. Nodes in S3 and S4, that are ”close” to
convergence, either reduce their frequencies or do not change it, but
never increase their frequencies. Nodes in S5, that are ”closest” to con-
vergence, will not change their frequencies. Analogous results hold for
nodes with negative excess frequencies. 43

xiii

2.3 Worst error between neighbors for the actual system and the aver-
aged system with only phase adjustments in a directional network. . . . 67
2.4 Worst error between neighbors for the actual system and the aver-
aged system with only phase adjustments in an omnidirectional network.
The network operates in the OnlyIntended mode. 68
2.5 Frequency deviations of all 36 nodes. Skews are randomly dis-
tributed and measurements are noiseless. 71
2.6 Frequency deviations of all 36 nodes in an omnidirectional network
with a grid topology. Skews are randomly distributed and measurements
are noisy. 72
2.7 Network wide frequency error in a directional setting with a grid
topology. Skews are distributed randomly. 73
2.8 Network wide frequency error in a directional setting with a ring
topology. Skews are randomly distributed. 73
2.9 Network wide frequency error in an omnidirectional setting with a
grid topology. Skews are randomly distributed. 74
2.10 Network wide frequency error in an omnidirectional setting with a
ring topology. Skews are randomly distributed. 74
2.11 Worst phase error between neighbors in a directional setting with
noisy measurements. Skews are randomly distributed. 76
2.12 Worst error between neighbors in an omnidirectional setting with
randomly distributed skews. Measurements are noisy and nodes are in
the OnlyIntended mode. 76
2.13 Worst error between neighbors in an omnidirectional setting with
randomly distributed skews. Measurements are noisy and nodes are in
the Eavesdrop mode. 77
2.14 Worst phase error between neighbors in a directional setting. Skews
are badly distributed and measurements are noisy. 78
2.15 Worst phase error between neighbors in an omnidirectional setting
with a grid topology. Skews are badly distributed, measurements are
noisy. 78
2.16 Worst phase error between neighbors in an omnidirectional setting
with a ring topology. Skews are badly distributed, measurements are
noisy. 79

xiv

3.1 Each one of the sensors shown by the pink dots record two ToAs –
one from Event 1 and the other from Event 2, whose locations are shown
by the black triangles. However, events A and B, shown by the red
squares, also produce the same set of ToAs at all the sensors. Therefore,
the sensors are unable to decide which of the event sets {Ea, Eb} and
{E1, E2} occurred. 96
3.2 Geometry of the processing in Stage 1. Six sensors s, s′, s1, s2, s3, s4

are shown. Sensors s and s′ have two ToAs each, denoted by {τ1(s), τ2(s)}
and {τ1(s′), τ2(s′)}. ToAs τ1(s) and τ1(s

′) were produced by an event E
that occurred at time te ≈ lǫ. Consider a hypothesized event time u = lǫ
and draw circles C1s and C2s, centered at sensor s, with radii τs(1)− u
and τ2(s) − u (likewise for C1s′ and C2s′). C1s and C1s′ intersect at a
point ê close to E ’s location. All other points of intersection between
Cis and Cjs′∀i, j (denoted by pi, i = 1, . . . , 5) are phantom estimates. . 98
3.3 Modified version of matching problem on a bipartite graph. Events
in the palette are shown as blue circles and the observations at sensors
are shown as blue stars. Green circles represent events that are picked
while red circles denote phantom events. We need to draw edges between
the picked events and the observations, subject to constraints, so as to
maximize the sum of the values of the edges. 116
3.4 Localization errors with the proposed algorithm and a genie-based
scheme with N = 8 and N = 16 sensors. The errors virtually coincide
with one another, demonstrating the efficacy of the proposed algorithm. 127

4.1 The figure shows our choice of overlapping frequency bands. The
signal and the channel estimate samples in the crossed squares are used
to determine the scale factors zb in different bands. 144
4.2 Illustrating a “hole” in the signal spectrum. Two bands of high
energy flank a band with relatively low energy. The reconstruction pro-
cedure works fine in the flanking bands individually. However, the overall
reconstruction is poor due to the loss in continuity because of the low
energy band in between. 150
4.3 An estimate of the indoor propagation channel 154
4.4 The topmost plot shows the true Chirp200 waveform, with a con-
stant envelope. The following four plots show the recorded waveforms
at different sensors. Notice that these waveforms undergo “deep fades”
and no longer have a constant envelope. The final plot shows the re-
constructed Chirp200 waveform, whose envelope shows lesser variation,
illustrating the benefits of the L-to-R algorithm. 157

xv

4.5 Optional caption for list of figures 174

xvi

List of Tables

4.1 Results of L-to-R processing and single tap approximation of the
recorded signals. 158
4.2 Fit between source and estimate in bands of width 50 Hz is very
good. Band i spans the frequencies [1000 + 50(i− 1), 1000 + 50i] Hz. . 159
4.3 Delay between the true source and the estimate over bands of width
50 Hz (in samples @ fs = 16 kHz). We see that the estimates in different
bands have different delays with respect to the source. Band i spans the
frequencies [1000 + 50(i− 1), 1000 + 50i] Hz. 159
4.4 Performance of the L-to-R stitching algorithm and the SVD Esti-
mate with Chirp and “Random” signals of varying bandwidths. 161

xvii

Chapter 1

Introduction

Sensors are everywhere. A smartphone that fits in the palm of our hand in-

cludes a microphone to record sounds, a camera to take photographs, a screen that

responds to touch, a Global Positioning System (GPS) unit to locate the phone

on the surface of the Earth, an accelerometer to estimate the phone’s orientation

and a temperature sensor to prevent the phone from overheating. Sensors have

proliferated in this fashion mainly due to advances in miniaturizing them, making

convenient device form factors feasible. Over the past decade, these advances,

coupled with ever-increasing computing capacity, have stimulated research in the

allied field of sensor networks. In a sensor network, multiple sensors are used to

observe the surrounding environment. The sensors then pool their observations

and use their computing capabilities to make “interesting” inferences about the

surroundings. For example, sensor networks have now been deployed for a variety

of purposes such as military surveillance, monitoring the health of buildings, ob-

1

Chapter 1. Introduction

serving seabirds, studying volcanoes and localizing woodpeckers from their calls.

While these deployments differ greatly in their specifics, the corresponding bare

bones versions share three common features:

• The sensors observe the underlying environment and exchange their obser-

vations.

• The sensors cooperate to establish a common frame of reference so that the

observations at different sensors are “comprehensible” to one another.

• The sensors then use the “known” relationship between the phenomenon of

interest and the recorded data (typically, a statistical relationship) to make

deductions about the phenomenon.

For a concrete illustration, consider the problem of localizing a source of sound

based on the times at which it is heard at different sensors. For the times at

which the source is heard at two different sensors to bear any meaningful relation-

ship to one another, the underlying clocks used to measure these times must be

well synchronized. Thus, a common notion of time across sensors is the frame of

reference that the network needs to agree on. Having done this, the sensors can

then use the times at which the source was heard and the geometric propagation

constraints to estimate the location of the source.

In this dissertation, we make the case that a minimalist approach to the twin

2

Chapter 1. Introduction

problems of agreeing on a common frame of reference and making inferences from

the observations is extremely attractive because it uses network resources effi-

ciently and also guarantees robust performance. We now explain why.

Establishing a common frame of reference is only a prerequisite to a larger

goal (such as making deductions about the phenomenon of interest) and not an

end by itself. Therefore, network resources that are dedicated for this purpose are

considered an overhead. For example, to synchronize the network, nodes could

explicitly exchange messages that contain timing information. However, these

messages fritter away scarce resources such as the network bandwidth and the

power available at the sensors. Therefore, a minimalist approach that avoids such

explicit message exchanges is desirable and we design an algorithm to do this.

Minimalism is also useful in making inferences from observations since it guar-

antees robustness. The process of making inferences typically occurs in two stages:

first, we abstract a model of the sensing process from our understanding of the

world and then design algorithms for making deductions, assuming that the ob-

servations are generated according to the abstracted model. However, when the

recorded data deviates from the model, because of unforeseen and unavoidable

variations in the sensing process, the algorithm is prone to fail. Therefore, an

algorithm that makes fewer assumptions is more likely to work in a wider range

of environments.

3

Chapter 1. Introduction

However, we do pay a price for such increased robustness – straightforward

implementations of algorithms with minimal assumptions typically lead to un-

acceptable computational complexities. The challenge is to dodge such bottle-

necks while maintaining robustness. We present two problems – that of localizing

multiple events from the times at which they are heard at different sensors and

estimating an unknown source waveform recorded through unknown dispersive

channels – where parallelizing the available evidence is the key to lowering the

computational complexity while making inferences with minimal models.

We now provide an overview of the three examples we have mentioned to argue

the case for minimalism in sensor networks and summarize our contributions.

1.1 Implicit network timing synchronization

We consider a sensor network that operates in a Time Division Multiplexed

(TDM) fashion and ask the following question: can the sensor nodes maintain

synchrony by leveraging the timing information present in the existing communi-

cation in the network? There are two key steps in network timing synchronization.

At startup, the clocks at different nodes have times that are completely random.

A coarse level of synchrony can be established using explicit synchronization mes-

4

Chapter 1. Introduction

sages. The overhead involved with such explicit messaging is tolerable since this

is only a one-time procedure. Furthermore, we can use these messages to estimate

the propagation delays between nodes. Having established synchrony, we face

the more critical problem of maintaining it. The clocks at different nodes run

at different frequencies due to manufacturing and temperature variations. As a

result, the clocks drift apart, tending to destroy the established synchrony. This

forces us to periodically compensate for such drifts and drive the network back

towards synchrony. The näıve approach for such compensations would be to rerun

the coarse synchronization procedure “often”. However, this leads to an unrea-

sonably large message overhead. We solve the problem of maintaining synchrony

with minimal overhead as follows: first, we explain how a node in a TDM network

receives an implicit timestamp every time it receives a packet from its neighbor.

Then, we show how the nodes can use the implicit timestamps to adjust their

clock phases and frequencies to achieve network-wide synchrony.

Nodes in a TDM network know when to expect packets from their neighbors.

Therefore, when a node receives a packet from its neighbor (as part of the exist-

ing communication), it can compare the actual time of reception with the expected

time of reception. The difference between these quantities is precisely the phase

error in the clocks of these two nodes. The node that receives the packet uses

this estimate of the phase error to adjust its phase and frequency at two different

5

Chapter 1. Introduction

timescales in order to drive the network to synchrony. The rules for phase and

frequency adjustment are as follows:

• Each time a node receives a packet, it adjusts its phase so that the error

with the transmitter reduces by a factor of 1− β (0 < β < 1).

• All nodes adjust their frequencies only once per round, consisting of many

slots. A node makes a frequency adjustment based on the average error it

observes with its neighbors over the entire round. If the average error seen

by the node is positive, we show that its frequency is larger than the mean

frequency across nodes. In such cases, the node reduces its frequency by µ

to drive it closer to the mean. Similarly, if the average error is negative, the

node increases its frequency by µ.

Contributions: We make the following contributions towards solving this prob-

lem:

1. We show that a phase-only adjustment algorithm (nodes never adjust their

frequencies), which is easier to implement, suffices for small networks. How-

ever, for bigger networks, we use a linear programming formulation to show

that the algorithm can lead to large errors between neighboring nodes due

to uncompensated frequency errors.

6

Chapter 1. Introduction

2. We show that the phase-frequency adjustment algorithm described above is

effective in synchronizing the clocks in both phase and frequency. We do

this in two stages: first, we rigorously prove that the algorithm converges

for a fictitious averaged system, which smooths out the randomness in the

communication pattern that is typical of TDM networks. Then, we use the

Law of Large Numbers (LLN) to relate the true system to the averaged sys-

tem. Finally, we show via extensive simulations that the algorithm achieves

frequency and phase synchrony for both directional and omnidirectional net-

works.

We now describe two scenarios that illustrate the value of parallelization in mak-

ing inferences with minimal models.

1.2 Localizing multiple events from Times of Ar-

rival

We investigate the problem of localizing multiple events from their Times

of Arrival (ToAs) at different sensors. This problem is representative of many

domains – it could involve localizing animals from their sounds in an environmental

7

Chapter 1. Introduction

monitoring context or localizing gunfire in a defence/homeland security scenario.

Our model is minimalist and hence, very general: each sensor has a list of ToAs

and the association between the events and the ToAs is not known a priori. In

contrast to much of the traditional literature, we allow the events to be closely

spaced in time. This leads us to the central problem: when the events occur

in quick succession, due to the varying propagation delays, the order in which a

sensor hears the events need not be the same as the order in which the events occur.

Figure 1.1 shows a simple example of how this can happen. In such cases, the

näıve strategy of sorting the ToAs in ascending order at each sensor, associating

the ith ToA at each sensor to the ith event and then localizing the events one at

a time will fail.

An alternative strategy of considering all possible combinations of ToAs and

retaining only those that are “good” incurs a complexity that grows exponentially

with the number of sensors (if E denotes the number of events and N , the number

of sensors, we need to look through EN combinations). This approach suffers from

two additional complications: (a) there is no guarantee that only E among the EN

combinations will be declared to be “good”. (b) Realistically, each sensor misses

events and also observes outlier ToAs, thereby causing the number of ToAs to vary

across sensors. Extending the näıve strategy of looking through all combinations

8

Chapter 1. Introduction

Figure 1.1: Three events, that we call “Blue (B)”, “Green (G)” and “Red (R)”,
happen close to one another in time and produce ToAs at 8 sensors. The ToAs
at each sensor are sorted in ascending order. The red arrows connect the ToAs
produced by the red event and so on. Note that the events need not arrive at the
sensors in the same order: for example, the order of ToAs at sensor 1 is RGB,
whereas it is BRG at sensor 2. We ask: (a) under what conditions can we group
the ToAs appropriately – draw the arrows that connect ToAs produced by the
same event – and localize the events and (b) how do we do this in a robust fashion
with low complexity? Note that we can have outlier ToAs at some sensors, such as
the ToA in the orange bubble at sensor 1, which must be discarded. Additionally,
some sensors might miss an event and not have a corresponding ToA, but this is
not shown in the figure.

to such a scenario is unclear. In this dissertation, we pose and answer the following

questions:

• Under what conditions, can we guarantee that all the events will be localized

perfectly? Can we construct an example where the ToAs produced by the

different events “interfere” with one another and prevent perfect localiza-

tion?

• How do we estimate the number of the events, their locations and the times

at which they occur from the ToAs at different sensors?

9

Chapter 1. Introduction

Contributions: We answer these questions as follows:

• We show that, under ideal conditions (no ToA measurement noise, misses or

outliers), nine sensors suffice to localize two events, provided that the sensors

do not lie on one branch of a hyperbola. We also construct an example where

six sensors cannot localize two events perfectly, thereby demonstrating a

fundamental ambiguity.

• We propose a robust, low-complexity algorithm to localize events from their

ToAs in the presence of misses and outliers. The algorithm has three stages.

The key step in this algorithm is to discretize the times at which events oc-

cur. We think of each of these times as one among many parallel hypotheses.

For a hypothesized event time t and an observed ToA τ , the event must

lie on a circle of radius c(τ − t) centered at the sensor (c is the speed of

propagation). Locating the events by intersecting circles drawn at differ-

ent sensors is very easy, since the point of intersection of two circles can

be specified in closed-form. However, some of these intersection points are

“phantoms” (arising from the intersection of circles corresponding to ToAs

for different events) and some are “duplicates” (produced by intersecting

circles corresponding to ToAs due to the same event, but by considering

different sensor pairs). In the second stage, we refine these estimates using

10

Chapter 1. Introduction

measurements at all the sensors and use a clustering procedure to merge

duplicates. Having narrowed down the space of candidate events consider-

ably, we cast the problem of associating these candidates to the observed

ToAs as a modification of the matching problem on a graph. We formulate

this as a binary integer program. Finally, we show via simulations that a

linear programming relaxation of the integer program is efficient in solving

the association problem and localizing the events.

1.3 Collaborative Estimation in Dispersive En-

vironments

We investigate the fundamental problem of making inferences about events,

regarding which we have limited prior knowledge. The specific formulation we

consider is as follows: a noisy version of an unknown signal is observed at many

sensors, after being distorted by a dispersive environment, which is also largely

unknown. The only information we are given regarding the dispersive channels

is a coarse estimate of their delay spread – the temporal span of these channels.

We wish to reconstruct the signal by pooling the observations at different sensors,

averaging out the noise and undoing the effects of the dispersive channels in the

11

Chapter 1. Introduction

process. We also wish to understand whether the minimalism in modeling leads

to fundamental ambiguities, such as multiple signals explaining the recorded data.

Figure 1.2 explains the problem setup pictorially.

Figure 1.2: A source is recorded at multiple sensors through dispersive chan-
nels. We design an estimation algorithm to reconstruct the source from the faded
signals.

Traditional time-domain approaches to this problem are useful in establishing

feasibility results. However, designing algorithms based on such methods results

in unacceptable computational complexity, particularly with long data records.

We overcome this hurdle by switching to the frequency domain, thereby paral-

lelizing the problem. The channel seen by each sensor can be approximated by a

12

Chapter 1. Introduction

constant within a small enough frequency band. The size of such a band is typ-

ically called the coherence bandwidth of the channel and it is roughly the inverse

of the delay spread. Since the channels have a simple structure over a small range

of frequencies, the unknown source signal can be estimated easily within each

band. Specifically, we use a Singular Value Decomposition (SVD) of the recorded

signals in each band. However, since the signal as well the channels are unknown,

the signal estimate in each band is accurate only up to a complex scale factor.

We estimate the scale factor in two steps: first, we refine the channel model and

approximate the channels as quadratic functions of frequency within a band. We

then propose an iterative procedure to estimate the signal and quadratic chan-

nels over small bands, bootstrapping with the SVD estimate of the signal. Next,

we choose the bands to have considerable overlap and use the continuity of the

channel in the frequency domain to estimate the scale factors. We use the scale

factors to “stitch” together the signal contributions from different bands.

13

Chapter 1. Introduction

Contributions:

1. Using simulations and experiments with an acoustic sensor network, we show

that the proposed algorithm is effective in accurately reconstructing signals

whose bandwidths are within 10− 20 times the coherence bandwidth of the

channel.

2. For larger signal bandwidths, we find that fundamental ambiguities arise in

reconstructing the signal. We propose a modified stitching algorithm that

estimates the scale factors using all the available constraints and show that

multiple signals, which differ widely, can explain the recorded data.

1.4 Outline

We explain the algorithms for implicit timing synchronization, localizing multi-

ple events from their ToAs and collaborative estimation in dispersive environments

in Chapters 2,3 and 4 respectively. We present our conclusions in Chapter 5.

14

Chapter 2

Distributed Implicit Network

Timing Synchronization

In this chapter, we consider the problem of maintaining timing synchrony

in a time division multiplexed (TDM) sensor network by exploiting the timing

information present in the ongoing communication. The broad ideas behind the

algorithm we propose to solve the problem are as follows:

• A node in a TDM network knows when to expect packets from its neighbors.

Therefore, by comparing the time at which it actually receives packets to

the times at which expects to receive them, the node can estimate the error

with its neighbors.

• The node adjusts its phase (and possibly, its frequency) so as to reduce the

clock error with its neighbor.

15

Chapter 2. Distributed Implicit Network Timing Synchronization

• Such adjustments are coupled through the network transmission schedule:

the phase and frequency changes made by the node impact the times at

which it transmits, and hence the adjustments made by nodes who receive

these transmissions.

While we present these ideas in the context of a sensor network (where synchrony

is needed for sleep scheduling or localization based on ToAs), they only rely the

fact that the transmissions in the network are time division multiplexed. Thus,

they can be applied to any wireless network that operates on a TDM schedule.

For example, the use of TDM is extremely attractive for emerging millimeter

(mm) wave networks [41], since CSMA-based medium access is infeasible due to

deafness induced by highly directional links. Similarly, it can also be used in ex-

isting WiFi-style communication networks based on TDM. In such scenarios, the

proposed algorithm would be effective in establishing time slotting mechanisms

with minimal guard periods, on top of which TDM-based medium access control

(MAC) protocols can be built.

Our goal in this dissertation is to obtain fundamental insight into the feasibil-

ity of implicit timing synchronization. Therefore, we do not model the physical

and medium access layer of the underlying network in detail. Our simulations

are therefore based on the following abstractions: (a) the set of nodes that can

16

Chapter 2. Distributed Implicit Network Timing Synchronization

successfully receive a packet sent by a given node, (b) the sets of matchings, or

links that can be simultaneously active in a given TDM slot. The TDM schedules

we consider for testing our timing synchronization method are chosen randomly

(as described in Section 3.8) from a set of maximal matchings.

Map of this chapter: We begin by placing this work in the context of the vast

literature on timing synchronization in Section 2.1. Section 2.2 describes the sys-

tem model and introduces the concept of an averaged system that smooths out the

randomness in communication patterns of a TDM network. Section 2.3 describes

the phase-only adjustment algorithm, where the nodes adjust only their phases

and never adjust their frequencies in response to implicit timestamps they receive

from their neighbors. We quantify the worst-case performance of this algorithm

in two stages: (a) Using a linear programming formulation, we identify the set

of frequencies that maximize the pairwise-error for the averaged system. (b) We

then show that the errors in the averaged system are a lower bound to the errors

in the actual system. Thus, the same set of frequencies are also “bad” for the

actual system and this lets us show that the error between neighbors can grow

with the size of the network. In Section 2.4, we solve this problem in the aver-

aged system by adjusting the frequencies in addition to the phases, but with the

frequency adjustments occurring on a slower timescale. Over a round, consisting

of many slots, nodes only adjust their phases. At the end of the round, nodes

17

Chapter 2. Distributed Implicit Network Timing Synchronization

estimate whether their clock frequency is larger or smaller than the network-wide

mean and adjust their frequencies accordingly. We rigorously show that the pro-

posed algorithm achieves network-wide synchrony. In Section 2.5, we translate

these insights to the actual system and use the Law of Large Numbers (LLN), to

propose the following rule to adjust the frequencies: (1) a node averages the phase

errors it observes with all its neighbors over a round of slots. (2) If, in spite of

the all the phase adjustments it made over the round, the node finds this average

error to be positive, it concludes that its frequency is larger than the network-wide

average. In response, it reduces its frequency by a “small” amount µ. Simulations

in Section 3.8 show that the proposed algorithm achieves phase and frequency

synchrony over a wide range of scenarios.

2.1 Related Work

We believe that this is the first work to introduce the concept of implicit

timestamps based on ongoing communication, to provide fundamental theoretical

insight into attainable performance (via the averaged model), and to provide a

completely decentralized algorithm for both phase and frequency adjustment. The

well-known firefly-inspired algorithm [27] can be made to work with implicit times-

tamps, but it is only designed for phase synchrony, and does not handle either

18

Chapter 2. Distributed Implicit Network Timing Synchronization

propagation delays or oscillator skew. The Reachback Firefly Algorithm (RFA)

in [50] adapts the firefly algorithm to account for propagation delays in its phase

adaptation, but it does not handle oscillator skew and therefore requires periodic

resynchronization.

A number of algorithms ([42], [34], [43]) that have been proposed for dis-

tributed timing synchronization can be broadly classified as “consensus algo-

rithms” [28]. These algorithms typically proceed in two stages: (1) estimate

relative offset and skew with each neighbor and (2) use neighbor’s estimates of

offset and skew (typically with respect to a reference node) along with pairwise

estimates to arrive at an estimate of one’s offset and skew. However, these al-

gorithms are not amenable to an implicit implementation because all of them

require explicit exchange of additional information to achieve consensus on both

frequency and phase. The use of this information is critical for decoupling the

problems of phase and frequency adjustments, in order to be able to run sepa-

rate consensus algorithms for each of them. For example, [42] requires each node

to broadcast the average error (both in rate and time) that it observes with its

neighbors, while [34] and [43] require the nodes to broadcast their clock rates. The

second order consensus algorithms proposed by [31] and [30] are not directly ap-

plicable because they also involve exchange of more information than timestamps

(implicit or explicit); in order to use these algorithms for timing synchronization,

19

Chapter 2. Distributed Implicit Network Timing Synchronization

the nodes would also need to exchange their clock rates. Reference [16] analyzes

the algorithm proposed in [42] and shows that, for random connected networks,

the error variance does not scale up with the size of network, thereby demon-

strating the feasibility of using consensus-style algorithms for synchronization in

large networks. In contrast, for our implicit model, phase-only adjustments lead

to pairwise phase errors between neighbors which can increase with network size.

To resolve this without requiring explicit messages, we need to introduce memory

in our frequency adjustment rule, and run it on a slower time scale than the phase

adjustment rule. While [14] also considers the use of memory, it does so to speed

up convergence of phase synchronization, and does not consider clock skew.

Reference [3] characterizes the effect of asymmetric communication on con-

sensus algorithms and identifies a scenario where the variance of the estimate can

increase with more measurements because of lack of bidirectional communication.

These are consistent with our own observations that convergence requires a ”rich

enough” communication pattern. The survey [38] provides a broad perspective on

the field of distributed timing synchronization (see also the excellent discussion in

[43]), while [12] identifies the fundamental limits of synchronizing “affine” clocks

in the presence of delays, which includes but is not restricted to propagation delay.

For distributed synchronization specifically applied to WiFi, see [18]. In contrast

to the distributed algorithms discussed so far, references [11], [13] and [25] adopt

20

Chapter 2. Distributed Implicit Network Timing Synchronization

a more centralized approach to timing synchronization. Reference [13] builds a

rooted spanning tree on the network in the Level Discovery Phase and perform

hop-by-hop synchronization, but it does not address clock skews, and therefore

requires periodic resynchronization. Reference [25] uses linear regression to cor-

rect skew, with a dynamically elected root node flooding the network with its

timestamp. As pointed out in [43], however, timing synchronization based on

information flowing from a “distant” node, as in [25], performs poorly in certain

topologies (specifically the ring topology). Reference [11] uses reference broadcasts

from a transmitter to synchronize a cluster of receivers; while this is designed for

single-hop time synchronization, nodes that are common to two clusters can “con-

vert” between the timestamps of two clusters.

2.2 System Model

We consider a network ofN sensor nodes, labeledN1,N2, . . . ,NN , each equipped

with a clock that runs at a nominal frequency of fnom Hz. The actual frequency

of the clock at Ni, denoted by fi, differs slightly from the nominal rate of the

clock fnom, and is written as fi = fnom(1 + ρi) where ρi is called the skew, or

drift, of the clock. The magnitude of the skew is assumed to be less than ρmax,

21

Chapter 2. Distributed Implicit Network Timing Synchronization

which is typically on the order of 10-100 parts per million (ppm); for example,

ρ = 20× 10−6 corresponds to a skew of 20 ppm. Differences in the skews across

nodes are caused by manufacturing tolerances. The variation of the skew at a

given node with respect to time is typically very slow, hence we approximate ρi

as a constant that takes values in [−ρmax, ρmax].

The network employs a Time Division Multiplexed (TDM) schedule in which

transmissions begin at integer multiples of a slot time, denoted by Tslot, accord-

ing to the transmitter’s clock. It is convenient to describe the system from the

point of view of an external observer who possesses a clock that runs at exactly

the nominal rate fnom. When the time on the external observer’s clock is t, let

ϕi(t) denote the measure of time at Ni. We refer to ϕi(t) as the clock phase of

Ni. Suppose that Nj transmits to its neighbor Ni in slot s. Therefore, Nj starts

transmitting when ϕj(t) = sTslot. We assume that nodes have estimates of the

propagation delays, including processing times, and subtract them out from the

packet reception times. Thus, Ni begins receiving this packet at ϕi(t), and can im-

plicitly conclude that its clock is behind Nj’s clock by ϕj(t)−ϕi(t) = sTslot−ϕi(t).

Ni can now reduce its phase error with respect to Nj using the following linear

phase adjustment.

22

Chapter 2. Distributed Implicit Network Timing Synchronization

Linear Phase Adjustment: Letting t− and t+ denote the times on the external

observer’s clock just before and after the phase jump, we have,

ϕi(t
+) = ϕi(t

−) + β
[

ϕj(t
−)− ϕi(t−)

]

(2.1)

where 0 < β < 1 is a design parameter.

Quasi-Synchronous Approximation: To simplify analysis, we assume that

the phase and frequency adjustments are made at integer multiples of the slot

times based on the external observer’s clock, rather than on the receiver’s clock

(which keeps changing as we make phase and frequency adjustments). This ap-

proximation causes a second order error (because of measuring the phase offset

between nodes at a time that is slightly offset from the true time) that is negligible

compared to the phase offsets themselves. In simulations of the original system,

we do not make this approximation, and verify that the quasi-synchronous ap-

proximation is indeed valid. We define ϕi[s] = ϕi(sT
−
slot) as the phase of the ith

node just before the right edge of the sth slot. These phases are adjusted as in

(2.1) at the slot boundaries, and then evolve linearly according to the relative

frequency offsets of the nodes across a slot.

Modeling skews: The nodes change their frequencies only when they receive a

packet and hence, skews can change explicitly only at slot boundaries. Let fi[s]

be the raw frequency of the ith node over the sth slot. Since we will primarily be

23

Chapter 2. Distributed Implicit Network Timing Synchronization

dealing with the clock phases ϕi, it is convenient to normalize them and simplify

the notation. To do this, we introduce an intermediate “raw phase” for node i,

denoted by θi(t), which evolves across slot s as,

θi((s+ 1)T−
slot) = θi(sT

+
slot) + fi[s]× Tslot (2.2)

We define the clock phase ϕi(t) (as used above) to be ϕi(t) = θi(t)/(fnomTslot).

Let Fi[s] = fi[s]
fnom

denote the corresponding normalized frequency. Define the nor-

malized mean frequency

ψ[s] =
1

N

N
∑

i=1

Fi[s]

This is the common part of the clock phase drift over the sth slot, and hence does

not impact phase differences across nodes. The latter are actually driven by the

normalized excess frequencies

δi[s] =
fi
fnom

− ψ[s] , i = 1, . . . , N

where δi[s] is the amount by which the phase of the ith node drifts relative to the

average.

Discrete time dynamics: When node i receives a packet from its neighbor node

j, its phase evolves as follows:

ϕi[s+ 1] = ϕi[s] + β
[

ϕj[s]− ϕi[s]
]

+ ψ[s] + δi[s] (2.3)

24

Chapter 2. Distributed Implicit Network Timing Synchronization

According to the quasi-synchronous approximation, these phase updates occur

synchronously at all nodes receiving packets, and can be conveniently expressed

in vector form. Defining ϕ[s] = (ϕ1[s], ϕ2[s], . . . , ϕN [s]) and δ[s] = (δ1[s], δ2[s],

. . . , δN [s]), we have

ϕ[s+ 1] = Gsϕ[s] + δ[s] + ψ[s]1 (2.4)

where 1 denotes the vector with all components equal to 1, and Gs is a ma-

trix defined as follows: (1) If Ni receives a packet from Nj in slot s, Gs(i, j) =

β,Gs(i, i) = 1 − β and Gs(i, j
′) = 0 ∀j′ 6= i, j and (2) if Ni does not receive a

packet from any node in slot s, Gs(i, i) = 1 and Gs(i, j) = 0 ∀j 6= i. We refer to

Gs as the system matrix at slot s. Note that Gs is a stochastic matrix (each row

has nonnegative entries summing to one), so that Gs1 = 1 (i.e., 1 is an eigenvector

of Gs with eigenvalue 1).

Frequency Adjustment: We can see from (2.4) that excess frequencies lead to

accumulation of phase errors between a node and its neighbors. Our frequency

adjustment algorithm relies on this observation, and is loosely stated as follows

(details provided later). A node concludes that its frequency is larger than the

prevailing average in the network if its phase is ahead of its neighbors’ “on average”

despite the phase adjustments it makes, where the averages are of phase errors

25

Chapter 2. Distributed Implicit Network Timing Synchronization

N
or

m
al

iz
ed

P
h
as

e:
ϕ
(t

)

ϕ1(t)

ϕ2(t)

ϕ3(t)

N2 → N3

N2 → N1

N3 → N2

N1 → N2

N2 → N3

Node 1

Node 2

Node 3

Round 1 Round 2

. . .

· · ·

. . .

Tslot 2Tslot
. . . nTslot (n + 1)Tslot (n + 2)Tslot

Jump
Phase

Frequency
Change

Figure 2.1: Nodes make phase jumps each time they receive a packet. How-
ever, they change their frequencies (slope of the lines) only at the end of a round
consisting of “many” slots.

measured over all neighbors over many slots. A representative diagram of the

phase and frequency adjustments is sketched in Figure 2.1.

Averaged System: Each time Ni receives a packet, it adjusts its clock phase

based on the observed error with the transmitter. Since the node that transmits

a packet to Ni changes over slots, it introduces “fine details” into the dynam-

ics of phase offset evolution that must be averaged out when estimating and

compensating for skews. We therefore introduce the following fictitious averaged

system: in each slot of the averaged system, every node updates its phase based

on a weighted average of the phases of all its neighbors. The weights are derived

from the communication pattern in the actual system and do not change with

time. For example, for a random communication pattern, we model the matrices

{Gs}∞s=0, and thereby the set of links active concurrently, as being chosen indepen-

26

Chapter 2. Distributed Implicit Network Timing Synchronization

dently and identically from a set Smatching = {G1,G2, . . . ,GM} with probabilities

{p1, p2, . . . , pM} respectively. We denote the averaged system matrix by G and

define it to be G =
∑M

i=1 piGi. The phase evolution in the averaged system is

therefore exactly as in (2.4), except that Gs is replaced by G.

ϕ[s + 1] = Gϕ[s] + δ[s] + ψ[s]1 (2.5)

For simplicity, we assume throughout this paper that the averaged system matrix

G is symmetric. This corresponds to the links in the network having the same

probability of being active in either direction.

Network Start-up: While our focus here is to understand the limits of implicit

synchronization maintenance, our simulations do include a gateway-led start-up

scheme for coarse initial synchronization (no attempt is made to optimize this).

A gateway node broadcasts its time and other nodes in its neighborhood “set”

their clocks to this value. Each of these nodes then broadcasts its time enabling

nodes that are two hops from the gateway to set their clocks. This broadcast is

made at a random instant in an interval [τmin, τmax] after its clock was set. If

Ni’s clock is already set when it hears Nj’s broadcast, it simply adjusts its clock

to the mean value. Specifically, if Nj’s time when it makes the broadcast is ϕj

and at this point, Ni’s time is ϕi, Ni adjusts its clock to (ϕj + ϕi)/2. Each node

makes one such broadcast and the network can be coarsely synchronized in this

27

Chapter 2. Distributed Implicit Network Timing Synchronization

fashion in a time period that scales linearly with the number of nodes. We

assume throughout the paper that nodes have good estimates of the propagation

delay to their neighbors. This can be done by exchanging multiple packets with

neighbors at the time of network startup and estimating the propagation delay in

a manner similar to [12]. Any residual errors in estimating the propagation delay

are considered to be subsumed in the phase jitter in our model.

2.3 Phase-only Adjustments

In this section, we analyze the performance of a system in which the nodes

adjust only their clock phases, and never adjust their frequencies. Phase-only

updates are of interest in their own right (due to their simplicity), while also being

the first step in the design of phase-frequency updates. The uncompensated skews

in such a system tend to drive the network towards asynchrony, while the recurrent

phase compensations tend to pull the phases closer to each other. Our metric

for quantifying which of these two forces is dominant is the worst-case pairwise

clock phase error between neighbors, which is precisely the overhead required to

maintain a TDM schedule. We first analyze this metric for the averaged system,

and then observe that this provides a lower bound for the original system.

28

Chapter 2. Distributed Implicit Network Timing Synchronization

2.3.1 Averaged System

Starting with (2.5), note that the mean and excess frequencies, ψ[s] and δ[s],

do not change with s when we only adjust phases. We can therefore drop the

time index s and denote these quantities by ψ and δ, respectively. Iterating, the

phases in slot s can be expressed in terms of the initial conditions as

ϕ[s] = Gsϕ[0] + sψ1 + (I + G + G2
+ . . .+ Gs−1

)δ s ≥ 1 (2.6)

As with the frequencies, it is useful to decompose the phases into mean and excess

phases, as follows:

ϕ[s] = ϕ[s]1 + ϕex[s]

where ϕ[s] = 1Tϕ[s]/N = 1
N

∑N
i=1 ϕi(s) is the average phase and ϕex[s] represents

the excess phase. Since the mean component ϕ[s]1 is identical across nodes, we

only need to track the evolution of the excess phases ϕex[s] to quantify the phase

error between neighbors. We use an eigendecomposition of G in (2.6) to derive an

expression for ϕex[s] in “steady-state” (large values of s). Before doing this, we

review results on the eigenstructure of G briefly.

The eigendecomposition of G is given by

G =
N
∑

l=1

λlvlv
T
l (2.7)

29

Chapter 2. Distributed Implicit Network Timing Synchronization

where (a) Gvl = λlvl, (b) the eigenvalues are arranged in descending order of

magnitude |λ1| ≥ |λ2| . . . ≥ |λN |, (c) the eigenvectors vl have unit norm, or vTl vl =

1 and (d) eigenvectors corresponding to different eigenvalues are orthogonal, or

vTi vj = 0 i 6= j, because G is symmetric. Because G is stochastic, its largest

eigenvalue is one, with v1 = 1/
√
N being the corresponding unit norm eigenvector.

For convergence of consensus style algorithms, this largest eigenvalue must not be

repeated. The condition for this is that the graph corresponding to G must be

connected [32] (clearly needed for network-wide convergence). In this case, we

can approximate Gs by the dominant term in its spectral decomposition for large

values of s as,

Gs ≈ λs1v1v
T
1 =

1

N
11T (2.8)

for reasonably large s, so that the first term in (2.6) tends to 1Tϕ[0]/N , the mean

phase at start-up. The second term in (2.6) also contributes only to the mean

phase. For the third term, the eigenmode corresponding to eigenvalue one has no

response, since the excess frequency δ has zero mean. Thus, the evolution of the

excess phase (which is what drives our phase-only algorithm) can be obtained by

excising the first eigenmode from G to get the matrix

Gex = G − 11T

N
=

N
∑

l=2

λlvlv
T
l (2.9)

30

Chapter 2. Distributed Implicit Network Timing Synchronization

which contains only eigenmodes with eigenvalues with magnitude strictly smaller

than one (the dynamics induced by this matrix are dominated by the magnitude

of the second largest eigenvalue, |λ2|). For large s, the excess phase therefore

exhibits the following behavior:

ϕex[s] =
(

I + Gex + G2

ex + . . .+ Gs−1

ex

)

δ

→
(

I− Gex
)−1

δ , s→∞
(2.10)

We provide a formal proof of this statement in Appendix A.1. Thus, the excess

phases exhibit an irreducible error floor that depends on the skews. To quantify

the error floor, we consider the largest pairwise phase error between neighbor-

ing nodes and maximize this over the set of possible skews. The maximization

procedure consists of two steps:

1. First, we show that the pairwise error between a fixed pair of neighbors can

be maximized by solving a linear programming (LP) problem, where the

constraints are determined by maximum allowable skew ρmax.

2. We maximize over the solutions of the LPs corresponding to every pair of

neighbors to obtain the worst-case pairwise phase errors.

We also show that the worst-case phase error between neighboring nodes is pro-

duced by (roughly) half the node clocks running at the largest frequency and the

other half running at the smallest frequency for any network topology. This proof

31

Chapter 2. Distributed Implicit Network Timing Synchronization

rests on the fact that the various LPs in Step 2 have the same feasible set for

their variables and that the optimizing solution occurs at an extreme point of the

feasible set. We provide the details of the formulation as well as a characterization

of the extreme points in Appendix A.2.

2.3.2 Actual System

The irreducible error in the averaged system (Equation 2.10) can be used to

obtain a lower bound on the errors between neighbors in the actual system. We

now sketch the central ideas used to derive this bound and provide the details in

Appendix A.3.

Iterating (2.4), we obtain that the phase of the actual system evolves as:

ϕ[s] = Gs−1Gs−2 . . . G0ϕ[0] + sψ1

+
(

I +
s−1
∑

k=1

Gs−1Gs−2 . . . Gs−k

)

δ s ≥ 2 (2.11)

The second term only contributes to the mean phase. Under a suitable connect-

edness condition [32] which is needed for consensus, we can show that the same

is true for the first term as well as s gets large. The result in [32] states that

lim
s→∞

GsGs−1 . . . G0 = 1γT (2.12)

where the elements of γ are nonnegative and γT1 = 1. We can therefore throw

out the first and second terms in (2.11) when considering the evolution of the

32

Chapter 2. Distributed Implicit Network Timing Synchronization

excess phases, and obtain

ϕex[s] ≈
(

I +

s−1
∑

k=1

Gs−1Gs−2 . . . Gs−k

)

δ (2.13)

Let us now average the evolution over many realizations of the communication

schedule. For each schedule, the matrices Gn are chosen in i.i.d. fashion from

the set Smatching = {G1,G2, . . . ,GM} with probabilities {p1, p2, . . . , pM} and the

average across this choices is denoted by G, the matrix for our averaged system

(the corresponding excised matrix is Gex). Let ϕ
(i)
ex [s] denote the excess phases in

slot s for the ith realization of the communication schedule (i = 1, 2, . . . ,M). We

define the averaged version of the excess phases as

ϕex[s] =
1

M

M
∑

i=1

ϕ(i)
ex [s].

When the number of schedule realizations M is large, we can use the LLN to show

the averaged trajectory of excess phases satisfies

ϕex[s] ≈ E

[

(

I +

s−1
∑

k=1

Gs−1Gs−2 . . . Gs−k

)

δ

]

=

(

I +

s−1
∑

k=1

Gk
)

δ.

As before, we can excise the first eigenmode of G to show that the averaged

trajectory ϕex[s] satisfies

ϕex[s] ≈
(

I +

s−1
∑

k=1

Gkex

)

δ (2.14)

This equation reveals the precise relationship between the averaged and the actual

systems: the averaged trajectory of the excess phases in the actual system (2.14) is

33

Chapter 2. Distributed Implicit Network Timing Synchronization

the same as the excess phases in the averaged system (see (2.10)), for large values

of the slot index s.

We now use Jensen’s inequality to bound the phase errors in the actual system

using the corresponding errors in the averaged system. To do this, we note that

the maximum value of the pairwise difference between neighbors’ phases in the

averaged system (or equivalently, excess phases) can be expressed as ||Cϕex[s]||∞,

where matrix multiplication by C corresponds to all possible pairwise differences

across neighbors and ||x||∞ denotes the infinity norm, or maximum element, of a

vector x. The corresponding worst-pairwise error in the actual system over the ith

realization is given by ||Cϕ
(i)
ex [s]||∞. Since the function f(a) = ||Ca||∞ is convex

in a, we can use Jensen’s inequality, coupled with the relationship in (2.10) and

(2.14), to show the following inequality

||Cϕex[s]||∞ ≤
1

M

M
∑

i=1

||Cϕ(i)
ex [s]||∞ for large M

Thus, the maximum pairwise phase difference for the averaged system is a lower

bound on the average of the maximum pairwise phase difference in the original

system, averaged across realizations.

This bound holds true independent of the distribution of skews δ across nodes.

Therefore, any set of skews that are “bad” for the averaged system are guaran-

teed to be bad for the actual system as well. We use this observation in Section

34

Chapter 2. Distributed Implicit Network Timing Synchronization

3.8 to show that the mean value of the worst-case pairwise error between neigh-

bors can increase with the size of the network, so that both frequency and phase

adjustments are required for large networks.

2.4 Design of Phase-Frequency Adjustments

We now present an algorithm that achieves frequency and phase synchrony for

the averaged system. Equation (2.10) shows that, after sufficiently many phase-

only adjustments, the excess phases, and hence the residual phase differences

between nodes, are a function of the skews. Conversely, these residual phase

differences provide estimates of the skews, which are then used to make frequency

adjustments. We note from (2.10) that δ ≈
(

I− Gex
)

ϕex[s] for large enough s.

For decentralized adaptation, we clearly do not have access to the excess phases

ϕex. However, using the fact that G is a stochastic matrix, we can also express

the skews in terms of the raw phases as follows (see Appendix A.4 for details) :

δ ≈
(

I− G
)

ϕ[s] = Lϕ[s] (2.15)

for sufficiently large s, where the matrix L = I− G is called the Laplacian of the

system. For our phase-only updates, it is easy to show (see Appendix A.5) that

35

Chapter 2. Distributed Implicit Network Timing Synchronization

the ith component of (2.15) can be written as

[Lϕ∞]i = β
N
∑

j=1

qj→i(ϕ∞,i − ϕ∞,j) = δi (2.16)

where qj→i denotes the probability that Nj transmits to Ni (even though the sum-

mation is defined over all the nodes, we note that the only terms that contribute

are those with qj→i > 0 i.e. nodes that are neighbors of Ni). Thus, the ith node

can estimate its excess frequency simply by considering the weighted average of

its its residual phase differences with its neighbors, with weights depending on the

average communication pattern defined by G.

Our phase-frequency adjustment algorithm consists of estimating the skews

based on the residual phase errors with neighbors after many phase-only adjust-

ments, and adjusting the frequencies accordingly. We follow multiple rounds of

this procedure, starting from round 0, with round r consisting of Wr slots. Each

node employs the same algorithm, hence we describe it from the point of view of

a particular node i:

• Step 1: In round r, node i makes phase-only adjustments for Wr slots;

• Step 2: At the end of round r, node i makes an estimate of its current skew,

denoted by δ̂i, by averaging the observed errors with its neighbors in the following

slot according to (2.16);

• Step 3: If the skew is small enough, with |δ̂i| < ǫ falling in a “dead zone,” node

36

Chapter 2. Distributed Implicit Network Timing Synchronization

i does not change its frequency. If |δ̂i| > ǫ, then node i makes a frequency jump

of ±µ, depending on the sign of the skew. That is, it adds ∆Fi = −µ sign(δ̂i)

to its frequency. (The dead zone parameter ǫ and the step size parameter µ are

discussed below.)

• Step 4: Go back to Step 1 for round r + 1.

Algorithm parameters: We prove that our frequency adjustment algorithm

guarantees that the maximum frequency deviation away from the mean of any

node is at most ǫ + µ + χ, where ǫ is the dead zone size, µ is the frequency

adjustment step size, and χ is the designed error in frequency estimation at the

end of each round. The parameters ǫ, µ, χ > 0 can be chosen freely, except that

our convergence proof requires that ǫ > µ + χ (the dead zone must be large

enough to accommodate wrong frequency steps and frequency estimation errors).

For example, starting with a maximum frequency offset of 100 ppm, we could

eventually converge to a maximum offset of less than 4 ppm by choosing ǫ = 2

ppm, µ = 1 ppm and χ = 0.8 ppm. This would reduce the worst-case phase offset

in the network by a factor of 25.

Our theoretical development proceeds as follows. We first identify the number

of slots needed in round r, which we denote by Wr, so that the maximum error in

estimating the current skew of any node is smaller than χ. We then show that,

if ǫ > µ + χ, then in each round of frequency adjustment, either (a) the nodes

37

Chapter 2. Distributed Implicit Network Timing Synchronization

move towards convergence or (b) all current skews are lesser than ǫ + µ + χ (in

magnitude) and will continue to remain so in the future. It is convenient at this

point to introduce two-dimensional indexing of slots: slot [s, r] is the sth slot in

round r, and is therefore the kth slot in a one-dimensional enumeration of slots,

where k =
∑r−1

q=0Wq + s. In the rth round, the slot index s takes values between

0 and Wr − 1. We use both one-dimensional and two-dimensional enumeration of

slots, depending on the context.

2.4.1 Choosing round sizes

Since the mean phase does not contribute to the actions of our algorithms

(which depend only on phase differences), we only need to model what happens

to the excess phases. As in Section 2.3.1, this means that we can excise the

eigenmode corresponding to eigenvalue one, which determines evolution of the

mean phase. We show in Appendix A.6 that the excess phase in slot s of round r

evolves as

ϕex[s, r] = Gsexϕex[0, r] +Dsδ[0, r] (2.17)

where Ds = I + Gex + G2

ex + . . . + Gs−1

ex . Assuming that slot s = Wr − 1 is the

last one in round r (i.e., the nodes estimate their current skews as Lϕ[s, r]), the

38

Chapter 2. Distributed Implicit Network Timing Synchronization

current skew estimates at the end of round r are given by

δ̂[s, r] =
(

I− G
)

ϕ[s, r] =
(

I− Gex
)

ϕex[s, r] (2.18)

Substituting the expression for the excess phases from equation (2.17) into equa-

tion (2.18), we get an expression for the errors incurred by the nodes with this

estimate. Denoting these errors by eδ[s, r] = δ̂[s, r]− δ[0, r], we get

eδ[s, r] = (Gsex − G
s+1

ex)ϕex[0, r]− Gsexδ[0, r] (2.19)

We approximate Gsex by its dominant eigenmode λs2v2v
T
2 and thereby, the errors

as,

eδ[s, r] ≈ λs2v2v
T
2 (1− λ2)ϕex[0, r]− λs2v2v

T
2 δ[0, r] (2.20)

We can now “invert” this relationship to show that the estimation error can be

made arbitrarily small by waiting “long enough”. Specifically, the maximum error

in estimating the excess frequency in round r can be made smaller than χ by

choosing the number of slots Wr, to satisfy,

Wr ≥
1

log(1/λ2)
×
(

log
χ

||v2v
T
2 ||∞

− log
{

||ϕex[0, r]||∞+

||δ[0, r]||∞(1− λ2)}
)

(2.21)

However, this inequality does immediately not tell us how long we need to wait

in round r. This is because the RHS of (2.21) requires bounds on the excess

39

Chapter 2. Distributed Implicit Network Timing Synchronization

phases ||ϕex[0, r]||∞ and the excess frequencies ||δ[0, r]||∞ in round r, which are

not readily available. But, we can obtain such bounds recursively: we relate

||ϕex[0, r]||∞ and ||δ[0, r]||∞ to their corresponding values in round r − 1 and

ultimately, to bounds on the excess phases and frequencies at the start of our

algorithm, which are assumed to be available. We now explain the recursive

procedure.

For the first round, the accuracy of the coarse synchronization procedure at

startup determines bounds on the excess phases ||ϕex[0, 1]||∞. Also, the largest

excess frequency ||δ[0, 1]||∞ is bounded by the difference between the maximum

frequency (1+ρmax) and the minimum frequency (1−ρmax). We use these bounds

in equation (2.21) to calculate the number of slots in the first round W1. We now

show how we can derive bounds on the excess phases and frequencies for Round

2.

First, we derive a general recursive relationship that relates the excess phases

in round r+ 1 to the excess phases and frequencies in round r (see Appendix A.7

for a proof):

||ϕex[0, r+1]||∞ ≤ ||GWr−1

ex ||∞||ϕex[0, r]||∞ +(1+ ||DWr−1||∞)||δ[0, r]||∞ (2.22)

We use the available bounds on ||ϕex[0, 1]||∞ and ||δ[0, 1]||∞ in this equation to

bound ||ϕex[0, 2]||∞. In Section 2.4.2, we show that the excess frequencies in round

40

Chapter 2. Distributed Implicit Network Timing Synchronization

two δ[0, 2] are also bounded by 2ρmax in magnitude. The basic idea behind this

result is that the maximum (respectively, minimum) frequency in round 2 does not

increase (respectively, decrease) from its value in round 1, despite the frequency

adjustments made by nodes at the end of round 1. Substituting these bounds

for ||δ[0, 2]||∞ and ||ϕex[0, 2]||∞ in equation (2.21), we can calculate the number

of slots needed in round 2. By repeating these arguments, we can recursively

compute the number of slots needed in any round r.

2.4.2 Convergence of frequency adjustment algorithm

By making each round long enough, the errors in estimating the excess frequen-

cies can be made smaller than χ where χ can be arbitrarily small. We demonstrate

that each frequency adjustment drives the network towards (and never away from)

frequency synchrony. For this, we need to choose the width of the “dead zone” ǫ to

be larger than the sum of the the estimation error χ and the frequency adjustment

size µ. Specifically, we show that, after “many” rounds of frequency adjustments,

the excess frequencies are no bigger than ǫ+ µ+ χ. Since the latter quantity can

be made as small as we wish, we can get arbitrarily close to perfect frequency

synchrony.

41

Chapter 2. Distributed Implicit Network Timing Synchronization

Since frequencies change only over rounds, we index the current skews by

round number: the current skew of node i in any slot of the rth round is denoted

by δi{r}. We do not need to track phases any more, but rather repeatedly use

the fact that the error in estimating the excess frequency is smaller than χ, or

|δi{r} − δ̂i{r}| ≤ χ ∀i, r.

Consider a given round r. To show that the nodes always adjust their fre-

quencies to drive the network to synchrony, we begin by splitting the nodes into

ten sets based on the sign of their excess frequencies and how far they are from

convergence. The split is shown in Figure 2.2. The first set S1{r} contains nodes

δi{r} > ǫ+ µ + χ (positive skews, “very far” from convergence). The second set

S2{r} contains nodes with ǫ + χ < δi{r} ≤ ǫ + µ + χ (positive skews, “far from

convergence”). The next three sets S3{r}, S4{r}, S5{r} contain nodes that are

“close”, “closer” and “closest” to convergence: for S3{r}, δi{r} ∈ (ǫ, ǫ + χ]; for

S4{r}, δi{r} ∈ (ǫ − χ, ǫ]; for S5{r}, δi{r} ∈ (0, ǫ − χ]. The sets S−i are defined

analogously, except that the signs are reversed, as shown in the figure. We char-

acterize the actions of nodes in each of these sets in a sequence of propositions

and use this characterization to show that the algorithm converges and achieves

frequency synchrony (to within ǫ + µ + χ). We provide an outline of the proof

before stating the results formally:

42

Chapter 2. Distributed Implicit Network Timing Synchronization

Figure 2.2: Splitting the nodes into 10 sets based on their excess frequencies.
Nodes in S1 and S2, that are “far” from convergence, are guaranteed to reduce
their frequencies. Nodes in S3 and S4, that are ”close” to convergence, either
reduce their frequencies or do not change it, but never increase their frequencies.
Nodes in S5, that are ”closest” to convergence, will not change their frequencies.
Analogous results hold for nodes with negative excess frequencies.

1. First, we show that nodes either make “correct” frequency adjustments or

do not change them at all, but never make a “wrong” frequency adjustment.

Specifically, we show that a node with a positive current skew in round r

either lowers its frequency by µ or does not change it at all. The node never

increases its frequency further by µ. Furthermore, we show that nodes which

are either far (S2) or very far (S1) from convergence are guaranteed to reduce

43

Chapter 2. Distributed Implicit Network Timing Synchronization

their frequencies by µ. Analogous results hold for nodes with negative skews

in round r as well.

2. Next, we show that the frequency jumps are small (relative to the size of the

dead zone), so that nodes do not cross one another while making frequency

adjustments. Specifically, a node with a positive excess frequency in round r

that makes a downward frequency jump never “crosses” a node with negative

excess frequency in round r that is increasing its frequency.

3. The previous two results immediately imply that the maximum frequency

across nodes either decreases or remains the same, but never increases (corre-

sponding result holds for the minimum frequency too). Denoting the max-

imum and minimum frequencies across nodes in round r by Fmax{r} and

Fmin{r} respectively, we show that Fmax{r + 1} ≤ Fmax{r} and Fmin{r +

1} ≥ Fmin{r}. We also get an intuitively pleasing conclusion from this

proposition: if we achieve frequency synchrony, the common frequency will

be between the maximum and minimum frequencies at the start.

4. Next, we consider two disjoint possibilities: (a) the network is not close to

convergence so that there is at least one node “very far” from the mean

frequency (in either S1 or S−1) or (b) the network is close to convergence

44

Chapter 2. Distributed Implicit Network Timing Synchronization

so that all nodes have excess frequencies within ǫ + µ + χ of the mean (in

S2− S5 or their negative counterparts). We consider these cases separately.

a. In this case, we show that the network will move towards convergence

and not away from it. We do this in two stages: firstly, supposing

that S1 is non-empty, we use the first and second propositions to show

that the maximum frequency will decrease by µ. Conversely, if S−1

is non-empty, the minimum frequency will increase by µ. We prove

these results in Proposition 4. Then, assuming that one of these sets

is non-empty, we identify a non-negative function of the frequencies –

which can be used a measure of the network convergence level – that

strictly decreases. Specifically, we show that the difference between

the maximum and minimum frequencies ξ∗{r} = Fmax{r}−Fmin{r} is

bound to decrease at least by µ at the end of round r. This is proved

in Proposition 5.

b. When the network is close to convergence, we show that it will con-

tinue to remain in the same state and not drift away from convergence.

Specifically, we show that a node with a “small” excess frequency in

round r (|δi{r}| ≤ ǫ + µ + χ) will continue to have a small excess

frequency in round r + 1 (|δi{r + 1}| ≤ ǫ+ µ + χ). In other words, if

45

Chapter 2. Distributed Implicit Network Timing Synchronization

δ∗{r} denotes the largest excess frequency in round r (in magnitude)

and δ∗{r} ≤ ǫ + µ + χ, then we have δ∗{r + 1} ≤ ǫ + µ + χ. This is

shown in Proposition 6.

5. If the network has converged in round r (case (b) above), then by the above

argument it continues to remain converged in further rounds. Thus, the only

way the network might not achieve frequency convergence is if case (a) is

true in all rounds. However, this is impossible: since ξ∗{r} is lower bounded

by 0, it can only decrease so many times by µ. Thus, for some large enough

round R0, case (b) must be true and the network will remain converged from

this point onwards. We show this in Theorem 1.

We now state the propositions and the theorem formally.

Proposition 1. If Ni’s frequency in round r is larger than the mean, then its

frequency in round r+ 1 cannot be larger than its value in round r i.e. if Fi{r} ≥

ψ{r}, then Fi{r + 1} ≤ Fi{r}. Furthermore, if Ni’s frequency is “much larger”

than the mean in round r, it will necessarily reduce its frequency: if Ni ∈ S1{r}∪

S2{r}, then Fi{r+1} = Fi{r}−µ. Analogously, if Fi{r} ≤ ψ{r}, then Fi{r+1} ≥

Fi{r}, and if Ni ∈ S−1{r}/S−2{r}, then Fi{r + 1} = Fi{r}+ µ.

Proof. We only prove the statement for nodes with positive current skews, or

Fi{r} ≥ ψ{r}, since the proof for nodes with Fi{r} ≤ ψ{r} is entirely analogous.

46

Chapter 2. Distributed Implicit Network Timing Synchronization

Case 1: If node i is in S1{r} ∪ S2{r}, then δi{r} > ǫ + χ. Since the estimation

error is bounded by χ (we have ensured this by making the rounds long enough),

the estimated current skew falls outside the dead zone: δ̂i{r} ≥ δi{r} − χ >

(ǫ+ χ)− χ = ǫ. Thus, node i adjusts its frequency downwards.

Case 2: For nodes in S3, S4 or S5, the current skew is positive: 0 < δi{r} < ǫ+χ.

Since the estimation error is at most χ, we have −χ < δ̂i{r} < ǫ + 2χ. Since

ǫ > µ+ χ > χ, we conclude that δ̂i{r} > −ǫ, so that node i does not increase its

frequency.

Proposition 2. If Fi{r} > ψ{r}, Fi{r + 1} > ψ{r}. Analogously, if Fi{r} <

ψ{r}, Fi{r + 1} < ψ{r}.

Proof. Once again, we only prove the statement for nodes with frequencies larger

than the mean, since the other case is exactly analogous.

Case 1: Let Ni ∈ S5{r}. Therefore, 0 ≤ δi{r} ≤ ǫ − χ. Since the estimation

error is bounded by χ, we have −χ ≤ δ̂i{r} ≤ ǫ. Since ǫ > χ + µ, we have

−χ > −ǫ. Therefore, the estimate δ̂i{r} falls in the dead zone and Ni does not

change its frequency at the end of round r. Thus, we have Fi{r+ 1} = Fi{r} and

by definition, Fi{r} > ψ{r}, which together imply Fi{r + 1} > ψ{r}.

Case 2: If Ni is in S1{r}∪S2{r}∪S3∪{r}∪S4{r}, we have Fi{r} > ψ{r}+ ǫ−χ.

47

Chapter 2. Distributed Implicit Network Timing Synchronization

At the end of round r, Ni can reduce its frequency at most by µ. Therefore,

Fi{r+1} ≥ Fi{r}−µ > ψ{r}+ ǫ−χ−µ. Since ǫ > χ+µ, Fi{r+1} > ψ{r}.

Proposition 3. The maximum frequency can never increase and the minimum

frequency can never decrease i.e. Fmax{r + 1} ≤ Fmax{r} and Fmin{r + 1} ≥

Fmin{r}.

Proof. We only prove that Fmax can never increase, since the proof that Fmin

can never decrease is similar. Let Γ+{r} and Γ−{r} denote the set of all nodes

with positive and negative excess frequencies in round r respectively i.e. Γ+{r} =

∪5
i=1Si{r} and Γ−{r} = ∪5

i=1S−i{r}. Unless all nodes are at the same frequency

(in which case we are done), neither of these sets can be empty. Otherwise, all

the nodes would have their frequencies on one side of the mean frequency, which

is impossible.

Let u+ and u− be any nodes in Γ+{r} and Γ−{r} respectively. From Proposition

2, we have Fu+{r + 1} > ψ{r} and Fu−{r + 1} < ψ{r}. Therefore, we have

Fu+{r + 1} > Fu−{r + 1} ∀u+, u−. Thus, the node with the maximum frequency

in round r + 1, denoted by u∗r+1, must have had a positive excess frequency in

round r, or u∗r+1 ∈ Γ+{r}. But, if u∗r+1 ∈ Γ+{r}, by Proposition 1, its frequency

in round r + 1 cannot be larger than its frequency in round r i.e. Fu∗r+1
{r + 1} ≤

Fu∗r+1
{r}. Since the maximum frequency across nodes in round r is larger than

48

Chapter 2. Distributed Implicit Network Timing Synchronization

u∗r+1’s frequency in the same round, we get Fu∗r+1
{r} ≤ Fmax{r}. Chaining these

inequalities, we get, Fmax{r+1} = Fu∗r+1
{r+1} ≤ Fu∗r+1

{r} ≤ Fmax{r}. Therefore,

the maximum frequency can never increase across rounds.

Proposition 4. If S1{r} 6= ∅, Fmax{r+1} = Fmax{r}−µ. Furthermore, if N# is

the node with the maximum frequency in round r, it continues to be the node with

the maximum frequency in round r+1. Analogously, if S−1{r} 6= ∅, Fmin{r+1} =

Fmin{r}+ µ. Also, if N# is the node with the minimum frequency in round r, it

continues to be the node with the minimum frequency in round r + 1

Proof. As usual, we only prove the statement for the case where S1{r} 6= ∅. Let

N# be the node with the maximum frequency in round r. Since S1{r} 6= ∅,

N# ∈ S1{r}. Thus, from Proposition 1, N# reduces its frequency after round

r. Therefore, FN#{r + 1} = FN#{r} − µ. We now prove the proposition by

considering three cases.

Case 1: LetNi be any node other thanN# in S1{r}∪S2{r}. From Proposition

1, Ni also reduces its frequency after round r, or Fi{r+1} = Fi{r}−µ. Therefore,

Ni continues to have a frequency smaller or equal to that of N# in round r + 1:

FN#{r+ 1}−Fi{r+ 1} = (FN#{r}−µ)− (Fi{r}−µ) = FN#{r}−Fi{r}, which,

by definition, is greater than or equal to zero.

Case 2: Let Ni be a node in S3{r} or S4{r} or S5{r}. Thus, Ni’s frequency in

49

Chapter 2. Distributed Implicit Network Timing Synchronization

the rth round is not too large: Fi{r} ≤ ψ{r}+ǫ+χ. Furthermore, from Proposition

1, Ni does not increase its frequency at the end of round r i.e. Fi{r+1} ≤ Fi{r}.

Therefore, we have, Fi{r+1} ≤ ψ{r}+ ǫ+χ. However, N#’s frequency in round

r + 1 is larger than this : FN#{r+ 1} = FN#{r} − µ > (ψ{r}+ ǫ+ µ+ χ)− χ =

ψ{r}+ ǫ+ χ (the inequality follows from the fact that N# ∈ S1{r}).

Case 3: Consider Ni with a negative excess frequency in round r. From

Proposition 2, we know that Fi{r + 1} < ψ{r}. However, we have already shown

that FN#{r + 1} > ψ{r}+ ǫ+ χ. Therefore, FN#{r + 1} > ψ{r} > Fi{r + 1}.

Therefore, FN#{r + 1} ≥ Fi{r + 1} ∀i and N# continues to be the node with

the highest frequency in round r + 1. Since it was also the node with maximum

frequency in the rth round and its frequency decreased by µ at the end of round

r, we have Fmax{r + 1} = Fmax{r} − µ.

Proposition 5. If S1{r} or S−1{r} 6= ∅, ξ∗{r+ 1} ≤ ξ∗{r} − µ. Furthermore, if

both S1{r} and S−1{r} 6= ∅, ξ∗{r + 1} = ξ∗{r} − 2µ.

Proof. Consider the case when S1{r} and S−1{r} 6= ∅. Then, from Proposi-

tion 4, Fmax{r + 1} = Fmax{r} − µ and Fmin{r + 1} = Fmin{r} + µ. Therefore,

ξ∗{r+1} = Fmax{r+1}−Fmin{r+1} = (Fmax{r}−µ)−(Fmin{r}+µ) = ξ∗{r}−2µ.

Now consider the case when S1 6= ∅ but S−1 = ∅ (the reversed case is very sim-

ilar). From Proposition 4, Fmax{r+1} = Fmax{r}−µ. Similarly, from Proposition

50

Chapter 2. Distributed Implicit Network Timing Synchronization

3, Fmin{r+1} ≥ Fmin{r}. Therefore, we can see that ξ∗ must decrease atleast by µ

as follows: ξ∗{r+1} = Fmax{r+1}−Fmin{r+1} = (Fmax{r}−µ)−Fmin{r+1} ≤

(Fmax{r} − µ)− Fmin{r} = ξ∗{r} − µ.

To tackle the scenario when there is no node very far from convergence, we

need a preliminary result which shows that the mean frequency does not change

a lot across rounds.

Corollary 1. The mean frequency ψ{r + 1} is bounded below by ψ{r} − µ and

above by ψ{r}+ µ.

Proof. Since Ni changes its frequency by at most µ, Fi{r} − µ ≤ Fi{r + 1} ≤

Fi{r}+ µ. Adding these inequalities across nodes and dividing by the number of

nodes, we get ψ{r} − µ ≤ Fi{r + 1} ≤ ψ{r}+ µ.

Proposition 6. If Ni /∈ S1{r} ∪ S−1{r} so that |δi{r}| ≤ (ǫ + µ + χ), then

|δi{r + 1}| ≤ (ǫ+ µ+ χ).

Proof. We only prove the statement for nodes with positive excess frequencies in

the rth round. For notational ease, we denote the change in the mean frequency

from round r to round r + 1 by ∆ψ{r} = ψ{r + 1} − ψ{r}. From corollary 1, we

have |∆ψ| ≤ µ.

Case 1: Let Ni ∈ S2{r}. From Proposition 1, we know that Ni decreases its

51

Chapter 2. Distributed Implicit Network Timing Synchronization

frequency at the end of round r, or Fi{r+1} = Fi{r}−µ. Consequently, its excess

frequency in round r+1 is, δi{r+1} = Fi{r+1}−ψ{r+1} = Fi{r}−µ−ψ{r+1}.

Adding and subtracting ψ{r} to the extreme right hand side and grouping terms,

we get δi{r + 1} = δi{r} − µ−∆ψ{r}. Since Ni ∈ S2{r}, we have bounds on its

excess frequency, ǫ+χ < δi{r} ≤ ǫ+χ+µ. Using these bounds and the fact that

|∆ψ{r}| ≤ µ in the expression for δi{r+1}, we get, ǫ+χ−2µ ≤ δi{r+1} ≤ ǫ+χ+µ.

We also have ǫ+ χ− 2µ = −(ǫ+ µ+ χ) + (2ǫ− µ+ 2χ) > −(ǫ+ µ+ χ) since we

have chosen ǫ > µ+ χ. Therefore, |δi{r + 1}| ≤ (ǫ+ χ+ µ).

Case 2: Let Ni be in S3{r} ∪ S4{r} ∪ S5{r}. From Proposition 1, we know

that Ni does not increase its frequency after round r, or Fi{r+1} ≤ Fi{r}. From

Proposition 2, we also know that it does not decrease its frequency too much,

Fi{r+1} > ψ{r}. Chaining these inequalities, we get, ψ{r} ≤ Fi{r+1} ≤ Fi{r}.

We first subtract ψ{r} throughout and then, add and subtract ψ{r + 1} to the

middle term and obtain, 0 ≤ δi{r + 1} + ∆ψ{r} ≤ δi{r}. Equivalently, we have

−∆ψ{r} ≤ δi{r + 1} ≤ δi{r} − ∆ψ{r}. Since Ni ∈ S3{r} ∪ S4{r} ∪ S5{r}, we

have 0 ≤ δi{r} ≤ ǫ + χ. Using this bound and the fact that |∆ψ{r}| ≤ µ in the

expression for δi{r+1} we get, −µ ≤ δi{r+1} ≤ ǫ+µ+χ. Since −µ > −(ǫ+µ+χ),

we conclude that |δi{r + 1}| ≤ (ǫ+ µ+ χ).

52

Chapter 2. Distributed Implicit Network Timing Synchronization

Theorem 1. Let ξ∗{r} = Fmax{r} − Fmin{r} and δ∗{r} = maxi |δi{r}|. In each

round r, atleast one of the following statements is true,

1. ξ∗{r + 1} ≤ ξ∗{r} − µ.

2. δ∗{r} and δ∗{r + 1} ≤ (ǫ+ µ+ χ)

Therefore, eventually, the maximum deviation in frequency from the mean is at-

most ǫ+ µ+ χ.

Proof. In the rth round of frequency adjustments, Sfar{r} , S1{r} ∪ S−1{r} is

either empty or it is non-empty. If Sfar{r} is nonempty, then by Proposition 5,

ξ∗{r + 1} ≤ ξ∗{r} − µ. On the other hand, if Sfar{r} is empty, all the nodes

are in (∪5
i=2Si{r}) ∪ (∪5

i=2S−i{r}). Thus, the excess frequency of each node is

smaller (in magnitude) than (ǫ+ µ + χ) and hence, δ∗{r} ≤ (ǫ + µ + χ). In this

scenario, Proposition 6 guarantees that |δi{r+1}| ≤ (ǫ+µ+χ) ∀i⇒ δ∗{r+1} ≤

(ǫ + µ + χ) . Using recursion, we can conclude that if δ∗{r} ≤ (ǫ + µ + χ), then

δ∗{r′} ≤ (ǫ+ µ+ χ) ∀r′ ≥ r.

We have already seen that ξ∗{r} ≥ 0 ∀r. Assume that the node frequencies

are bounded by 1± ρmax before any frequency adjustments are made. Therefore,

ξ∗{1} = Fmax{1}−Fmin{1} ≤ 2ρmax. If condition (1) is true in round r, we know

that ξ∗ decreases by µ. However, condition 1 cannot be true indefinitely because

ξ∗{r} is lower bounded by 0 and ξ∗{1} is finite. Therefore, condition 2 will have to

53

Chapter 2. Distributed Implicit Network Timing Synchronization

be true in some round r = R0 for the first time. By our proof, it will then continue

to hold forever. Therefore, we can conclude that δ∗{r′} ≤ ǫ+ µ+ χ ∀r′ ≥ R0.

We can now estimate R0 - the number of rounds needed for the maximum

excess frequency to become smaller than ǫ+µ+χ for the first time. By definition,

we have, ξ∗{R0} ≤ 2δ∗{R0}/ ≤ 2(ǫ+µ+χ). In each round r between 1 and R0, we

know from Theorem (1) that ξ∗ decreases by µ (at least). Therefore, R0 needs to

be no bigger than 2ρmax−2(ǫ+µ+χ)
µ

. Note that, while the number of slots needed per

round of frequency adjustment might (and typically does) increase with network

size, the number of rounds required for convergence is independent of the number

of nodes in the network.

2.5 LLN Arguments

We design a phase-frequency adjustment scheme for the actual system based

on the insights from the proposed algorithm for the averaged system. There are

two important design guidelines we infer:

• The first lesson is that we must not adjust the frequencies in each slot, but

only once in a round consisting of many slots. The intuitive reason for this is

as follows. The phase error between a pair of nodes Ni and Nj changes over

54

Chapter 2. Distributed Implicit Network Timing Synchronization

time for two reasons: (a) the clock frequencies at Ni and Nj are different

and (b) Ni and Nj adjust their phases each time they receive a packet from

any of their neighbors (note that this could be a completely different node

Nk). Let e1 and e2 be the errors that Ni observes on successive occasions

that it receives a packet from Nj (the successive occasions could be many

slots apart). If we could apportion the change in the phase error e2 − e1 to

the two cases, Ni could estimate the frequency error using the contribution

from case (a) and adjust its frequency accordingly. However, the specific

technique to split e2 − e1 into its constituent components is unclear. By

waiting for many slots, we allow the contribution to the phase error from

frequency differences to build (this contribution grows linearly with time),

thereby allowing us to estimate the frequency differences accurately.

• With this understanding, suppose that the nodes only change their frequen-

cies once in a round consisting of SR slots. The question then becomes: how

should a given node Ni adjust its frequency based on the phase errors that it

observes with its neighbors over the round? We guess the rule based on the

interpretation of the phases in the averaged system, which we describe next.

Consider the phase evolution in the actual system (with mean frequency 0):

ϕ[s + 1] = Gsϕ[s] + δ

55

Chapter 2. Distributed Implicit Network Timing Synchronization

Taking an expectation with respect to the random communication pattern

on both sides of this equation, we get,

E (ϕ[s + 1]) = E (Gsϕ[s]) + δ

Since the evolution of the phases until the beginning of slot s is com-

pletely independent of the communication in slot s, we have E (Gsϕ[s]) =

E (Gs) E (ϕ[s]). Thus, the above equation is identical to the evolution equa-

tion in the averaged system:

E (ϕ[s+ 1]) = GE (ϕ[s]) + δ

Therefore, the phases in the averaged system are nothing but the ensem-

ble average of the phases in the actual system and nodes in the averaged

system adjust their frequencies based on the differences between ensemble

averages of their phases. While measuring the ensemble average is impossi-

ble in the actual system, we guess that nodes must adjust their frequencies

based on the differences in the empirical averages of the phases. Indeed,

simulations provide evidence to support this guess: nodes whose excess fre-

quencies are positive have phases that are typically (but not always) ahead

of their neighbors with smaller excess frequencies. We track the average of

the node phases over a round and use the LLN to explain how nodes can

estimate their excess frequencies from such average phases.

56

Chapter 2. Distributed Implicit Network Timing Synchronization

We describe the frequency adjustment procedure only for the first round of slots,

with the understanding that the same procedure is repeated in subsequent rounds.

Let the running average of the phases from the start of the round to a slot s

(0 ≤ s ≤ SR − 1) be denoted by ϕav[s] =
∑s

s′=0 ϕ[s′]/(s + 1). We compute an

expression for ϕav[s] using the system evolution equation and use the LLN to

show that the excess component of ϕav satisfies,

ϕav,ex[SR − 1] ≈
(

I− Gex
)−1

δ[0] (2.23)

when the number of slots in the round SR is “large”. While the nodes do not have

access to ϕav,ex, they can compute their excess frequencies in a simple manner

that is motivated by (2.23). The key steps in the development are as follows:

• Using the expression for ϕ[s] from (2.11), we obtain the average phases at

the end of the round ϕav[SR − 1] to be:

ϕav[SR − 1] =

[
∑SR−1

s′=2 s′ψ[0]
]

SR
1 +

ϕ[0] + ϕ[1] +
∑SR−1

s′=2 Gs′−1Gs′−2 . . . G0ϕ[0]

SR
+

∑SR−1
s′=2 (I +

∑s′−1
p=1 Gs′−1Gs′−2 . . . Gs′−p)

SR
δ[0] (2.24)

• We simplify the second term in this equation using an approximation that

is guided by (2.12). Specifically, we approximate the product of the stochastic

matrices GsGs−1 . . . G0 by a rank-one matrix of the form 1γT when the number of

matrices in the product exceeds a critical limit Sw. The critical limit Sw depends

57

Chapter 2. Distributed Implicit Network Timing Synchronization

on the set {G1,G2, . . . ,GM} from which the matrices {Gt} are chosen and the

probabilities {p1, p2, . . . , pM} with which they are chosen from this set. With this

approximation, we get the averaged phases in slot SR − 1 to be,

ϕav[SR − 1] =

[
∑SR−1

s′=2 s′ψ[0] +
∑SR−1

s′=Sw
(γTϕ[0])

]

SR
1

+
ϕ[0] + ϕ[1] +

∑Sw−1
s′=2 Gs′−1Gs′−2 . . . G0ϕ[0]

SR
+

∑SR−1
s′=2 (I +

∑s′−1
p=1 Gs′−1Gs′−2 . . . Gs′−p)

SR
δ[0] (2.25)

• We can discard the first two terms for the purposes of frequency adjustment

for different reasons. The frequency adjustment rule is only driven by the excess

component of the averaged phases and not by the average component. Therefore,

we can discard the first term. The second term is a transient when the number

of slots SR is large. Thus, only the third term contributes to the excess-averaged-

phases ϕav,ex.

• We switch the order of the summations in the third term and collect all

the terms in the summation which are products of the same number of system

matrices. We then use the LLN and the approximation described above to simplify

the summations and prove (2.23) when SR ≫ Sw and SR ≫ SG, where SG is large

enough for us to set λ
S
G

2 ≈ 0 (and hence, GSG

ex ≈ 0). We provide the details in

Appendix A.8.

58

Chapter 2. Distributed Implicit Network Timing Synchronization

While the excess frequencies satisfy δ[0] ≈ (I − Gex)ϕav,ex, they cannot be

estimated in this fashion, since we do not have access to the excess-averaged-

phases ϕav,ex. But, we can use the fact that G is a stochastic matrix and mimic the

proof for the averaged system (see Appendix A.4) to show that (I−Gex)ϕav,ex =

(I − G)ϕav. Thus, the nodes can estimate their excess frequencies from the raw

phases as δ[0] ≈ (I− G)ϕav[SR − 1].

Deriving an explicit frequency adjustment rule: Let us denote the aver-

aged phase at node i in slot SR−1 by ϕav,i[SR−1]. By substituting the expression

for G (and mimicking the proof in Appendix A.5), we get the skew estimate of

the ith node to be,

δ̂i = β
∑

j 6=i

qj→i (ϕav,i[SR − 1]− ϕav,j [SR − 1]) (2.26)

where qj→i is the probability that node j transmits to node i. We cannot imple-

ment this directly for two reasons: (1) nodes are not aware of the link activity

probabilities qj→i and (2) they cannot measure the difference
(

ϕav,i[SR − 1]−

ϕav,j [SR − 1]
)

. To see why the second reason is true, consider the difference

ϕav,i[SR − 1]− ϕav,j [SR − 1] =

SR−1
∑

s=0

ϕi[s]− ϕj[s]
SR

(2.27)

Therefore, ϕav,i[SR − 1] − ϕav,j [SR − 1] depends on the phase error between Ni

and Nj in all slots between 0 and SR − 1. However, Ni can only measure the

errors in those slots when it receives a packet from Nj . But, Ni can approximate

59

Chapter 2. Distributed Implicit Network Timing Synchronization

ϕav,i[SR−1]−ϕav,j [SR−1] by averaging over the phase errors that it does measure.

Specifically, suppose that Nj that has a nonzero probability of transmitting a

packet to Ni and that it transmits on nij occasions in the first round of slots to

Ni. We denote these slots by sj→i(1), sj→i(2), . . . sj→i(nij) respectively. Then, Ni

approximates the average phase error over the first round with Nj to be,

ϕav,i[SR − 1]− ϕav,j [SR − 1] ≈
nij
∑

t=1

ϕi[sj→i(t)]− ϕj [sj→i(t)]

nij
(2.28)

We use the empirical definition of probability to approximate qj→i as qj→i ≈

nij/SR and substitute equation (2.28) in equation (2.26) to get,

δ̂i[SR − 1] ≈ β

SR

∑

j 6=i

nij
∑

t=1

(

ϕi[sj→i(t)]− ϕj[sj→i(t)]

)

(2.29)

We use this as the defining equation for Ni’s estimate of its excess frequency: it

simply adds the phase errors it observes when it receives packets from its neighbors

over the entire round (and scales it by β/SR) to decide on the frequency adjust-

ment at the end of the round. This rule is intuitively pleasing: if a node finds that

despite all the phase adjustments made, its clock is still “ahead” (ϕi− ϕj > 0) of

its neighbors’ clocks over a long time, it concludes that its clock is running faster

than the average across the network. We now summarize the algorithm from the

point of view of node i.

Overall algorithm: Node i estimates its skew over a round according to

equation (2.29). If δ̂i falls within a dead zone of width ǫapprox (i.e. |δ̂i| ≤ ǫapprox),

60

Chapter 2. Distributed Implicit Network Timing Synchronization

node i does not change its frequency; in other cases, node i changes its frequency

by ±µ based on the sign of δ̂i i.e. it makes a frequency jump ∆Fi = −µ sign(δ̂i)

at the end of a round of SR slots. In subsequent rounds, the process is repeated

by resetting the time-averaged phases and recomputing them from the start of

the round.

An attractive feature of the frequency adjustment rule is the minimal stor-

age required at each node, in spite of the significant amount of memory the rule

entails. To adjust its frequency, each node needs to store only one number and

recursively update it. Thus, the storage needed is independent of the size of the

network and the network topology.

Tackling Measurement Noise: When the implicit timestamps are noisy,

we leave the phase adjustment rule unaltered but change the frequency adjust-

ment rule. We now describe these modifications. Let ξij[sj→i(t)] = ϕi[sj→i(t)] −

ϕj[sj→i(t)] denote the true phase offset between Ni and Nj in slot sj→i(t) and

ξ̂ij[sj→i(t)] denote Ni’s estimate of this offset. The phase offset estimation er-

ror ξ̂ij[sj→i(t)] − ξij[sj→i(t)], induced by the measurement noise is denoted by

γij[sj→i(t)]. From equation (2.29), this translates to an error of

∆ei =
β

SR

N
∑

j=1

nij
∑

t=1

γij[sj→i(t)]

61

Chapter 2. Distributed Implicit Network Timing Synchronization

in Ni’s estimate of its excess frequency. We model the errors γij[sj→i(t)] as ran-

dom variables that are independent across slots and node-pairs. Furthermore,

we assume that these errors are picked from the same distribution fΓ(γ) with

zero mean and a standard deviation σf . For example, in our simulations, we

choose fΓ(γ) to be uniform. Let us assume that Ni receives Pi =
∑

j nij pack-

ets, from all its neighbors combined, in a round of SR slots. We can rewrite

the error in estimating the excess frequencies due to the measurement noise as

∆ei = βPi

SR
× 1

Pi

∑N
j=1

∑nij

t=1 γij[sj→i(t)]. If Pi is reasonably large, we can invoke the

Central Limit Theorem to approximate the distribution of 1
Pi

∑

j

∑

t γij [sj→i(t)]

by a Gaussian with zero mean and variance σ2 = σ2
f/Pi. Since a Gaussian random

variable is very likely to be contained within three standard deviations on either

side of the mean, we approximate the estimation error induced by the noise ∆ei

to be bounded in magnitude by (βPi/SR) × (3σ) = (βPi/SR) × (3σf/
√
Pi). To

combat this error in the estimate of its excess frequency, Ni further increases the

size of the dead zone from its value in the noiseless scenario. This increase needs

to be no larger than the maximum value that the error can take, or βPi

SR
3σf/
√
Pi.

However, in our simulations we are more conservative and increase the width of

dead zone by 3σf/
√
Pi (note that βPi/SR is guaranteed to be smaller than 1). To

summarize, the only change in the frequency adjustment rules is an increase in

the width of the dead zone; Ni’s dead zone in the presence of measurement noise

62

Chapter 2. Distributed Implicit Network Timing Synchronization

with variance σ2
f given by ǫ′i = ǫapprox + 3σf/

√
Pi where ǫapprox is the dead-zone

width in the noiseless setting and Pi is the number of packets received by Ni over

a round of slots.

2.6 Simulation Results

We now describe the models and parameters used in our simulations, followed

by the results.

Topologies: We consider the ring topology (each node has two neighbors) and

the rectangular grid topology (each node has four neighbors) as canonical exam-

ples of two-dimensional networks with large and small diameter, respectively.

Interference Model: We use the node exclusive interference model (two links

can be active if they do not have a node in common) as an abstraction for “highly

directional” networks (such as mm-wave networks [41]). For omnidirectional net-

works, we use the 2-hop interference model [36]: two links can be active simulta-

neously as long as they do not have a node in common, and the nodes involved

in the two links are not neighbors.

Communication Patterns: We consider TDM schedules in which a randomly

chosen maximal matching is active in each slot; a matching is a set of links that

can be simultaneously active without interfering with one another, and a maximal

63

Chapter 2. Distributed Implicit Network Timing Synchronization

matching is a matching to which no link can be added without interfering with

one of the active links. For large networks (e.g., a 64 node grid with directional

links), it is infeasible to enumerate all maximal matchings. In this case, for each

link, we randomly choose 120 maximal matchings in which it participates. The

overall set of maximal matchings Smatching is obtained by taking the union of the

sets generated for each link.

Opportunistic listening: In omnidirectional networks, we consider two modes

for timing adjustment. In the OnlyIntended mode, a node adjusts its clock only

when it receives a packet explicitly addressed to it. In the Eavesdrop mode, a

node adjusts its clock whenever it can receive a collision-free packet, even if it is

not the intended recipient.

Simulation Parameters: We fix β = 0.5 in all our simulations. Our choice of

timescales in directional networks are motivated by Gigabit rate mm-wave net-

works: we choose the slot time Tslot = 10µs and for the coarse synchronization

procedure at startup, we choose τmin = 10µs and τmax = 300µs (see Section 2.2).

The timescales in omnidirectional settings are motivated by WiFi-style networks:

we choose Tslot = 10ms and τmin = 10ms and τmax = 300ms. We set the maxi-

mum value of the skew ρmax to 50 ppm.

Performance Metric: Since TDM slotting overhead depends on the phase error

64

Chapter 2. Distributed Implicit Network Timing Synchronization

among communicating nodes, the key performance metric is the worst neighbor

timing error, which is the largest magnitude of phase error between neighbors.

2.6.1 Phase-Only Adjustments

We consider directional networks and omnidirectional networks in the Only-

Intended mode consisting of 9-64 nodes set in ring and grid topologies. For

each topology, we generate a set of “bad” skews by solving linear programs that

optimize the phase error on each link of the averaged system. We choose these

“bad” skews to be the distribution of skews across nodes in the actual system.

We then average the worst error between nodes in the actual system at the end

of 3000 slots over 2000 realizations of communication patterns. The results for

the directional and omnidirectional settings are shown in Figures 2.3 and 2.4 re-

spectively. The figures confirm that the errors for the averaged system are indeed

a lower bound for those in the actual system, and that the worst neighbor error

increases with network size. The error grows faster with N for a ring topology.

For directional ring networks (Figure 2.3(a)), the error grows as N in the averaged

system and as N1.33 (approximately) in the actual system. For directional grid

networks (Figure 2.3(b)), the error grows only as N0.66 in the averaged system

and as N0.875 (approximately) in the actual system.

65

Chapter 2. Distributed Implicit Network Timing Synchronization

Typical numbers for directional networks: From Figure 2.3, we see that the

error between neighbors in a 64 node network set in a ring topology can be as

large as 220 ns. This is comparable in magnitude to the guard interval needed

to handle propagation delays. For example, the envisioned Gigabit rate outdoor

mesh networks with link ranges on the order of 200 m require guard intervals of

200m/(3 × 108m/s) ≈ 666ns to handle propagation delays. Therefore, an addi-

tional synchronization error of 220 ns represents a 33% increase in the overhead.

On the other hand, for small directional networks in a ring topology (say, 16

nodes) or reasonably large networks in a grid topology (36 nodes), we see that the

largest phase error between neighbors will only be 40 ns. Therefore, the maximum

increase in the overhead is only 6 %. To summarize, phase-only adjustments with

implicit timestamps may suffice in small directional networks with linear topolo-

gies or moderately sized networks in grid topologies, but frequency adjustments

are necessary for large networks, especially in linear topologies.

Recommendations for omnidirectional networks: Since the slot duration

Tslot is longer in omnidirectional networks and the phase error scales in proportion

to Tslot, we see from Figure 2.4 that the errors with phase-only adjustments are

also correspondingly larger (∼ 10’s of µs even for small networks). However, the

guard interval needed to handle propagation delays is still ≈ 1µs since the link

ranges are on the order of hundreds of meters. Therefore, phase-only adjustments

66

Chapter 2. Distributed Implicit Network Timing Synchronization

0 20 40 60 80
0

50

100

150

200

250

Number of Nodes

A
vg

. o
f w

or
st

 e
rr

or
be

tw
ee

n
ne

ig
hb

or
s

(n
s)

Averaged System
Actual System

(a) Ring Topology

0 20 40 60 80
0

20

40

60

80

Number of Nodes

A
vg

. o
f w

or
st

 e
rr

or
be

tw
ee

n
ne

ig
hb

or
s

(n
s)

Averaged System
Actual System

(b) Grid Topology

Figure 2.3: Worst error between neighbors for the actual system and the aver-
aged system with only phase adjustments in a directional network.

are not sufficient to guarantee phase synchrony on the order of the guard interval

in omnidirectional networks. However, a more practical definition of the tolerable

overhead is to define it as a fraction of the payload (slot size) rather than the guard

interval for propagation delay. Phase-only adjustments might then suffice since

the phase errors grow in proportion to Tslot and their ratio is simply a constant.

Thus, here too, phase-only adjustments would suffice for small-to-moderate sized

networks.

2.6.2 Phase & Frequency Adjustments

We begin by introducing parameters and performance metrics specific to the

phase-frequency adjustment algorithm and then describe the results.

Simulation Parameters: We consider two types of skew distribution across

67

Chapter 2. Distributed Implicit Network Timing Synchronization

0 20 40 60 80
0

100

200

300

400

Number of Nodes

A
vg

. o
f w

or
st

 e
rr

or
be

tw
ee

n
ne

ig
hb

or
s

(m
ic

ro
se

co
nd

s)

Averaged System
Actual System

(a) Ring Topology

0 20 40 60 80
0

50

100

150

200

Number of Nodes

A
vg

. o
f w

or
st

 e
rr

or
be

tw
ee

n
ne

ig
hb

or
s

(m
ic

ro
se

co
nd

s)

Averaged System
Actual System

(b) Grid Topology

Figure 2.4: Worst error between neighbors for the actual system and the av-
eraged system with only phase adjustments in an omnidirectional network. The
network operates in the OnlyIntended mode.

nodes: (a) “random skews” chosen independently and uniformly in [−50ppm,

50ppm] (b) “bad skews” chosen by maximizing the worst neighbor error for the

averaged system. Nodes adjust their frequencies by µ = ±1ppm once a round,

which consists of SR = 200 slots. We investigate the performance with noiseless

as well as noisy implicit timestamps. We model the noise as being uniformly

distributed in [−5ns, 5ns] for directional networks and in [−5µs, 5µs] for omnidi-

rectional networks. We use 30,000 TDM slots for each simulation run (and average

over 50 runs). We choose the width of the dead zone in the noiseless setting ǫapprox

to be 3µ = 3 ppm.

Performance Metrics: In addition to the worst phase error between neigh-

bors, we also investigate the network wide frequency error as a measure of fre-

68

Chapter 2. Distributed Implicit Network Timing Synchronization

quency synchrony. The network wide frequency error is defined to be the max-

imum difference in frequency between any two nodes in the network. We now

describe the typical evolution of node frequencies in a single trial and then pro-

vide the results for the phase and frequency errors averaged over 50 trials.

Evolution of node frequencies: We describe three scenarios that serve as

exemplars for the evolution of frequencies at different nodes in a single simulation

run. Example 1: We consider a 36 node omnidirectional network arranged in a grid

topology. The skews at different nodes are distributed randomly and the implicit

timestamps are noiseless. From Figure (2.5(a)), we see that nodes begin with vary-

ing frequencies and move in concert towards a common frequency. Every node’s

frequency is eventually confined to the band fnom × [1− 1.25 ppm, 1− 0.34 ppm]

where fnom is the nominal frequency. Note that fnom itself is not within this band.

This shows that the nodes simply converge to a common frequency and not to the

nominal frequency. Even in the noiseless scenario, the eventual frequency align-

ment is not perfect for two reasons: the adjustments have a resolution of ±1 ppm

and we have enforced a dead zone within which nodes do not change their fre-

quencies. Example 2: A bad skew distribution best illustrates the fact that the

nodes adjust their frequencies in concert. We consider such a skew distribution

in a 36 node directional network with a ring topology. The implicit timestamps

are noiseless in this example. We plot the frequencies of all nodes as a function

69

Chapter 2. Distributed Implicit Network Timing Synchronization

of time in Figure (2.5(b)). However, we see only two traces until about 10000

slots. This is because the nodes start off at identical frequencies of ±50 ppm and

make identical frequency adjustments of ∓1 ppm in each round. Consequently,

at any time, the frequencies of all the nodes are confined to one of two values,

fs(1±k), k ∈ {1, 2, . . . , 50} ppm. We also see that some nodes make unnecessary

adjustments when the frequencies have almost converged (around 10000 slots). If

the dead zone is not large enough, such unnecessary adjustments by a few nodes

could drag the frequencies of the other nodes along. This might result in the nodes

eventually having a common frequency that is outside the band where they began

i.e fs×[1−ρmax, 1+ρmax]. This is not desirable in practice. In our simulations, we

find that a dead zone of width 3µ suffices in the noiseless setting to prevent this

from happening. A precise characterization dead zone width required to guaran-

tee that the frequencies remain bounded within the original range, similar to the

one provided for the averaged system, is left as an open issue.

Example 3: We now consider the same setting as in Example 1, except that

the measurements are noisy. From Figure 2.6, we see that the steady march of the

nodes towards convergence is eventually stalled by the measurement noise. The

node frequencies fall within the dead zone and the nodes are unable to make a

reliable decision on whether their frequencies are greater or lesser than the aver-

age. Thus, we have an eventual network-wide frequency error of 11.7 ppm in this

70

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.5 1 1.5 2 2.5 3
x 10

4

−50

−30

−10

10

30

50

Slot Index

F
re

qu
en

cy
 D

ev
ia

tio
n

fr
om

 n
om

in
al

 (
pp

m
)

(a) Omnidirectional network, grid topology

0 0.5 1 1.5 2 2.5 3
x 10

4

-50

-30

-10

10

30

50

Slot Index

F
re

qu
en

cy
 D

ev
ia

tio
n

fr
om

 n
om

in
al

 (
pp

m
)

(b) Directional network, ring topology

Figure 2.5: Frequency deviations of all 36 nodes. Skews are randomly distributed
and measurements are noiseless.

case. The size of the dead zone could potentially be reduced by waiting longer

between frequency adjustments, thereby allowing the nodes to average the noise

in the timestamps to a greater degree. However, this approach does not provide

substantial gains because the phase error between nodes, in this regime, is domi-

nated by erroneous phase adjustments rather than mildly disparate frequencies.

While we have limited our discussion here to three representative examples,

we have carried out extensive simulations that show that our observations apply

qualitatively to diverse combinations of node topologies, network directionality

and measurement noise strength.

Mean Network Wide Frequency Error: We plot the network wide fre-

quency error, averaged over 50 runs, as a function of time in Figures 2.7 - 2.10.

We consider networks of 16/36/64 nodes arranged in a ring/grid topology with

71

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.5 1 1.5 2 2.5 3
x 10

4

−50

−30

−10

10

30

50

Slot Index

F
re

qu
en

cy
 D

ev
ia

tio
n

fr
om

 n
om

in
al

 (
pp

m
)

Figure 2.6: Frequency deviations
of all 36 nodes in an omnidirectional
network with a grid topology. Skews
are randomly distributed and mea-
surements are noisy.

noiseless and noisy implicit timestamps. We examine each scenario for omnidi-

rectional as well as directional networks. Two things are common to these plots:

(1) For about the first 10000 slots, the network wide frequency error drops by

2µ = 2 ppm each time a frequency adjustment is made. This drop is virtually

independent of different parameters such as network size, topology, directional-

ity and measurement noise. The steady fall occurs because there are nodes with

frequencies far above and below the mean at the beginning; these nodes make

the right adjustment every time (see Proposition 5). (2) We observe that the

number of rounds of frequency adjustment that contribute to a decrease in the

network wide frequency error is also virtually independent of parameters such as

network size, topology, directionality and measurement noise. It depends only on

72

Chapter 2. Distributed Implicit Network Timing Synchronization

the network wide frequency error at the start and the adjustment step size. Since

the network wide error drops by 2 ppm in each round, the number of rounds of

frequency adjustment required is roughly 100 ppm/2 ppm = 50.

0 0.5 1 1.5 2 2.5 3
x 10

4

0

20

40

60

80

100

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(a) Noiseless measurements

0 0.5 1 1.5 2 2.5 3
x 10

4

0

20

40

60

80

100

Slot Index
A

vg
. o

f m
ax

im
um

 n
et

w
or

k
w

id
e

fr
eq

ue
nc

y
er

ro
r(

pp
m

)

16 Nodes
36 Nodes
64 Nodes

(b) Noisy measurements

Figure 2.7: Network wide frequency error in a directional setting with a grid
topology. Skews are distributed randomly.

0 0.5 1 1.5 2 2.5 3
x 10

4

0

20

40

60

80

100

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(a) Noiseless measurements

0 0.5 1 1.5 2 2.5 3
x 10

4

0

20

40

60

80

100

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(b) Noisy measurements

Figure 2.8: Network wide frequency error in a directional setting with a ring
topology. Skews are randomly distributed.

73

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.5 1 1.5 2 2.5 3
x 10

4

0

15

30

45

60

75

90

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(a) Noiseless measurements

0 0.5 1 1.5 2 2.5 3
x 10

4

0

15

30

45

60

75

90

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(b) Noisy measurements

Figure 2.9: Network wide frequency error in an omnidirectional setting with a
grid topology. Skews are randomly distributed.

0 0.5 1 1.5 2 2.5 3
x 10

4

0

15

30

45

60

75

90

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(a) Noiseless measurements

0 0.5 1 1.5 2 2.5 3
x 10

4

0

15

30

45

60

75

90

Slot Index

A
vg

. o
f m

ax
im

um
 n

et
w

or
k

w
id

e
fr

eq
ue

nc
y

er
ro

r(
pp

m
)

16 Nodes
36 Nodes
64 Nodes

(b) Noisy measurements

Figure 2.10: Network wide frequency error in an omnidirectional setting with a
ring topology. Skews are randomly distributed.

An important metric is the eventual network wide frequency error. For the

noiseless setting (Figures 2.7(a), 2.8(a),2.9(a),2.10(a)) the network wide frequency

error settles to a value on the order of the adjustment step-size µ = 1 ppm. This

value is almost independent of the network topology and the directionality; for

74

Chapter 2. Distributed Implicit Network Timing Synchronization

all combinations of the topology and directionality, the error is confined to 0.9-

1.2 ppm. When the implicit timestamps are noisy, the eventual network wide

frequency error depends mildly on the size of the network and the directionality

(Figures 2.7(b),2.8(b),2.9(b),2.10(b)) . For example, in directional networks with a

ring topology, the eventual network wide frequency error is about 8.9 ppm with 16

nodes and it increases to 10.2 ppm with 64 nodes; the corresponding numbers for

an omnidirectional setting are 9.4 ppm and 10.9 ppm respectively. The eventual

frequency synchronization error is also a little higher with the grid topology: for

example, in a directional setting, the error is about 10.1 ppm with 16 nodes and

13.3 ppm with 64 nodes. In all these cases, we see that there is a ten-fold decrease

in the network wide frequency error - from 100 ppm to about 10 ppm (roughly).

Worst Phase Error Between Neighbors: We now investigate the largest

error in clock phase between any two nodes that are neighbors. We split our

discussion into two cases: in the first case, the skews are distributed randomly

and in the second case, they are distributed badly.

Case A - Random Distribution of Skews: We choose the node skews randomly

and plot the worst phase error for directional networks in Figure 2.11. We also

plot the worst phase error for omnidirectional networks operating in the OnlyIn-

tended mode and Eavesdrop mode in Figures 2.12 and 2.13 respectively. Note

that all the plots have noisy implicit timestamp measurements. From these plots,

75

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.6 1.2 1.8 2.4 3
x 10

4

0

20

40

60

80

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(n

an
os

ec
on

ds
)

16 Nodes
36 Nodes
64 Nodes

(a) Grid Topology

0 0.6 1.2 1.8 2.4 3
x 10

4

0

100

200

300

400

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(n

an
os

ec
on

ds
)

16 Nodes
36 Nodes
64 Nodes

(b) Ring Topology

Figure 2.11: Worst phase error between neighbors in a directional setting with
noisy measurements. Skews are randomly distributed.

0 0.6 1.2 1.8 2.4 3
x 10

4

0

20

40

60

80

100

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(a) Grid Topology

0 0.6 1.2 1.8 2.4 3
x 10

4

0

100

200

300

400

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(b) Ring Topology

Figure 2.12: Worst error between neighbors in an omnidirectional setting with
randomly distributed skews. Measurements are noisy and nodes are in the On-

lyIntended mode.

we see that the phase errors fall “smoothly” from their values at startup - after

the coarse synchronization procedure - to their steady-state values. The eventual

phase error increases mildly with network size and changes very little with the

76

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.6 1.2 1.8 2.4 3
x 10

4

0

20

40

60

80

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(a) Grid Topology

0 0.6 1.2 1.8 2.4 3
x 10

4

0

50

100

150

200

250

300

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(b) Ring Topology

Figure 2.13: Worst error between neighbors in an omnidirectional setting with
randomly distributed skews. Measurements are noisy and nodes are in the Eaves-

drop mode.

topology. For example, in directional networks with a ring topology, the eventual

phase error only increases from 6.25 ns to 10.7 ns when the network size increases

from 16 nodes to 64 nodes. The corresponding numbers for the grid topology are

very similar: 6.49 ns (16 nodes) and 9.05 ns (64 nodes). Similarly, the errors in

omnidirectional networks with ring and grid topologies are close; they increase

from 6.5µs for 16 node networks to about 10µs for 64 node networks.

Case B - Badly distributed skews: We plot the largest phase error with badly

distributed skews for directional networks in Figure 2.14 and omnidirectional net-

works in Figures 2.15 and 2.16 respectively.

These curves have a conspicuous “hump” at the start - particularly the ones

corresponding to the ring topology, Figures 2.14(b), 2.16(a), 2.16(b)) - where the

77

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.6 1.2 1.8 2.4 3
x 10

4

0

20

40

60

80

100

120

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(n

an
os

ec
on

ds
)

16 Nodes
36 Nodes
64 Nodes

(a) Grid Topology

0 0.6 1.2 1.8 2.4 3
x 10

4

0

50

100

150

200

250

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(n

an
os

ec
on

ds
)

16 Nodes
36 Nodes
64 Nodes

(b) Ring Topology

Figure 2.14: Worst phase error between neighbors in a directional setting. Skews
are badly distributed and measurements are noisy.

0 0.6 1.2 1.8 2.4 3
x 10

4

0

50

100

150

200

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(a) OnlyIntended

0 0.6 1.2 1.8 2.4 3
x 10

4

0

20

40

60

80

100

120

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(b) Eavesdrop

Figure 2.15: Worst phase error between neighbors in an omnidirectional setting
with a grid topology. Skews are badly distributed, measurements are noisy.

phase error rises before falling. This occurs because the round sizes (and hence

spacing between frequency updates) required are large, which gives phase errors

a chance to grow before they can be reduced with frequency updates. We now

compare the size of the hump - which is the peak value of the phase error between

78

Chapter 2. Distributed Implicit Network Timing Synchronization

0 0.6 1.2 1.8 2.4 3
x 10

4

0

100

200

300

400

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(a) OnlyIntended

0 0.6 1.2 1.8 2.4 3
x 10

4

0

100

200

300

400

Slot Index

A
vg

. o
f w

or
st

 p
ha

se
 e

rr
or

be
tw

ee
n

ne
ig

hb
or

s
(m

ic
ro

se
co

nd
s)

16 Nodes
36 Nodes
64 Nodes

(b) Eavesdrop

Figure 2.16: Worst phase error between neighbors in an omnidirectional setting
with a ring topology. Skews are badly distributed, measurements are noisy.

neighbors - for differing network sizes, topologies and modes of operation.

Firstly, by comparing the plots for grid and ring topologies (for example, Figure

2.14(a) vs. 2.14(b) [or] Figure2.15(a) vs. 2.16(a)), we observe that the hump is

much larger with the ring topology. For example, in the OnlyIntended mode

in omnidirectional networks with 64 nodes, the size of the hump is 360µs in the

ring topology as compared to 175µs in the grid topology. This is consistent with

earlier results from phase-only adjustments, where we found that the errors scale

much faster with the number of nodes for a ring topology as compared to the

grid topology. In all these figures, we see that the size of the hump increases

with the number of nodes in the network. We can summarize both these facts

by concluding that the size of the hump increases with the network diameter.

Next, we compare omnidirectional networks operating in the Eavesdrop and

79

Chapter 2. Distributed Implicit Network Timing Synchronization

OnlyIntended modes. Comparing Figures 2.16(a) and 2.16(b), we see that the

size of the hump in an omnidirectional setting with a ring topology is almost twice

as large in the OnlyIntended mode as compared to the Eavesdrop mode. For

example, with a 64 node ring network, the size of the hump is about 360µs in

the OnlyIntended mode; but, it is only about 200µs in the Eavesdrop mode.

This is a clear illustration of the benefits of eavesdropping.

80

Chapter 3

Space-time localization using

times of arrival

We investigate the problem of localizing multiple events that occur in quick

succession based on their Times of Arrival (ToAs) at different sensors. We start

with a quick recap of the main features of the problem:

• The order in which the events are heard at any given sensor need not be the

same as the order in which they occur.

• The näıve strategy of sorting the ToAs in ascending order and using the ith

ToA at each sensor to localize the ith event will fail. Considering all combi-

nations of ToAs and retaining only the “good” combinations is excessively

complex and does not guarantee correct localization either. Furthermore,

these methods are fragile and break easily when the sensing process is non-

ideal (sensors miss events and record outlier ToAs).

81

Chapter 3. Space-time localization using times of arrival

In this chapter, we present feasibility results, an example of ambiguity that arises

due to the presence of multiple events and a robust, low-complexity algorithm to

localize the events assuming that we have deployed “enough” sensors.

Map of this chapter: We begin by describing the related literature on source

localization in Section 3.1 and then explain the system model in Section 3.2. In

Section 3.3, we explore the fundamental limits of localizing multiple events from

their ToAs when the sensing process is ideal – there are no misses or outliers at

any of the sensors and the ToA measurements are noiseless. First, we show that

when the temporal separation between the events is larger than the propagation

delay corresponding to the diameter of the deployment region, the ordering of

the events is preserved in the observed ToAs at each sensor. In such cases, the

näıve strategy of sorting ToAs will work. Then, we show that we can localize two

events perfectly if we deploy enough sensors and that there might be fundamental

ambiguities in localization if we do not deploy enough sensors. Specifically, we

show that nine sensors are sufficient to localize two events (as long as they do

not lie on a branch of a hyperbola) and we construct an example to show that

six sensors do not suffice to guarantee perfect localization. After establishing

these fundamental limits, we propose and describe a three-stage algorithm to

localize multiple events from their ToAs in the presence of outliers and misses.

We present the key ideas behind the algorithm in Section 3.4. The next three

82

Chapter 3. Space-time localization using times of arrival

sections present the mathematical details behind each of the stages. In Section

3.5, we thin down the set of candidate events considerably by discretizing the

times at which events occur. This lets us generate hypothesized event locations

by intersecting circles drawn at pairs of sensors. However, some of these events

are “phantoms” (corresponding to events that did not occur, but are on the list

of candidates) and others are “duplicates” (since every pair of sensors we consider

generates a candidate close to the location where an event actually occurred).

We present a clustering algorithm to merge these duplicates and at the end of

this stage, we are left with a palette of events, consisting of true and phantom

candidates. In Section 3.6, we use measurements at all the sensors to refine these

candidates in an iterative fashion, bootstrapping with the estimates from Section

3.5. At the end of the refining process, the palette has two properties: (1) it

contains much fewer candidates than what a näıve discretization of space and

time would produce and (2) the estimates of the actual events are very close to

their true locations because of the refinements in Section 3.6. Thus, we can now

solve the problem of rejecting the phantoms, picking the events that occurred

and associating the events to the observed ToAs with relatively low-complexity.

We do this in two steps: (a) first, we show that the association problem is a

variant of the matching problem on a graph and that it can be formulated as an

integer program. (b) We then relax the integer program to solve a linear program

83

Chapter 3. Space-time localization using times of arrival

and further reduce the complexity. Finally, we show via extensive simulations in

Section 3.8 that the proposed algorithm is effective in estimating the number of

events as well as their locations and times.

3.1 Related Work

There is a vast literature on the general problem of source localization, includ-

ing algorithms using ToAs [49], AoAs [15], Time Differences of Arrival (TDoAs)

[7], [4],[52], hybrid versions of these (hybrid TDoA-AoA) [5] and wideband pro-

cessing of recorded signals [8]. The survey paper [24] provides a more exhaustive

set of references for each of these techniques. Most such prior work considers one

event at a time, and hence ignores the association problem central to this paper. A

notable exception is [40], which does consider localization of multiple events using

ToA sensors. The basic idea is to discretize the space-time grid, count how many

sensors “agree” with a given grid point, and estimate event locations and times as

local maxima of this count. The complexity of this approach grows with the size

of the deployment region and the desired granularity of the space-time estimates.

In contrast, our algorithm only discretizes the times at which events can occur, so

that its complexity is independent of the size of the deployment region. Further,

the algorithm in [40] does not explicitly account for the constraints associated

84

Chapter 3. Space-time localization using times of arrival

with the problem (for example, every ToA must either be associated with a single

event or declared to be an outlier), unlike the linear program based matching in

our algorithm. Note that [40] considers three-dimensional localization, while we

restrict attention to two spatial dimensions for simplicity. However, our approach

generalizes in a straightforward manner to three spatial dimensions by intersect-

ing spheres instead of circles, using triplets rather than pairs of sensors in the first

stage. The second and third stages would remain unchanged.

In terms of feasibility of localization, the number of sensors and conditions on

the sensor configuration for perfect event localization from TDoA measurements

are characterized in [53]. However, these results are for a single event, and do not

address the space-time localization problem considered here.

It is interesting to note that the inspiration for our algorithm comes from

the center-surround neural response characteristic of mammalian vision [19]. The

complex scenes that we perceive are obtained by intersecting such responses and

using feedback from higher layers, which is similar in spirit to our algorithm.

3.2 System Model

We consider N sensors deployed at locations θ1, θ2, . . . , θN within a two-

dimensional region D that we wish to monitor. We observe the system over the

85

Chapter 3. Space-time localization using times of arrival

time window [0, T]. An unknown number of events, E, occur during this period.

The eth event is described by the triplet (αe, te) where αe ∈ R2 is the spatial

location and te the time of occurrence of the event. For any sensor s, the event

e is missed with probability pmiss, and, with probability 1 − pmiss, produces the

following noisy ToA reading:

τ(e↔ s) = te +
||αe − θs||

c
+ n (3.1)

where c denotes the speed of propagation, ||.|| denotes the two-norm of a vector

and n is the measurement noise, assumed to be distributed as N(0, σ2). Misses

and measurement noise are assumed to be independent across events and sensors.

We simplify notation by choosing our units to set c = 1, so that the measurement

model in (3.1) simplifies to

τ(e↔ s) = te + ||αe − θs||+ n. (3.2)

For our statistical processing, we model event occurrence as a space-time Poisson

process, with events occurring at rate λLS per unit time, with locations uniformly

distributed over D.

Outliers: Outliers typically result from “small-scale” events, typically heard at

only one sensor (e.g., a nearby slamming car door may trigger an acoustic sensor

deployed for detecting far-away explosions), which we are therefore unable to, and

not interested in, localizing. We do not model the locations of such events and

86

Chapter 3. Space-time localization using times of arrival

model their ToAs as arising from a Poisson process with a rate λO (per unit time)

at each sensor. These processes are assumed to be independent across sensors.

Sensor Observations: Suppose that sensor s records Ms ToAs due to events

and outliers in the time window [0, T]. We denote the ith ToA at sensor s by

τs(i), where the ToAs are sorted in ascending order at each sensor. Therefore, the

set of observations at sensor s is given by Ωs = {τs(1), τs(2), . . . , τs(Ms)}, with

τs(i) ≤ τs(j) whenever i ≤ j. The number of ToAs can vary across sensors because

misses and outliers occur independently at each sensor.

3.3 Feasibility of localizing multiple events

In this section, we investigate the feasibility of localizing multiple events under

the most ideal of conditions: no misses, no outliers, no noise. We first ask when

a standard single event localization algorithm can be used as a building block

for multiple event localization using a näıve approach that solves the association

problem using sorting: the ToAs at each sensor are arranged in ascending order,

the ith largest ToA at each sensor is associated with the ith event, followed by

the use of a standard single event localization algorithm to localize each event.

Clearly, this approach works when the order of ToAs at each sensor is the same as

87

Chapter 3. Space-time localization using times of arrival

the order of occurrence of the events, which happens if the events are separated

“enough” in time. The following theorem provides a precise characterization of

this observation.

Theorem 2. The näıve approach will localize all events perfectly if the time in-

terval between any two events is larger than the diameter of the deployment region

D. (Note: Units of space and time are chosen so that the propagation speed c = 1.

For arbitrary units, the temporal separation must be D/c.)

Proof. The näıve algorithm will localize all events correctly if the order in which

the events arrive at all sensors is the same as the order in which they occur. The

ith grouping will then consist of the ToAs produced by the ith earliest event and,

since the measurements are noiseless, the conventional algorithm will localize the

events perfectly. We now show that the ordering of events is preserved in the

ToAs they produce, if every pair of events is temporally separated by at least the

diameter of the deployment region D.

Suppose that two events Ea = (αa, ta) and Eb = (αb, tb) produce ToAs τa and

τb at a sensor located at θ. Without loss of generality, suppose that Ea occurs

after Eb(ta ≥ tb). Using the defining equation for the ToAs (3.2) and the fact that

the measurements are noiseless, we get

τa − τb = ta − tb +
(

||αa − θ|| − ||αb − θ||
)

. (3.3)

88

Chapter 3. Space-time localization using times of arrival

Since the sensors and the events are located within the deployment region, we

have 0 ≤ ||αa − θ|| ≤ D and 0 ≤ ||αb − θ|| ≤ D where D is the diameter of the

deployment region. Therefore, the term within brackets in (3.3) can be bounded

as

−D ≤ ||αa − θ|| − ||αb − θ|| ≤ D. (3.4)

Since the events are well separated in time, we also have ta ≥ tb +D. Using this

fact and the inequality from (3.4) in (3.3), we get

τa − τb ≥ D −D = 0. (3.5)

Thus, τa ≥ τb and the order in which events arrive at any sensor is the same as

the order in which they occur.

Example: Consider a network of acoustic sensors deployed over a circular region

of radius 1 km. Since the speed of sound is 340 m/s, the näıve approach suffices

to localize events that are separated by roughly 6 seconds. However, if the time

between events is smaller than 6 seconds, we need more sophisticated approaches

to the association problem.

Even when events are closely spaced in time, it is intuitively plausible that we

can localize these events correctly if we deploy “enough” sensors. We now show

that 9 sensors suffice to localize two events (with arbitrarily small separation in

space and time, for noiseless observations), if the placement of the sensors is not

89

Chapter 3. Space-time localization using times of arrival

degenerate. Specifically, all sensors should not lie on one branch of a hyperbola.

We briefly review the terminology associated with hyperbolas, introduce and de-

fine the term half-hyperbola and then prove the required result.

A point θ ∈ R2 lies on a hyperbola with foci f1,f2 ∈ R2 and major axis of

length |a|(a ∈ R) if
∣

∣

∣

∣

||θ − f1|| − ||θ − f2||
∣

∣

∣

∣

= |a|. (3.6)

A hyperbola consists of two branches – the first branch contains the points that

lie on ||θ − f1|| − ||θ − f2|| = |a| and the other branch contains the points that

lie on ||θ − f1|| − ||θ − f2|| = −|a|. We use the term half-hyperbola to refer to a

curve which is one of the branches of a hyperbola, defined as follows:

Definition A set of points Θ in the two-dimensional plane are said to lie on a

half-hyperbola if there exist f1,f2 ∈ R2 and a ∈ R, so that,

||θ − f1|| − ||θ − f2|| = a ∀θ ∈ Θ. (3.7)

We are now ready to state our feasibility result.

Theorem 3. Suppose that two events E1 = (α1, t1) and E2 = (α2, t2) produce

ToAs at each one of N sensors located at θ1, θ2, . . . , θN . Then, we can guarantee

perfect localization of the events, if the number of sensors N ≥ 9 and the sensors

do not lie on a half-hyperbola.

90

Chapter 3. Space-time localization using times of arrival

Proof. We prove the result by contradiction. First, we suppose that an alternate

set of events that explains the ToAs at all the sensors exists, preventing us from

localizing the events correctly. We then show that the existence of such an alter-

nate explanation violates one of the conditions in the theorem, thereby proving

the required result.

For our ideal observation model (no misses, no outliers, exactly two ToAs at

each sensor), we can have an imperfect reconstruction only if there is an alter-

nate set of events Ea = (αa, ta) and Eb = (αb, tb) which also explain the recorded

ToAs. For the explanation set {Ea, Eb} to be different from the set of events that

produced the ToAs {E1, E2}, these sets must differ in at least one event. This can

happen in one of two ways:

Case a: Neither of the events {Ea, Eb} are the same as either of the events

{E1, E2}.

Case b: One of the events is the same but the other event is different. For

example, we might have Ea = E1 (meaning, αa = α1 and ta = t1), but Eb 6= E2

(meaning αb 6= α2, tb 6= t2, or both).

We analyze these cases separately.

Case a: All events are different – Since the explanation {Ea, Eb} produces the

same set of ToAs as {E1, E2}, exactly one of the following conditions must be true

at each sensor:

91

Chapter 3. Space-time localization using times of arrival

• The ToA corresponding to Ea is equal to the one produced by E1 and the

ToA corresponding to Eb is equal to that produced by E2.

• The ToA corresponding to Ea is equal to the one produced by E2 and the

ToA corresponding to Eb is equal to that produced by E1.

Let W1 denote the subset of sensors which satisfy the first condition and W2

denote the subset that satisfy the second condition. Then, the total number of

sensors N = |W1|+ |W2| where |A| denotes the cardinality of the set A. We now

show that |W1| ≤ 4.

Let θ denote the location of any sensor in W1. From the first condition, we

see that the location θ must satisfy both of the following equations:

ta + ||αa − θ|| = t1 + ||α1 − θ|| ⇒ ||θ −αa|| − ||θ −α1|| = t1 − ta (3.8)

tb + ||αb − θ|| = t2 + ||α2 − θ|| ⇒ ||θ −αb|| − ||θ −α2|| = t2 − tb. (3.9)

Equations (3.8) and (3.9) each describe a half-hyperbola. Furthermore, since the

events are all different, neither of these equations are trivial. Therefore, any

sensor in W1 must be located at the intersection of two half-hyperbolas. The

number of points of intersection of two half-hyperbolas is upper bounded by the

number of points in which their “parent” hyperbolas (obtained by including the

other branch of each half-hyperbola) intersect. By Bezout’s Theorem [53], two

92

Chapter 3. Space-time localization using times of arrival

hyperbolas intersect in at most 4 points. Thus, we have |W1| ≤ 4.

By a similar argument, we can show that |W2| ≤ 4. Thus, to construct two

events {Ea, Eb} so that: (i) they explain the ToAs produced by E1 and E2 at all

the sensors and (ii) neither Ea nor Eb is the same as either of the events E1 or E2,

we need the number of sensors N to satisfy,

N = |W1|+ |W2| ≤ 4 + 4 = 8 (3.10)

Case b: One of the events is same – Suppose now that Ea = E1 but Eb 6= E2.

Then, (3.8) is trivially true and all we can say about sensors in W1 (W1 and W2

have the same definition as in Case (a)) is that their location θ must satisfy (3.9).

We now show that the sensors in W2 will also lie on this half-hyperbola.

Let θ denote the location of any sensor in W2. Using the fact that Ea = E1

and writing out the conditions that a sensor in W2 must satisfy, we have

t1 + ||α1 − θ|| = t2 + ||α2 − θ|| ⇒ ||θ −α2|| − ||θ −α1|| = t1 − t2 (3.11)

tb + ||αb − θ|| = t1 + ||α1 − θ|| ⇒ ||θ −αb|| − ||θ −α1|| = t1 − tb. (3.12)

Subtracting (3.11) from (3.12), we see that the location θ of a sensor in W2 must

satisfy (3.9). Thus, if we construct an alternate explanation for the recorded data

which differs in only one of the two events, then all sensors must lie on a half-

hyperbola.

93

Chapter 3. Space-time localization using times of arrival

Therefore, if we can find two sets of events {E1, E2} and {Ea, Eb} that explain

the recorded ToAs at N sensors, then either (i) N ≤ 8 or (ii) all the sensors lie on

a half-hyperbola. The true events {E1, E2} obviously explain the recorded data.

Since we are given that N ≥ 9 and we cannot draw a half-hyperbola through

all the sensors, an alternate explanation of the data such as {Ea, Eb} cannot exist

(since such an explanation would violate either (i) or (ii)). Consequently, the only

explanation for the ToAs are the events {E1, E2} themselves, thereby guaranteeing

perfect localization.

Remark: If all the sensors were to lie on a half-hyperbola, then we cannot

guarantee localizing even a single event (an event happening at one focus of the

half-hyperbola could produce the same ToAs as an event happening at the other

focus provided their times are chosen appropriately [53]). Thus, the only addi-

tional requirement in localizing two events is that the number of sensors N ≥ 9.

Note that degenerate placement of sensors on a half-hyperbola is a zero probabil-

ity event for random sensor deployment, and is not possible for regular grid-like

deployments.

The immediate question that arises is: can we give an example where two

distinct event sets {E1, E2} and {Ea, Eb} produce the same ToAs at N = 8 sensors

94

Chapter 3. Space-time localization using times of arrival

(which do not lie on a half-hyperbola), so that these sets cannot be disambiguated?

While we are not able to answer this question conclusively, we use insights from

the analysis in Case (a) to construct an example where 6 sensors are unable to

distinguish between the event sets {E1, E2} and {Ea, Eb}.

Example: We use two key ideas in constructing this example:

• We choose the event locations α1,α2,αa and αb and the parameters t1− ta

and t2 − tb so that the half-hyperbolas in (3.8) and (3.9) intersect in four

points. This gives us four sensors inW1 which cannot disambiguate between

the event sets {E1, E2} and {Ea, Eb}.

• Having made these choices, we show that there is only one free parameter

that fixes the two defining half-hyperbolas for any sensor in W2. We choose

this parameter to ensure that these half-hyperbolas intersect in two points.

The example is shown in Figure 3.1 and we now provide the details of the con-

struction.

We denote the half-hyperbolas that define the setW1 by HH1 (3.8) and HH2

(3.9) respectively. First, we choose α1 = (1, 0), αa = (−1, 0) and t1 − ta = 1.3

so that HH1 opens out towards the right and its axis coincides with the x-axis.

This is the blue curve marked HH1 in Figure 3.1. We now choose α2 and αb

so that HH2’s axis points towards the axis of HH1, thereby tending to increase

95

Chapter 3. Space-time localization using times of arrival

0 5 10 15

−15

−10

−5

0

5

x

y

Sensors
Events 1 & 2
Events A & B

φ
1φ

a

φ
b

φ
2

HH
1

HH
2

Figure 3.1: Each one of the sensors shown by the pink dots record two ToAs
– one from Event 1 and the other from Event 2, whose locations are shown by
the black triangles. However, events A and B, shown by the red squares, also
produce the same set of ToAs at all the sensors. Therefore, the sensors are unable
to decide which of the event sets {Ea, Eb} and {E1, E2} occurred.

the number of points in which HH1 and HH2 intersect. Specifically, we choose

α2 = (3, 3.2) and αb = (3, 6) so that axes are at right-angles to one another.

Next, we pick t2 − tb = 2.5 so that HH2 opens downwards and intersects HH1 in

four points. The four sensors located at these points of intersection cannot dis-

ambiguate between the event sets {E1, E2} and {Ea, Eb}. We now identify possible

sensor locations in the set W2. By the definition of the set W2, the location θ of

96

Chapter 3. Space-time localization using times of arrival

any sensor in W2 must satisfy both the equations

||θ −α2|| − ||θ −αa|| = ta − t2 (3.13)

||θ −α1|| − ||θ −αb|| = tb − t1. (3.14)

Since we have already chosen α1,α2,αa and αb, we only need to specify tb − t1

and ta − t2 in these equations to define the set W2. However, we cannot choose

tb − t1 and ta − t2 independently because we have already set t1 − ta = 1.3 and

t2 − tb = 2.5 and these four quantities add up to zero. Therefore, we choose

ta − t2, and set tb − t1 appropriately, so that the half-hyperbolas in (3.13) and

(3.14) intersect in two points. For the example shown in Figure 3.1, we used

ta − t2 = −0.3. These equations can be solved numerically to obtain the sensor

locations. The six sensors shown in Figure 3.1 cannot distinguish between the

event pairs:

Event A: αa = (−1, 0), ta = 0 Event B: αb = (3, 6), tb = −2.2 (3.15)

Event 1: α1 = (1, 0), t1 = 1.3 Event 2: α2 = (3, 3.2), t2 = 0.3 (3.16)

3.4 Algorithm Overview

We now turn our attention to the problem of designing a low-complexity al-

gorithm to localize multiple events which are closely spaced in time, in a manner

97

Chapter 3. Space-time localization using times of arrival

Figure 3.2: Geometry of the processing in Stage 1. Six sensors s, s′, s1, s2, s3, s4

are shown. Sensors s and s′ have two ToAs each, denoted by {τ1(s), τ2(s)} and
{τ1(s′), τ2(s′)}. ToAs τ1(s) and τ1(s

′) were produced by an event E that occurred
at time te ≈ lǫ. Consider a hypothesized event time u = lǫ and draw circles C1s

and C2s, centered at sensor s, with radii τs(1)− u and τ2(s)− u (likewise for C1s′

and C2s′). C1s and C1s′ intersect at a point ê close to E ’s location. All other points
of intersection between Cis and Cjs′∀i, j (denoted by pi, i = 1, . . . , 5) are phantom
estimates.

that is robust to misses and outliers. We provide an overview of our three-stage

algorithm here, followed by a detailed description of each stage in the following

sections.

Stage 1: The goal of the first stage is to quickly generate a number of candidate

events that are “reasonably good”. To do this, we first discretize the times at

98

Chapter 3. Space-time localization using times of arrival

which large-scale events might have occurred and suppose that they only take

the values (. . . ,−2ǫ,−ǫ, 0, ǫ, 2ǫ, . . .). Next, we hypothesize that an event at t =

lǫ produced the ith ToA at sensor s and jth ToA at sensor s′. Under these

hypotheses, it is easy to show that the event must be located at the intersection

of two circles – the circles are centered at the sensor locations θs and θs′ and their

radii are given by τs(i) − lǫ and τs′(j) − lǫ respectively. Since the intersection

of two circles can be specified in closed-form, we can generate the event location

easily. By repeating this process for other values of (l, s, i, s′, j), we generate a

number of candidate event locations.

What does this list of candidates look like? Suppose that an event (αe, te)

produced the ToAs τs(i) and τs′(j) at sensors s and s′ in reality. Consider a

hypothesized event at a time u that is close to te, say u = ǫ⌊te/ǫ⌋. The event

location produced by intersecting circles centered at θs and θs′ with radii τs(i)−u

and τs′(j)−u will be close to the true event location αe. Thus, estimates close to

true event locations will be a part of the list of candidates. On the other hand,

suppose that one of hypotheses is false – either the ToAs τs(i) and τs′(j) are not

produced by the same large scale event or even if they are, the event is not at

the hypothesized time lǫ. In such cases, intersecting circles centered at θs and

θs′ with radii τs(i)− lǫ and τs′(j)− lǫ produces an estimated event location; but,

such an event clearly did not occur in reality. We call such estimates “phantoms”.

99

Chapter 3. Space-time localization using times of arrival

Figure 3.2 shows an example of true and phantom estimates being generated by

intersecting circles drawn at sensors s and s′.

To discard phantom estimates from the list, we compute a “goodness” metric

for each of these events. This metric uses the measurements at all the sensors to

capture the likelihood of the event having happened. We discard candidate esti-

mates whose goodness falls below a threshold from the list. Since many phantoms

have a low value of goodness, the list is pruned considerably. However, we choose

the threshold conservatively to ensure that no event estimate close to a true event

is discarded (in spite of non-idealities such as noise, misses at some sensors etc.).

As a result, some phantom estimates survive the pruning process and remain on

the list of candidate events. Therefore, the output of Stage 1 is a list of candidate

events, containing both true and phantom estimates.

Stage 2: An event estimate from Stage 1 produced by intersecting circles centered

at a pair of sensors is bound to be noisy, since it does not take measurements at

other sensors into account. In the second stage, we use measurements at all the

sensors to refine this noisy estimate. We do this in an iterative fashion. In the first

iteration of Stage 2, we use the event estimates from Stage 1 as a starting point

and linearize the constraints imposed by the ToA measurements about this point

at all the sensors. This allows us to refine the estimate with low-complexity. In

subsequent iterations of Stage 2, we use the estimates from the previous iteration

100

Chapter 3. Space-time localization using times of arrival

as the starting point to further refine them. The output of this stage, therefore, is

a palette of events, that contains refined versions of both true and phantom event

estimates.

Stage 3: The goal of Stage 3 is to pick the true event estimates from the over-

complete palette of candidate events, containing both true and phantom event

estimates. To do this, we pick the subset of events from the palette that fit the

observations at all the sensors in the “best” possible fashion. In principle, this

can be done by brute-force: pick a subset of events from the palette, hypothesize

that this subset contains all the true events that occurred and no phantom events,

evaluate the likelihood of the observations under this hypothesis and pick the sub-

set with the largest likelihood as the estimate of events that occurred. However,

we show that it can be solved far more efficiently by posing it as a variant of

the matching problem on a graph. The events in the palette form the first set of

nodes in the graph and the observations at different sensors form the other set.

The objective is to pick events from the palette and then add edges to the graph,

pairing the “picked events” with the observations at different sensors. Each edge

comes with a value, which captures the likelihood that the event at one end of the

edge generated the observation at the other end. Furthermore, we need to satisfy

some constraints while adding the edges. Specifically, the two sets of constraints

are: (i) at each sensor, an event must either produce a ToA or declared to be

101

Chapter 3. Space-time localization using times of arrival

missed and (ii) every ToA must either be associated with an event or declared

to be an outlier. We capture such constraints in a binary integer programming

problem. Finally, we relax the integer program and solve a linear problem to pick

the “most likely” subset of events from the palette.

We now provide a detailed description of each stage.

3.5 Stage 1: Generating Candidate Events

Suppose that τs(i), the ith ToA at sensor s, and τs′(j), the jth ToA at sensor s′,

are produced by the same event that occurred at time u = lǫ. If the measurements

are noiseless, we see from (3.2), the location of the hypothesized event, denoted

by r, must satisfy

u+ ||r− θs|| = τs(i) ⇒ ||r− θs|| = τs(i)− u (3.17)

u+ ||r− θs′|| = τs′(j) ⇒ ||r− θs′|| = τs′(j)− u. (3.18)

Thus, the hypothesized event must be located at the intersection of two circles

centered at θs and θs′ with radii τs(i) − u and τs′(j) − u respectively. Denoting

the points of intersection by r+ and r−, we have

r± =
θs + θs′

2
− R2

s′ −R2
s

2d2
ss′

(θs′ − θs)±
b

2d2
ss′

(θ⊥
s′ − θ⊥

s), (3.19)

102

Chapter 3. Space-time localization using times of arrival

where Rs = τs(i)−u and Rs′ = τs′(j)−u are the radii of the circles, dss′ = ||θs−θs′ ||

is the distance between the sensors, b =
√

[(Rs +Rs′)2 − d2
ss′] [d

2
ss′ − (Rs − Rs′)2]

and θ⊥
s′ − θ⊥

s =









0 1

−1 0









(θs′ − θs) is a vector perpendicular to the line joining

the sensors θs′ − θs.

If an event at (αe, te) indeed produced both the ToAs τs(i) and τs′(j), and the

hypothesized event time u = lǫ ≈ te, then one of the location estimates r+ or

r− will be close to αe (but perturbed by noise) and the other will be a phantom

estimate. On the other hand, if τs(i) and τs′(j) are not produced by the same

event or the hypothesized event time is not close to that of any event, then both

(r+, u) and (r−, u) are phantom estimates that we should discard ultimately.

Accuracy of Estimates: We now calculate the covariance of the spatial location

estimates r± when the ToA measurements are noisy and use it to compute the

“goodness” of the estimated events (r±, u). Suppose that the ToAs τs(i) and

τs′(j) are corrupted by measurement noises ns(i) and ns′(j) respectively, leading

to corresponding errors e± in the spatial event estimates (3.19). Assuming that

the measurement noises are small and using a Taylor series expansion of (3.19),

103

Chapter 3. Space-time localization using times of arrival

we get e± = K±









ns(i)

ns′(j)









where,

K± = M

















Rs

dss′

−Rs′

dss′

Rs(dss′−β)

dss′

√
R2

s−β
2
q±

βRs′

dss′

√
R2

s−β
2
q±

















(3.20)

with M =

[

θs′−θs

dss′

θ⊥

s′
−θ⊥

s

dss′

]

, β = (R2
s−R2

s′ +d
2
ss′)/2dss′ and q± = sign

(

(r±−θs)
T

(θ⊥
s′ − θ⊥

s)
)

. Using the fact that ns(i) and ns′(j) are independent Gaussian ran-

dom variables, we obtain the covariance matrices of the estimates to be C± =

E
(

e±eT±
)

= σ2K±KT
±.

We repeat this process for other choices of ToA pairs and hypothesized event

times, resulting in a list of candidate events {(rn, un)} with covariance matrices

{Cn = σ2KnK
T
n}, n = 1, 2, We now compute a goodness metric for each of

these candidates to quickly discard those that are “obviously” phantom estimates

from the list.

Goodness Metric: Consider a candidate event E = (r, u) with a covariance ma-

trix C = σ2KKT . The goodness metric for E is designed to capture the likelihood

of the observations at all the sensors, assuming that E happened. We compute

the goodness in two steps: first, we calculate individual goodnesses for E at each

sensor and then, multiply them out to obtain an overall goodness. The basic

104

Chapter 3. Space-time localization using times of arrival

steps in computing the goodness for the event E at a generic sensor s are as fol-

lows:

1. Assuming that E happened, we predict the expected ToA that sensor s

must have seen, given by ηs = u+ ||r− θs||.

2. We compare the ToAs observed at sensor s, given by Ωs = {τs(1), . . . , τs(Ms)},

with the predicted ToA ηs and pick the one that is closest to ηs. We denote this

ToA by τs(E), i.e.,

τs(E) = arg min
i
|τs(i)− ηs| (3.21)

Loosely speaking, τs(E) is the best evidence that the sensor s has to offer for the

event E having taken place.

3. The goodness at sensor s depends solely on the difference between the pre-

dicted ToA ηs and the observed ToA τs(E), given by zs = τs(E)− ηs. We denote

the goodness for E at sensor s by L(zs). Intuitively, we expect L(zs) to be large

if the mismatch zs is small and decrease monotonically as zs increases.

Before getting into the details of computing L(zs), we make a few remarks on

what we would expect zs to typically look like. Suppose that the event E actually

happened and is not a phantom estimate. Assume further that it was heard at

sensor s. Then, the only sources of mismatch zs are the uncertainty in estimated

event location (captured by the covariance matrix C) and the measurement noise,

105

Chapter 3. Space-time localization using times of arrival

both of which are expected to be “small”. Thus, in this case, we would expect

zs also to be small. On the other hand, the event E could have happened, but

might have been missed at sensor s. In this case, zs is obtained by comparing the

predicted ToA ηs with the ToA produced by some other event (τs(E) has to be

produced by a different event, since E was missed at sensor s). In such cases, we

would expect zs to be large (compared to the typical values taken by the mea-

surement noise). Therefore, if zs is large at a “few” sensors, then it is possible

that the event E was simply missed at these sensors. On the other hand, if zs is

large at too many sensors, then it is more likely that E is a phantom estimate.

Based on this intuition, we compute L(zs) in two steps: we first condition on

the event E being heard or missed at sensor s and obtain the conditional like-

lihoods, L(zs|E heard) and L(zs|E missed). The overall goodness is a weighted

average of the conditional likelihoods, with the weights depending on the proba-

bility of miss as

L(zs) = (1− pmiss)L(zs|E heard) + pmissL(zs|E missed). (3.22)

We now provide the details of computing L(zs|E heard) and L(zs|E missed).

Computing L(zs|E heard): Suppose that event E was heard at sensor s and

τs(E) was the corresponding ToA. Since the spatial location of E has an uncertainty

captured by a covariance matrix C, we can model it as the sum of two terms r+e,

106

Chapter 3. Space-time localization using times of arrival

where e is a random variable with E(e) = 0 and E(eeT) = C. Assuming now that

the event occurred at (r + e, u), τs(E) must satisfy the measurement model (3.2):

τs(E) = u+ ||r + e− θs||+ n, (3.23)

where the n ∼ N(0, σ2) is the measurement noise. If the error in the estimated

event location ||e|| is much smaller than the distance between the event and sensor

s ||r − θs||, we can expand ||r + e − θs|| as a Taylor series in e and retain only

the linear term, to approximate it as

||r + e− θs|| ≈ ||r− θs||+
〈

e,
r− θs

||r− θs||

〉

, (3.24)

where 〈., .〉 denotes the standard inner product. Using this approximation in

(3.23), we get

τs(E) ≈ u+ ||r− θs||+
〈

e,
r− θs

||r− θs||

〉

+ n. (3.25)

Recognizing u + ||r − θs|| to be the predicted ToA ηs and using the fact that

τs(E)− ηs = zs, we get

zs =

〈

e,
r− θs

||r− θs||

〉

+ n. (3.26)

This equation is intuitively pleasing: the mismatch zs arises because of the un-

certainty in the event location estimate e and measurement noise n. From (3.20),

we see that the error in the location estimate e can be expressed as K









n1

n2









107

Chapter 3. Space-time localization using times of arrival

where n1 and n2 are independent N(0, σ2) random variables. Since n1, n2 and n

are all Gaussian random variables with zero mean, zs is also a zero mean Gaussian

random variable. Neglecting any correlation between n1, n2 and n, we compute

the variance of zs, denoted by σ2
s , to be

σ2
s = σ2

(

1 +
|| (r− θs)

T
K||2

||r− θs||2

)

. (3.27)

Finally, since zs ∼ N(0, σ2
s), we obtain the conditional likelihood L(zs|E heard) to

be

L(zs|E heard) =
1

√

2πσ2
s

exp

(

− z2
s

2σ2
s

)

. (3.28)

Computing L(zs|E missed): When the event E is missed at sensor s, the ob-

servation zs is obtained by taking the difference between the predicted ToA for

E , denoted by ηs, and an observed ToA τs(E) produced by a completely different

event. Furthermore, we note that τs(E) is the closest among all ToAs recorded

at sensor s to ηs (see (3.21)). Two conditions must be satisfied for this to have

happened: (a) there must be no ToAs at sensor s that are closer to ηs than τs(E).

In other words, there must be no ToAs in the interval [ηs − |zs|, ηs + |zs|] where

zs = τs(E)− ηs. (b) We must observe a ToA close to ηs + zs i.e. there must be a

ToA in the infinitesimal interval [ηs + zs, ηs + zs + dz]. We note that each sensor

observes ToAs being generated at a rate λ = λLS(1 − pmiss) + λO. We make the

further assumption that these ToAs arrive according to a Poisson process with

108

Chapter 3. Space-time localization using times of arrival

rate λ. With this assumption, the probability of (a) happening is exp(−2λ|zs|)

and the likelihood of (b) is λdz. Since the time intervals considered in (a) and (b)

do not overlap, the events are independent and we obtain

L(zs|E missed)dz = exp(−2λ|zs|)λdz. (3.29)

Therefore, L(zs|E missed) = λ exp(−2λ|zs|) ∀zs.

Putting (3.22),(3.28) and (3.29) together, we get the goodness at sensor s to be

L(zs) =
(1− pmiss)
√

2πσ2
s

exp

(

− z2
s

2σ2
s

)

+ pmissλ exp(−2λ|zs|). (3.30)

Note that the exponential in the second term decays much slower than the first

– it goes down only as exp(−|zs|) unlike the first which decays as exp(−|zs|2).

Therefore, the net effect of this term is to ensure that L(zs) does not become too

small even when zs is fairly large. Furthermore, typical values of 1/λ (for exam-

ple, a value of 5/3 corresponding to 3 events in 5 seconds) are much larger than

σ (typically 0.01 s), further slowing down the decay of the second term relative

to the first. Therefore, for all practical purposes, we can neglect the decay in the

second term and simply approximate L(zs) as

L(zs) ≈
(1− pmiss)
√

2πσ2
s

exp

(

− z2
s

2σ2
s

)

+ pmissλ. (3.31)

The overall goodness for the event E , denoted by g, is

g =

N
∑

s=1

log (L(zs)) (3.32)

109

Chapter 3. Space-time localization using times of arrival

If the goodness g falls below a threshold κ, we declare the event to be a phantom

and discard it from the candidate list.

Choosing the threshold κ: We choose the threshold κ conservatively, thereby

ensuring that we retain estimates close to true event locations and only discard

candidates that are “obviously” phantoms. Specifically, we choose κ so that a true

event is discarded with a probability smaller than a predetermined value δthrow.

We now provide the details of computing κ.

Consider the eth event Ee = (αe, te) that occurred. Let X0 and X1 denote the

set of sensors that missed and heard Ee respectively. As before, we let zs denote

the difference between the predicted time and the “best evidence” (3.21) for Ee

at sensor s. Consider a sensor s that heard the event (s ∈ X1). At such a sensor,

the first term in (3.31) dominates the second (for the parameter choices we are

interested in) and we can approximate logL(zs) as

logL(zs) ≈
[

log
1− pmiss
√

2πσ2
s

]

− z2
s

2σ2
s

s ∈ X1. (3.33)

where zs ∼ N(0, σ2
s). To further simplify the analysis, we neglect variations in the

prediction error variance σ2
s across sensors in the first term of the above expression.

We set σ2
s ≈ σ2 in the first term of (3.33) and get

logL(zs) ≈
[

log
1− pmiss√

2πσ2

]

− z2
s

2σ2
s

s ∈ X1. (3.34)

110

Chapter 3. Space-time localization using times of arrival

Now consider a sensor s′ that missed Ee (s′ ∈ X0). At such a sensor, the first term

in (3.31) dies down rapidly and we can approximate logL(zs′) as

logL(zs′) ≈ log pmissλ s′ ∈ X0. (3.35)

Therefore, if N1 sensors hear the event and N −N1 sensors miss the event, we can

use (3.34) and (3.35) to obtain an approximate expression for the goodness of Ee:

g =

[

log
1− pmiss√

2πσ2

]

N1 + [log(pmissλ)](N −N1)−
1

2

∑

s∈X1

z2
s

σ2
s

. (3.36)

Since the prediction error zs ∼ N(0, σ2
s), the term

∑

s∈X1

z2s
σ2

s
in (3.36) is a chi-

squared distributed random variable with N1 degrees of freedom. Thus, condi-

tioned on N1 sensors hearing Ee, the goodness has a chi-squared distribution with

N1 degrees of freedom, whose mean is shifted by the first two terms in (3.36).

Let us denote this distribution by fG(g|N1). By the law of total probability, the

unconditional distribution of the goodness fG(g) is given by

fG(g) =

N
∑

N1=0

fG(g|N1) p
N−N1

miss (1− pmiss)N1 . (3.37)

We set the threshold κ so that the chance that the goodness for Ee is lower than

this threshold is equal to δthrow:

P (G < κ) =

∫ κ

−∞

fG(g)dg = δthrow (3.38)

We run Monte Carlo simulations to generate samples of G according to the dis-

tribution in (3.37) and then pick the threshold to satisfy (3.38).

111

Chapter 3. Space-time localization using times of arrival

Clustering via ToA groupings: While we have discarded events that are ob-

viously phantoms by thresholding the goodness, the list can be pruned further

by eliminating events that are essentially “poorer duplicates” of other events on

the list. To understand the origins of duplication in the list of candidate events,

consider the following example. Suppose that for a hypothesized event time u,

we intersect circles of radii τs(i) − u and τs′(j) − u centered at sensors s and s′

to produce an event estimate ra. Consider the “next” hypothesized event time

u′ = u + ǫ. If ǫ is “small”, intersecting circles of radii τs(i) − u′ and τs′(j) − u′

centered at sensors s and s′ will result in an event estimate rb that is very close

to ra. It is clear that (ra, u) and (rb, u
′) are estimates of the same event and it is

sufficient to store the “better” estimate among the two. We could do this by us-

ing a standard clustering algorithm which groups estimates that are close in space

and time and stores only the “best” representative from each group. However, we

exploit the structure of the problem to cluster these events in a principled fashion

by introducing the concept of a grouping.

Consider an event E = (r, u) whose goodness is above the threshold. As be-

fore, we denote the predicted ToA for E at sensor s by ηs = u+ ||r− θs|| and the

corresponding “best fit” evidence by τs(E) (the observed ToA at sensor s that is

closest to ηs). The grouping p associated with an event E is a set of N quantities

{p1, p2, . . . , pN} where ps stores the evidence τs(E) if it is “compelling”; otherwise,

112

Chapter 3. Space-time localization using times of arrival

it records the fact that sensor s has missed the event. Specifically, if the difference

|τs(E)−ηs| is smaller than a threshold γ, we set ps = τs(E); otherwise, we store the

string miss in ps. Duplicated events, such as ra and rb in the example described

above, are likely to have the same grouping – since the events are close to one

another in space and time, evidence that is “compelling” for one is also likely to

be compelling for the other. This observation provides us with a simple rule to

cluster events and pick a representative: if two events (r1, u1) and (r2, u2) have

groupings p1 and p2 that are identical, then we only retain the event with the

greater goodness (as defined in (3.32)).

3.6 Stage 2: Refining the Estimates

The event location estimates in Stage 1 are produced by intersecting circles

whose radii are derived from the observed ToAs at a pair of sensors s, s′. Since

the measurements are noisy and we do not account for the measurements at other

sensors, the estimates can have significant errors. In this section, we use the

measurements at all sensors to refine such noisy estimates.

Let E = (r, u) be a generic event in the candidate list at the end of stage 1.

We only use the sensors that have “compelling” evidence for E in the refinement

process. Specifically, letting ηs = u + ||r − θs|| denote the predicted ToA for E

113

Chapter 3. Space-time localization using times of arrival

at sensor s and τs(E) be the corresponding “best fit” ToA, we use sensor s in the

refinement process only if |τs(E)− ηs| ≤ γ.

Refinement Procedure: Suppose that the sensors s1, s2, . . . , sQ have ToAs that

are within γ of the predicted ToA for E = (r, u) at these sensors. We denote the

best evidence for E at these sensors by τs1(E), τs2(E), . . . , τsQ
(E) respectively. Since

the refined estimate, denoted by (r+∆r, u+∆u), must fit the measurement model,

we have

τsj
(E) = u+ ∆u+ ||r + ∆r− θsj

||+ nsj
, (3.39)

where nsj
∼ N(0, σ2) and j = 1, 2, . . .Q. If the spatial refinement ||∆r|| is much

smaller than the distance ||r − θsj
|| between the event and sensor sj , we can

expand ||r+ ∆r−θsj
|| as a Taylor series in ∆r and retain only the linear term to

approximate it as

||r + ∆r− θsj
|| ≈ ||r− θsj

||+
〈

∆r,
r− θsj

||r− θsj
||

〉

, (3.40)

where 〈., .〉 denotes the standard inner product. With this approximation, (3.39)

can be rewritten as

τsj
(E)− u− ||r− θsj

|| =
[

rT −θT
sj

||r−θsj
|| 1

]









∆r

∆u









+ nsj
. (3.41)

for j = 1, 2, . . . , Q. Let y denote the Q dimensional vector whose jth component

is τsj
(E) − u − ||r − θsj

|| and H denote the Q × 3 matrix whose jth row is

114

Chapter 3. Space-time localization using times of arrival

[

rT−θT
sj

||r−θsj
|| 1

]

. Then, the least-squares estimate of [∆r ∆u] is given by









∆r̂

∆û









= (HTH)−1HTy. (3.42)

We update the event location and time estimates and set r ← r + ∆r̂ and u ←

u+∆û. We now use the refined estimate (r+∆r̂, u+∆û) as a starting point and

repeat the process – this includes computing the grouping for (r + ∆r̂, u + ∆û),

using the grouping to identify sensors that heard it and then refining the estimate

further using the ToAs at these sensors. We typically perform 10 such rounds of

refinement for each candidate point from stage 1. The threshold parameter γ –

used to decide if a sensor heard/missed E – must be chosen appropriately and

from our simulations, we find that choosing γ = 6σ works well.

To conclude, the output of stage 2 is a palette of candidate events that are

refined versions of the estimates from stage 1. Note that the palette contains both

true and phantom event estimates.

3.7 Stage 3: Picking true events from the palette

In this stage, we pose and solve a problem on a graph to discard phantom

events from the overcomplete palette and only retain the ones that occurred. The

events in the palette, denoted by E1 = (r1, u1), . . . , EP = (rP , uP), form one set

115

Chapter 3. Space-time localization using times of arrival

of nodes of the graph and the observations at the sensors form the other set of

nodes. Figure 3.3 shows an example of such a graph. We represent the events in

Figure 3.3: Modified version of matching problem on a bipartite graph. Events
in the palette are shown as blue circles and the observations at sensors are shown
as blue stars. Green circles represent events that are picked while red circles
denote phantom events. We need to draw edges between the picked events and
the observations, subject to constraints, so as to maximize the sum of the values
of the edges.

the palette by the blue circles in the uppermost row of the graph. Each observed

ToA is denoted by a blue star and the ToAs observed at a sensor are arranged

116

Chapter 3. Space-time localization using times of arrival

in a column. In the example shown in Figure 3.3, there are 4 sensors and they

have {3, 2, 4, 3} observations respectively. The nodes marked M1,M2,M3,M4 are

“miss” nodes, that serve as proxies for any observations that might have been

missed at the sensors. Similarly, the node marked Outlier acts as a representative

for small-scale events that generate outlier observations at different sensors. The

goal of Stage 3 is to pick a subset of the events E1, E2, . . . , EP from the palette and

associate them with the observations at the different sensors, thereby establishing

a correspondence between the two “halves” of the bipartite graph. The problem

of picking the “most reasonable” correspondence can be phrased as a constrained

binary integer program and we provide the details now.

The first set of decisions we must make are: for each e = 1, 2, . . . , P , did event

Ee happen or is it a phantom? We store the decision for the eth event in a binary

variable δe and refer to those events that we declared to have happened (δe = 1)

as “picked events”. The second row of the graph in Figure 3.3 shows an example

of such decisions – picked events are shown in green (E1, E3 and E6) while the ones

declared to be phantoms are shown in red (E2, E4 and E6).

The next task is to establish a correspondence between the picked events and

the observations at various sensors. First, we identify the constraints that a

“valid” correspondence must satisfy. Consider a picked event Ee (such as E3 in

Fig. 3.3). For each sensor s, we must decide on two things with regard to Ee:

117

Chapter 3. Space-time localization using times of arrival

(a) Was Ee heard/missed at sensor s and (b) if it was heard, which observation

did it generate? These decisions can be neatly summarized in the graph of Figure

3.3. Suppose that we draw edges between the event Ee and all the observation

nodes at sensor s (this includes blue stars representing the ToAs in Ωs and the

miss node Ms, denoted by an orange cross). The four black lines in Figure 3.3

connecting E3 to τ1(1), τ1(2), τ1(3) and M1 are examples of such edges. We can

now provide the answers to (a) and (b) by “activating” exactly one of these edges

and specifying which one it is; for example, if decide that Ee was missed at sensor

s, we activate the edge joining Ee and Ms (E3 and M1 in the example of Fig. 3.3).

On the other hand, if we decide that Ee was heard at sensor s, we activate the

edge between Ee and the appropriate observation in Ωs (one of the edges between

E3 and τ1(1), τ1(2) and τ1(3) in this example). Note that we need to specify such

a correspondence only for the picked events (green circles) and not for phantom

estimates (red circles). Next, we consider the point of view of an observed ToA

at one of the sensors (for example, the first observation at sensor 2, denoted by

τ2(1), in Figure 3.3). This ToA must either be generated by a picked event or

it must be an outlier. As before, we draw edges between the observation node

and all the events in the palette (shown by pink and red lines in Fig. 3.3). If we

declare this ToA to be an outlier, we activate the edge that joins it to the node

marked “Outlier”; on the other hand, if we decide that it was produced by a picked

118

Chapter 3. Space-time localization using times of arrival

event, we activate the appropriate pink edge. Note that we cannot activate any

of the dotted red edges, because they associate this ToA to events that we have

already declared to be phantoms. We now state these correspondence constraints

formally.

Let i be a running index for all the observation nodes (including the “miss”

nodes) as shown in the figure. Let Ω#
s = Ωs

⋃

Ms – the set of all observed ToAs

at sensor s and the miss node Ms – denote the observation nodes at sensor s. Let

wie = 1 if we activate the edge between observation i and event Ee; otherwise, we

set wie = 0.

Event Node Constraints: Consider a picked event Ee (one with δe = 1). Since

it must be associated with exactly one observation node at each sensor s, we have

∑

i∈Ω#
s

wie = 1 ∀s, {∀e : δe = 1}

wie ∈ {0, 1}. (3.43)

To convert this into a constraint that is valid for all events – and not just for those

that are picked – we can rewrite (3.43) as

δe









∑

i∈Ω#
s

wie



− 1



 = 0 ∀s, e. (3.44)

When δe = 1, this reduces to the constraint in (3.43) and when δe = 0, the

constraint is trivially satisfied. Therefore, we need to choose our decisions wie and

119

Chapter 3. Space-time localization using times of arrival

δe so that they satisfy the constraints

∑

i∈Ω#
s

wieδe = δe ∀s, e. (3.45)

Observation Node Constraints: Next, we consider the point of view of a node

i that is an observed ToA at one of the sensors (not one of the miss nodes). Let

µiO = 1 if we declare observation i to be an outlier; otherwise, we set µiO = 0.

On the other hand, if we wish to associate it with a picked event (say, event e),

then we must have wieδe = 1. Since the observation node i must either be paired

with a picked event or declared as an outlier, we have

P
∑

e=1

wieδe + µiO = 1 ∀i ∈ Ω1 ∪ Ω2 . . . ∪ ΩN

wie, µiO, δe ∈ {0, 1} ∀i, e. (3.46)

Cost function: We pick events from the palette and choose their correspondence

with the observed ToAs to maximize the likelihood of the observations, given these

decisions. Computing the likelihood is simplified by using the following fact: given

the decisions (picking events and choosing the correspondence), the observations

at two sensors s and s′ are independent. This allows us to phrase the problem of

picking the “most likely” decisions in a simple manner, using the graphical model

of Figure 3.3: (1) We assign a value to each edge that connects an event node and

an observation node. This value captures the likelihood – in fact, it is equal to

120

Chapter 3. Space-time localization using times of arrival

the logarithm of the likelihood – that the observation was produced by the event.

(2) Our goal is to pick events and activate edges, subject to the aforementioned

constraints, so that sum of the values of the activated edges is maximized. We

now specify the values of different edges.

Consider an edge between an event node Ee and the miss node Ms at sensor

s. The value of this edge is log(pmiss), since the chance that an event is missed at

any sensor is pmiss. Next, consider the edge between event Ee = (re, ue) and the

jth observation at sensor s, τs(j). For Ee to produce this observation, two things

must happen – (a) Ee must be heard at sensor s and (b) given that it was heard

at sensor s, it must produce the observation τs(j). The chance that (a) happens

is 1− pmiss and the likelihood of (b) happening is exactly equal to the probability

that the measurement noise accounts for the difference between the observed ToA

τs(j) and the predicted ToA ue + ||re − θs||. Putting them together, we get the

value of the edge between Ee and τs(j) to be

val(Ee, τs(j)) =

(

log
1− pmiss√

2πσ2

)

− (τs(j)− ue − ||re − θs||)2
2σ2

. (3.47)

The value of the edge joining an observation at sensor s to the outlier node is

trickier to compute. Since the outliers are generated by a Poisson process of rate

λO, the chance that there are k outliers at sensor s over an observation window

of length T is e−λOT (λOT)k/k!. The logarithm of this quantity, denoted by L, is

121

Chapter 3. Space-time localization using times of arrival

given by (ignoring constants),

L = k log(λOT)− log(k!). (3.48)

To see the problem, let us pretend that the term log(k!) is absent. Then, this

equation has a very simple interpretation: declaring an observation to be an out-

lier has the value log(λOT) and the overall value of declaring k observations at

a sensor to be outliers is k log(λOT). However, the presence of the term log(k!)

implies that the value of declaring an observation to be an outlier cannot be

a constant quantity, say logα; rather, it also depends on the number of other

observations we declare to be outliers. To circumvent this problem, we approxi-

mate the distribution of the number of outliers to be geometric with parameter

q (as opposed to the true Poisson(λOT) distribution). With this approximation,

the log-likelihood of observing k outliers at sensor is k log q. Thus, we can set

the value of an edge that joins an observation at sensor s to the outlier node

to log q. We choose q to ensure that the probabilities assigned by the Poisson

and geometric distributions are close to one another. Specifically, we choose q so

that the mean-square error between the sequences {(1 − q)qn, n = 0, 1, . . .} and

{e−λOT (λOT)n/n!, n = 0, 1, . . .} is minimized. The overall value of the decisions

122

Chapter 3. Space-time localization using times of arrival

{δe, wie, µiO} is given by

J =
∑

s

∑

i∈Ω#
s

P
∑

e=1

ciewieδe +
∑

s

∑

i∈Ωs

ciOµiO, (3.49)

where cie is the value of activating the edge between the ith observation node

(note that this could be a miss node too) and the eth event and ciO = log q is

the value of declaring the ith observation node to be an outlier (note that this

summation is only over observed ToAs and does not include miss nodes).

From (3.44), (3.46) and (3.49), we see that the decision variables wie are always

multiplied by δe and never occur by themselves. This is because we can only

activate edges that connect the observation nodes to events that we pick from the

palette. We use this fact to define new decision variables µie , wieδe, which are

also binary-valued. We can pose the problem of maximizing the cost function

in (3.49) subject to the constraints in (3.44) and (3.46) as the following binary

integer program (all variables either take the value 0 or 1):

max J =
∑

s

∑

i∈Ω#
s

P
∑

e=1

cieµie +
∑

s

∑

i∈Ωs

ciOµiO

∑

i∈Ω#
s

µie = δe ∀s, e

P
∑

e=1

µie + µiO = 1 ∀i ∈ Ω1 ∪ Ω2 . . . ∪ ΩN

δe, µie, µiO ∈ {0, 1} ∀i, e.

(3.50)

123

Chapter 3. Space-time localization using times of arrival

A technical point: The variables µie and δe are also linked through the rela-

tionship µie = wieδe, where wie is binary valued. It might appear that we have

omitted these constraints from the above formulation. We show in the appendix

that these constraints can indeed be excluded without any change to the solution.

We relax the integer program and allow the variables to take any value between

0 and 1. This allows us to solve the problem as a linear program (LP), which is

much faster. In all our simulations, when the number of sensors is “large enough”

(typically, we simulate N = 8 or N = 16 sensors and E = 3 events), we find that,

the decision variables that optimize the LP only take the values 0 or 1 and never

take any value in between. This is analogous to the efficacy of LP decoding for

turbo-like codes and it is of interest to investigate whether the literature in this

area [33] can shed light on the performance of our algorithm. Finally, we declare

the events “picked” by the LP (those with δe = 1) to have taken place.

3.8 Simulation Results

Sensor Deployment Model: We run two sets of simulations – one with a “mod-

erate” density of sensors and the other with a larger deployment density. For the

moderate density scenario, we place N = 8 sensors at random in a circular region

of radius R = 1020 meters. The denser deployment consists of N = 16 sensors

124

Chapter 3. Space-time localization using times of arrival

placed at random over an identical region.

Event Generation Model: We generate E = 3 large-scale events, with their

times chosen at random from the interval 0-5 seconds. We choose the event lo-

cations so that they are “inside” the convex hull of the sensors. Specifically, we

pick them randomly from a region that is a scaled-down version of the convex hull

of the sensors, with the scale-factor being 90%. We generate outliers at a rate

λO = 3/100 events/sec at each sensor.

Measurement Model: We set the speed of sound c to 340 m/s. Guided by our

experimental results in [20], we choose the standard deviation of the measurement

noise σ to be 0.02 s. We choose the probability with which the sensors miss an

event to be pmiss = 5%.

Algorithm Choices: We set the granularity of the hypothesized event times

at ǫ = 0.04s. We assume that every sensor observes ToAs arriving at a rate

λ = 63/100(= 3/5 + 3/100) events/sec and use it to compute the goodness. We

choose the probability with which an actual event is discarded at the end of Stage

1 to be δthrow = 4 × 10−5 and compute the threshold κ accordingly (see (3.38)).

Finally, we choose q – the parameter of the geometric distribution that approxi-

mates the Poisson(λOT) distribution – to be 0.14.

We run 100 trials of the algorithm with the above parameters. The localiza-

tion errors obtained using the proposed algorithm are plotted in Figures 3.4(a)

125

Chapter 3. Space-time localization using times of arrival

and 3.4(b) for the N = 8 and N = 16 sensor scenarios respectively. To benchmark

the performance of our algorithm, we use the following “genie”. For each large-

scale event (αe, te), we pick the ToAs produced by this event at various sensors.

We then form the Time Difference of Arrivals (TDoAs) by taking the difference

between the ToAs observed at different sensors and the one seen at the “first”

sensor. These TDoAs are solely a function of the event location and we use them

to localize the source by a brute force search over “reasonably good” candidates.

Specifically, we discretize a 70m ×70 m region around the true source location αe

into a 2000× 2000 grid of points. We choose the point in the grid that best fits

the TDoAs at different sensors in the least-squares sense as the estimate of the

source (this is also the ML estimate if the measurement noise is Gaussian). The

solid red line in Figure 3.8 shows the localization errors observed with this genie

based approach. We make the following observations:

1. In all the trials, our algorithm correctly estimates the number of events to

be three.

2. From Figures 3.4(a) and 3.4(b), we see that the estimation errors produced

by the proposed algorithm and the genie virtually coincide with one another,

demonstrating the efficacy of the proposed scheme.

126

Chapter 3. Space-time localization using times of arrival

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Event Number

Lo
ca

liz
at

io
n

E
rr

or
 (

m
et

er
s)

Proposed Algo
Genie

(a) N = 8 sensors

0 50 100 150 200 250 300
0

5

10

15

20

Event Number

Lo
ca

liz
at

io
n

E
rr

or
 (

m
et

er
s)

Proposed Algo
Genie

(b) N = 16 sensors

Figure 3.4: Localization errors with the proposed algorithm and a genie-based
scheme with N = 8 and N = 16 sensors. The errors virtually coincide with one
another, demonstrating the efficacy of the proposed algorithm.

3. Specifically, for the N = 8 sensor case, the average localization error ob-

tained with proposed scheme is 5.87 m, which is only 0.07 m larger than

that obtained with the genie (average error = 5.8 m). Similarly, for the

larger deployment density scenario, the average localization error with the

proposed scheme is 3.92 m and the corresponding metric with the genie

based scheme is only marginally lower at 3.77 m.

127

Chapter 4

Collaborative Estimation in

Dispersive Environments

In this chapter, we study the problem of reconstructing an unknown signal

recorded at multiple sensors through unknown dispersive channels. The only in-

formation we are provided regarding the channels is a coarse estimate of their

length in time, also called the delay spread. We parallelize the problem by switch-

ing to the frequency domain and solve it as follows:

• Over small enough frequency bands, we approximate the channels seen by

each sensor as a quadratic function of frequency. This allows us to esti-

mate the signal within each band efficiently, bootstrapping with an estimate

obtained by approximating the channels to be constant within the band.

• However, since the signal and the channels are both unknown, the signals

can only be estimated up to a scale factor.

128

Chapter 4. Collaborative Estimation in Dispersive Environments

• We overlap the bands and use the continuity of the channels in the overlap-

ping region to estimate the scale factors. Finally, we reconstruct the signal

by combining the estimates from different bands with the appropriate scale

factors.

We find that the algorithm’s performance depends heavily on the bandwidth of

the signal and deteriorates as the signal bandwidth increases. We show that the

degradation at large signal bandwidths is because of a fundamental ambiguity

where multiple sources can explain the recorded observations. To do this, we

perturb the signal estimate in each frequency band by delaying it slightly. The

delays in different bands are not the same, but vary in a smooth manner. Thus,

even though the signal estimate in each frequency band approximates the true

signal very well, the overall reconstruction is very different. Simultaneously, we

ensure that the channel estimates satisfy the delay spread constraint, thereby

providing multiple explanations for the recorded observations.

Map of this chapter: We begin by describing the related work in Section 4.1 and

the system model in Section 4.2. In Section 4.3, we show that the channels can be

approximated as piecewise quadratic functions of frequency. We then explain the

estimation procedure in each band and the algorithm to estimate the scale factors

from overlapping bands. Sections 4.4 and 4.5 provide experimental and simulation

129

Chapter 4. Collaborative Estimation in Dispersive Environments

results that quantify the performance of the proposed algorithm. We describe the

procedure to construct multiple explanations for the observations when the signal

bandwidth is large in Section 4.6.

4.1 Related Work

Recently, acoustic sensor networks have been used to localize a wide variety of

sources; for example, sniper detection is investigated in [39], while applications in

field biology, such as localizing woodpeckers and marmots, are investigated in [48]

and [1] respectively. Acoustic sensing platforms that enable rapid deployability

have been developed in [17] and [2].

While our specific interest is in devising practical algorithms for collaborative

sensing, we note that the problem posed here falls within a broader framework of

blind multichannel identification and equalization, on which there is a large body

of literature in the signal processing community (e.g., see [44], [23] for excellent

reviews). A large subset of this work is not applicable to our setting, since it

assumes prior knowledge of source statistics, such as oversampled second order

statistics [46][21], or higher order moments [35]. However, there is a body of

work on “deterministic subspace methods” [51] that is indeed directly applicable,

since it treats the input as an unknown, deterministic sequence and requires no

130

Chapter 4. Collaborative Estimation in Dispersive Environments

assumptions on its statistics. Much of this work focuses on the mathematical

structure of the problem, and the key result is that, provided that the channels

do not have common zeroes, it is possible to reconstruct the signal. However,

signal reconstruction based on extracting common zeros of the recorded signals is

infeasible in practice because of its numerical instability and extreme sensitivity to

perturbations. Attempts to robustify this algorithm include [45], but this requires

statistical assumptions on the input. Reference [51] uses the idea of a “cross-ratio”

to formulate a least-squares problem in the time domain which can then be solved

using subspace methods. However, this time domain algorithm does not scale to

large datasets or large delay spreads, and, as the authors acknowledge, is sensitive

to knowledge of channel length. In contrast, our approach achieves scalability

by breaking the complex time domain problem into simple subproblems in the

frequency domain, while requiring only coarse assumptions on channel length (to

estimate the coherence bandwidth). Such parallelism in the frequency domain

makes it possible to devise implementable algorithms for sensing applications in-

volving blind deconvolution over dispersive channels; this is analogous to the way

in which OFDM simplified communication transceivers by eliminating the need

for complex time-domain based channel equalization schemes. Indeed, to the best

of our knowledge, the experimental results from our acoustic testbed presented

here are the first to demonstrate blind deconvolution in a practical setting involv-

131

Chapter 4. Collaborative Estimation in Dispersive Environments

ing long data records and highly dispersive channels.

Source localization and implicit signal estimation is investigated in [9], but

these results are for a LOS channel model.

There is a significant literature on correlated sensing for source coding (e.g.,

[29]) which is not relevant to this work, since we are using correlations to improve

signal estimation rather than to save transmission capacity. There is also a large

body of work on distributed detection [6, 47], but this is typically based on the

assumption that a model for the signal of interest is available, with the focus being

to reduce communication costs in fusing sensor observations.

4.2 System Model

We consider a system of S sensors recording distorted and noisy versions of

a common source signal x(t). For example, in our indoor acoustic testbed, an

acoustic signal is recorded at multiple microphones after multiple bounces off

walls and other reflectors. We model the distortion seen by the ith channel as

a linear time-invariant channel with impulse response hi(t), so that the signal

recorded by sensor i (1 ≤ i ≤ S) is given by

yi(t) = (x ⋆ hi)(t) + ni(t) t ∈ [0, T]

132

Chapter 4. Collaborative Estimation in Dispersive Environments

where ⋆ denotes the convolution operation, ni(t) is noise, and T is the duration of

the recording window. We do not have a prior model for the signal x(t) that we

wish to extract using our algorithms, hence the only distinction between signal

and noise is that we assume that the noise waveforms ni(t) are uncorrelated across

sensors. Thus, if there are undesired signals (which is, after all, what we think of as

“noise”) that are correlated across sensors, they would appear at the output of our

algorithm. Further, we model the noise waveforms ni(t) as white and Gaussian.

This assumption is not central to our algorithms (which are based on least squares

style methods), but if it holds, then maximum likelihood interpretations can be

given for certain estimates produced by our algorithms.

We work with discrete time samples of the recorded signals at rate fs, leading

to a received vector of length N = fsT samples at each sensor. We denote the

samples at sensor i by yi[n] = yi(n/fs), n = 0, 1, . . . , N − 1. In our acoustic

testbed, we typically record over T ≈ 4 seconds at fs = 16000 Hz, resulting in

N ≈ 64000 samples.

Channel Model: Since the impulse response hi(t) typically decays rapidly with

time, we model it as being time-limited to τmax: hi(t) = 0, t ≥ τmax, ∀i. The

equivalent discrete time channel hi[n] is therefore timelimited to P = fsτmax

taps. For example, in our testbed, we find that the acoustic channels can be well

modeled as timelimited to τmax = 100 milliseconds, corresponding to a length of

133

Chapter 4. Collaborative Estimation in Dispersive Environments

P = 1600. The discrete time received signal at sensor i is therefore given by

yi[n] = (x ⋆ hi)[n] + ni[n], n = 0, 1, 2, . . . , N − 1 (4.1)

where ⋆ denotes the linear convolution operation between the sequences {x[n], n =

0, 1, . . . , N − 1} and {hi[n], n = 0, 1, . . . , P − 1}. The noise samples ni[n] are

modeled as Gaussian random variables with variance σ2 and are assumed to be

independent across sensors and time.

Frequency Domain Definitions: We employ frequency domain processing in

order to break the “high-dimensional” problem of estimating the signal in the

time domain into a number of “low-dimensional” sub-problems that can be solved

in parallel. To this end, we take the N -point Discrete Fourier Transform (DFT)

of the received samples yi[n]:

Yi[k] =
1

fs

N−1
∑

n=0

yi[n] exp(−j2πkn
N

), k = 0, 1, . . . , N − 1 (4.2)

Similarly, we denote the N -point DFT’s of x[n] and hi[n] by X[k] and Hi[k]

(k = 0, 1, . . . , N − 1), respectively. Approximating the linear convolution in (4.1)

by a circular convolution and taking the DFT of (4.1), we obtain

Yi[k] = X[k]Hi[k] +Ni[k], k = 0, 1, 2, . . . , N − 1 (4.3)

where Ni[k] are independent, complex Gaussian random variables with variance

σ2.

134

Chapter 4. Collaborative Estimation in Dispersive Environments

Note on relation between continuous and discrete frequencies: Defining the Fourier

transform of the underlying continuous time signal yi(t) to be Yi(f) =
∫

yi(t)

exp(−j2πft)dt, we can interpret the summation in (4.2) as an approximation

to the Riemann integral defining Yi(f). Thus, the discrete frequency index k

corresponds to a “physical” frequency of k/T

Yi[k] ≈ Yi(f)
∣

∣

f=k/T
. (4.4)

For example, assuming a recording window of T = 4s, the term Yi[200] is approx-

imately equal to the contribution from a sinusoid of frequency f = 200/4s = 50

Hz to the continuous time signal yi(t).

Block Processing: The channel responses Hi(f) can be approximated by a

constant over “small” frequency bands whose width is termed the channel coher-

ence bandwidth, denoted by Bcoh (the coherence bandwidth is inversely related to

the channel delay spread τmax). Thus, the discrete frequency coefficients Hi[k]

are approximately constant over L = BcohT contiguous samples. Accordingly,

we process the frequency domain samples of the recorded signal Yi[k] in blocks

of L contiguous samples. For example, with a 4 second recording and a coher-

ence bandwidth of 5 Hz, the channels may be approximated by a constant over

L = 5 Hz × 4 s = 20 samples. We can now see the benefits of processing in the

frequency domain as opposed to the time domain: instead of processing “large”

135

Chapter 4. Collaborative Estimation in Dispersive Environments

blocks (on the order of 64000 samples), we can process many small blocks (of ∼ 20

samples) and then “stitch” the small blocks together. Note that the number of

samples in a block depends only on the channel coherence bandwidth Bcoh and

the observation interval T , but not on the sampling frequency fs.

Notation: Since our algorithms work on portions of the recorded sequence at a

time, it is worth establishing notation (to be followed throughout the rest of the

paper) for picking “subsets” of vectors. We use boldface to denote vectors (for

eg., u). We collect the samples of the source sequence x[n], channel to sensor i

hi[n], and the recorded samples yi[n] in N -dimensional real-valued vectors and

denote them by x, hi and yi respectively. Similarly, we collect the N -point DFT’s

of these quantities in N -dimensional complex-valued vectors denoted by X, Hi

and Yi respectively. We denote the lth element of a vector U by U[l]. We process

the recorded samples in frequency bands consisting of L contiguous indices. We

index the frequency bands by b. Suppose that frequency band b corresponds to

the indices {i1, i1 + 1, . . . , i1 + L − 1}. Then, we use U[Ib] to denote the vector

obtained by picking the samples at locations i1, i1 + 1, . . . , i1 + L− 1 from U i.e.

U[Ib] = (U[i1] U[i1 + 1] . . . U[i1 + L− 1]).

Example: To illustrate the notation, suppose that the frequency band b corre-

sponds to the physical frequencies 1000 Hz-1005 Hz, with the recording interval

being T = 4s. Then, from (4.4), the discrete indices corresponding to band b are

136

Chapter 4. Collaborative Estimation in Dispersive Environments

{4000, 4001, 4002, . . . , 4019}. Therefore, we have U[Ib] = (U[4000], U[4001], . . .

,U[4019]). Finally, we use U[Ib, l], 0 ≤ l ≤ L − 1 to denote the lth element of

U[Ib]. For example, with the above definition of band b, U[Ib, 2] picks out the

second element of U[Ib], which is U[4001].

4.3 Signal Estimation Algorithm

We have already noted that even a complicated time domain channel exhibits

a simple structure over a small enough frequency band. Traditionally (e.g., in

wireless transceiver design), it is approximated as constant over its coherence

bandwidth. However, for our purpose, a more sophisticated approximation is

required: we approximate the channel as a quadratic function of frequency over

each frequency block. Additionally, we note that the channel response varies

continuously with frequency. We reconstruct the source from the recorded signals

in two stages by exploiting these observations, as summarized below.

• Stage 1: We split the entire frequency range into small bands over which

the channel response may be approximated by a quadratic. We bootstrap by

approximating the channel as constant over band b, which allows us to employ an

SVD to estimate the source in band b efficiently. This source estimate provides the

starting point for an alternating optimization procedure that refines the estimates

137

Chapter 4. Collaborative Estimation in Dispersive Environments

of the quadratically varying channels and the source signal.

The alternating optimization consists of multiple iterations of two basic steps:

1. Given an estimate of the source signal in band b, find the best estimates of

channel responses to each sensor that are quadratic functions of frequency.

2. Given channel estimates to each sensor in band b that are quadratic functions

of frequency, find the best estimate of the source within this band.

• Stage 2: Since the signal as well as channels are unknown, there is a scaling

ambiguity in the signal estimate produced in stage 1. Thus, in order to reconstruct

a signal with bandwidth larger than the channel coherence bandwidth, the esti-

mates from different bands must be scaled consistently. This is accomplished by

using overlap between successive bands and exploiting the continuity of the chan-

nel. Finally, we use the estimated scale factors along with the signal estimates

from Stage 1 to reconstruct the source signal. We now provide the details.

4.3.1 Frequency domain channel model

We motivate our frequency domain channel modeling using a tapped delay line

time domain channel model. The impulse response is h(t) =
∑

k µkδ(t−τk) where

δ(t) is the Dirac delta function, and 0 ≤ τk ≤ τmax. The frequency response

H(f) =
∑

k µk exp(−j2πfτk). Consider the channel response over a frequency

138

Chapter 4. Collaborative Estimation in Dispersive Environments

band [f0−Bcoh/2, f0+Bcoh/2] where f0 is the center frequency and Bcoh is “small”.

Expressing a frequency f within band b relative to the center frequency as f =

f0 + δ (|δ| ≤ Bcoh/2), the channel response at f can be expressed as,

H(f0 + δ) =
∑

k

µk exp(−j2πf0τk) exp(−j2πδτk) (4.5)

=
∑

k

µk exp(−j2πf0τk)
[

1− (j2πτk)δ − (2π2τ 2
k)δ

2 + . . .
]

(4.6)

Assuming |δτk| ≪ 1, cubic and higher powers of δ are negligible in the power

series expansion of exp(−j2πδτk). Since |δ| ≤ Bcoh/2 and 0 ≤ τk ≤ τmax, the

condition |δτk| ≪ 1 is guaranteed by choosing Bcohτmax ≪ 1. Thus, a channel

that is time limited to τmax can be approximated as a quadratic function (with

complex coefficients) of frequency over any band of width Bcoh, where Bcoh ≪

1/τmax. Correspondingly, the discrete frequency samples H [k] are approximated

as quadratic functions of k over L = BcohT consecutive samples.

Continuity: For two successive bands overlapping on a set of common frequencies

Fcommon, we have

H [k] = A1 +B1k + C1k
2 ≈ A2 +B2k + C2k

2 ∀k ∈ Fcommon (4.7)

4.3.2 Stage 1: Estimation within a band

Consider a band b spanning the continuous frequencies [f1, f1 + Bcoh], and

corresponding discrete frequencies Ib = {f1T, f1T + 1, f1T + 2, . . . , (f1 +Bcoh)T}.

139

Chapter 4. Collaborative Estimation in Dispersive Environments

The frequency domain samples at sensor i in this band are given by

Yi[k] = Hi[k]X[k] +Ni[k], k ∈ Ib.

The algorithm begins with a bootstrapped estimate based on approximating the

channels as constant, followed by alternating optimization of signal and quadrat-

ically fitted channels.

Initial Guess

Approximating the channel gains as constant over the band, we obtain

Yi[k] ≈ H̄iX[k] +Ni[k], k ∈ Ib (4.8)

Following the notation in Section 4.2, we collect the samples within the band in

a vector and rewrite (4.8) concisely as

Yi[Ib] ≈ H̄iX[Ib] + N[Ib] (4.9)

where N[Ib] ∼ CN(0, σ2I).

Since the processing in each band is identical, we drop the identity of the band

from our notation in the following. Denoting the Maximum Likelihood (ML)

estimates of the signal by Ŝ and the channel for sensor i by Ĝi, respectively, we

have,

(Ŝ, Ĝi) = arg min
S,Gi

S
∑

i=1

||Yi[Ib]−GiS||2 (4.10)

140

Chapter 4. Collaborative Estimation in Dispersive Environments

where S is the number of sensors. An explicit procedure to obtain the estimates

becomes apparent with a small change in notation. We store the received signals

as the columns of a matrix Y[Ib] =
[

Y1[Ib]
∣

∣Y2[Ib]
∣

∣ . . .
∣

∣YS[Ib]
]

and collect the

complex conjugate of the channel gains in an S × 1 vector G = (G∗
1, G

∗
2, . . . , G

∗
S).

Then, the cost function in (4.10) can be rewritten as

S
∑

i=1

||Yi[Ib]−GiS||2 = ||Y[Ib]− SGH ||2F (4.11)

where ||.||F denotes the Frobenius norm of a matrix. Thus, the channel and the

signal estimates are simply the row and column spaces of a rank-one matrix that

approximates the recorded data Y in the best possible manner. We can compute

the best rank-one approximation easily by taking a singular value decomposi-

tion of Y and retaining only contribution from the left and right singular vectors

corresponding to the largest singular value.

Formally, the ML estimate of the signal Ŝ is the eigenvector with the largest

eigenvalue of the nonnegative definite matrix

M =

S
∑

i=1

Yi[Ib](Yi[Ib])
H

and the corresponding channel estimates are given by Ĝi = ŜHYi[Ib]/||Ŝ||2. How-

ever, we note that these ML estimates are unique only up to scaling: zŜ and

(1/z)Ĝi give exactly the same value for the cost function in (4.10) for any com-

plex scalar z.

141

Chapter 4. Collaborative Estimation in Dispersive Environments

Alternating Optimization

We now use the preceding signal estimate to refine the channel estimates by

capturing their quadratic variation over the bin. These refined channel estimates,

in turn, yield an updated signal estimate. This alternating optimization procedure

is described in detail below.

Given signal, estimate channels: Based on our quadratic approximation, the

ith channel, denoted by Gi[l], must be expressible in the form,

Gi[l] = Ai +Bil + Cil
2 l = 0, 1, . . . , L− 1 (4.12)

Given a signal estimate Ŝ, the channel to the ith sensor, over the band, must

satisfy

Yi[Ib, l] ≈ Ŝ[l]Gi[l] + Ni[Ib, l], l = 0, 1, . . . , L− 1 (4.13)

The ML estimate of the ith channel is now obtained by estimating the parameters

(Ai, Bi, Ci) as follows:

(Âi, B̂i, Ĉi) = arg min
Ai,Bi,Ci

L−1
∑

l=0

∣

∣

∣

∣

Yi[Ib, l]− Ŝ[l](Ai +Bil + Cil
2)

∣

∣

∣

∣

2

(4.14)

and substituting them into (4.12). This is a linear least squares problem that is

solved using standard regression techniques for each sensor.

Given channels, estimate signal: Now, suppose we have channel estimates

142

Chapter 4. Collaborative Estimation in Dispersive Environments

Ĝi[l] = Ai +Bil + Cil
2. Then the ML signal estimate satisfies

Ŝ[l] = arg min
S[l]

S
∑

i=1

∣

∣Yi[Ib, l]− Ĝi[l]S[l]
∣

∣

2
(4.15)

The solution is a “maximal ratio combining” rule (often used to generate decision

statistics for multipath channels):

Ŝ[l] =

∑S
i=1 Ĝ∗

i [l]Yi[Ib, l]
∑S

i=1 |Ĝi[l]|2
(4.16)

Output of Stage 1

After a few rounds of alternating optimization, we have an estimate of the

signal in each band b, denoted by Ŝb, and channels to all the sensors, denoted by

Ĝi,b. Due to the scale factor ambiguity, the estimates Ŝb and Ĝi,b are related to

the true signal X[Ib] and the channels Hi[Ib] in band b by an arbitrary complex

number zb, so that,

zbŜb ≈ X[Ib]

1/zbĜi,b ≈ Hi[Ib] (4.17)

In Stage 2, we use the continuity of the channel’s frequency response across bands

to estimate the scale factors zb and “stitch” together the signal estimates from

different bands.

143

Chapter 4. Collaborative Estimation in Dispersive Environments

4.3.3 Stage 2: L-to-R Stitching Algorithm

We estimate the weights zb by choosing adjacent bands to have significant

overlap with one another, and enforcing consistency in the overlapped region.

Reconciling multiple estimates of the same quantity: Consider adjacent

bands b−1 and b, as shown in Figure 4.1. Denote the frequencies common to bands

Figure 4.1: The figure shows our choice of overlapping frequency bands. The sig-
nal and the channel estimate samples in the crossed squares are used to determine
the scale factors zb in different bands.

b− 1 and b by Fcommon i.e. Fcommon = [b∆, (b− 1)∆+Bcoh] with ∆ = (1−χ)Bcoh.

The parameter χ ∈ (0, 1) controls the amount of overlap between adjacent bands.

144

Chapter 4. Collaborative Estimation in Dispersive Environments

We obtain two estimates of the channel to sensor i (upto a scale factor) within

Fcommon from Stage 1. The first estimate is obtained from band b − 1 by picking

the rightmost χL entries of Ĝi,b−1. The chosen entries are shown by crossed

squares in Figure 4.1 and we denote this estimate by Ĝ
right
i,b−1. The second estimate

is obtained from band b by picking the leftmost χL entries of Ĝi,b and is denoted

by Ĝ
left
i,b . Denoting the true channel to sensor i within Fcommon by Hi,common, we

have,

(1/zb−1)Ĝ
right
i,b−1 ≈ Hi,common (4.18)

(1/zb)Ĝ
left
i,b ≈ Hi,common (4.19)

Equating the left hand sides of (4.18) and (4.19), we get a constraint on the

channel estimates from stage 1 to each sensor:

zbĜ
right
i,b−1 ≈ zb−1Ĝ

left
i,b ∀i = 1, 2, . . . , S (4.20)

In an exactly analogous fashion, the signal estimates from stage 1 in bands b− 1

and b also provide consistency conditions. Denote the leftmost χL entries of Ŝb

by Ŝ
left
b and the rightmost χL entries of Ŝb−1 by Ŝ

right
b−1 . From (4.17), we get,

zb−1Ŝ
right
b−1 ≈ zbŜ

left
b (4.21)

145

Chapter 4. Collaborative Estimation in Dispersive Environments

We combine the constraints in (4.20) and (4.21) to obtain a single constraint of

the form,

zbub,b−1 ≈ zb−1ub−1,b (4.22)

where the vectors ub,b−1 and ub−1,b are given by ub,b−1 = (Ŝb, Ĝ
right
1,b−1, . . . , Ĝ

right
S,b−1)

and ub−1,b = (Ŝb−1,Ĝ
left
1,b , . . . , Ĝ

left
S,b).

We estimate the scale factors {zb} in two steps. First, we use (4.22) to calculate

the “relative” scale factor γb,b−1 , zb/zb−1 between bands b and b − 1. Then, we

recursively obtain the weights {zb} from {γb,b−1}.

Step 1: Assuming that the errors zbub,b−1−zb−1ub−1,b are Gaussian distributed,

the ML estimate of γb,b−1 = zb/zb−1 is given by,

γb,b−1 =
uHb,b−1ub−1,b

||ub,b−1||2
(4.23)

Step 2: We can only hope to recover the signal upto a scale factor. For

example, even in the noiseless case, a signal estimate ŝ = αx and channel estimates

ĥi = 1
α
hi would also explain the received data, for any α 6= 0. Thus, without loss

of generality, we can set the weight of one band, say the first band z0, to 1. This

sets the “scale” of the reconstructed signal. Then, we recursively estimate the

scale factors in other bands as

zb = zb−1γb,b−1 b ≥ 1

146

Chapter 4. Collaborative Estimation in Dispersive Environments

We call this the L-to-R stitching algorithm since the weights are estimated in a

recursive fashion, starting from low frequencies (left end of the spectrum) and

proceeding on to high frequencies (right end of the spectrum).

Handling low energy bands

So far, we have assumed that the source signal has sufficient energy in all the

bands, guaranteeing trustworthy estimates of the channels and the signal in each

band. However, if the signal energy in a given frequency band is too low, neither

the signal nor the channel estimates will be reliable, which can severely disrupt

the stitching procedure. Hence, as described in the following, we identify bands

with low signal energy and omit them from our processing, giving them a weight

of zero when reconstructing the signal.

To estimate the received signal energy in band b, we approximate the channel

to sensor i within band b by a constant i.e. Hi[Ib, l] ≈ H̄i ∀l = 0, 1, . . . , L − 1.

Thus, the received signals in band b can be approximated as

Yi[Ib] ≈ H̄iX[Ib] + Ni[Ib], ∀i = 1, 2, . . . , S (4.24)

with Ni[Ib] ∼ CN(0, σ2I). With this model, the total signal energy received at all

the sensors in band b is given by,

Esig,b =

(

∑

i

|H̄i|2
)

||X[Ib]||2 (4.25)

147

Chapter 4. Collaborative Estimation in Dispersive Environments

To estimate the received energy from the recorded signals, we compute the eigen-

values λ1,b ≥ λ2,b ≥ . . . λS,b of

M =
S
∑

i=1

Yi[Ib](Yi[Ib])
H

We have

λ1,b ≈ Esig,b + σ2 (4.26)

λ2,b ≈ λ3,b ≈ . . . λS,b ≈ σ2 (4.27)

We therefore estimate the signal energy in band b to be

Êsig,b = λ1,b −
λ2,b + λ3,b + . . .+ λS,b

S − 1
(4.28)

Good and Bad Bands: Let Êsig,max = max
b
Êsig,b be the maximum value of the

estimated signal energy across bands. We declare band b to be “good” if the signal

energy in this band exceeds a fraction η (0 < η < 1) of the maximum Êsig,max

i.e. if Êsig,b > ηÊsig,max. Otherwise, we declare band b to be “bad” and the signal

estimate from band b in Stage 1 is given no weight (zb = 0) while reconstructing

the source signal.

Overall algorithm

We now summarize the L-to-R Stitching algorithm to obtain the scale factors

zb.

148

Chapter 4. Collaborative Estimation in Dispersive Environments

1. For each band b, determine whether it is good or bad. Let Λgood denote the

set of good bands.

2. Initialize: Let b0 = min Λgood be the “first” good band. Set zb0 = 1. For

every subsequent band, we do the following:

3. Bad bands: If band b is bad, set zb = 0, so that it does not contribute to the

reconstructed signal.

4. Good bands: If band b is good, there are two possibilities:

• If band b − 1 is also good, we have consistency conditions that allow us

to “stitch” Ŝb, the estimate from band b, to the estimates from previous

bands 0, 1, . . . , b − 1. To do this, we compute γb,b−1 =
uH

b,b−1
ub−1,b

||ub,b−1||2
and set

zb = γb−1,bzb−1.

• Re-initialize: If band b − 1 is bad, so that zb−1 = 0, we do not have

trustworthy, “local” consistency conditions to stitch Ŝb to the estimates

from previous bands. Therefore, we are forced to “re-initialize” the weight

computations, set zb = 1 and go back to step 2.

Impact of “holes” in source spectrum: The need for reinitialization when

the signal energy falls below a threshold means that holes in the source spectrum

create ambiguities in reconstruction. Figure 4.2 depicts a low energy band blow

flanked by bands with significant energy on both sides. For each of these flanking

149

Chapter 4. Collaborative Estimation in Dispersive Environments

Figure 4.2: Illustrating a “hole” in the signal spectrum. Two bands of high
energy flank a band with relatively low energy. The reconstruction procedure
works fine in the flanking bands individually. However, the overall reconstruction
is poor due to the loss in continuity because of the low energy band in between.

bands, our stitching procedure works fine. However, we cannot stitch these two

bands together because of the scaling ambiguity left by the hole. Thus, we expect

our source signal to be reproduced well within each band, but not when the bands

are combined together.

4.3.4 Reconstructing the source signal

We can now reconstruct the source signal over the entire frequency range by

(1) taking the signal estimates from different bands in Stage 1, (2) weighing the

estimate in band b by zb calculated in Section 4.3.3 and (3) adding the resulting

150

Chapter 4. Collaborative Estimation in Dispersive Environments

signals “in situ” (i.e. in the appropriate frequency bands). The exact reconstruc-

tion procedure is as follows,

Initialize: X̂← 0

Iterate: for (b = 0; b ≤ B − 1; b+ +)

Update Band b: X̂[Ib]← X̂[Ib] + zbŜb;

end

We obtain an estimate of the source in the time domain, denoted by x̂, by applying

an inverse Fourier transform to X̂.

4.4 Experimental Results

We use a Logitech Z5 omnidirectional speaker as the acoustic source and record

data using three Samson C03U USB microphones set omnidirectional receive pat-

terns. We play each source signal from four different locations to emulate record-

ings with a larger number of microphones. Thus, we have twelve recordings (4

source locations× 3 microphones) of each source, emulating the effect of 12 sensors

with correlated observations.

We use four source signals to test the performance of the L-to-R algorithm:

(i) chirp signals with bandwidths 50 Hz and 200 Hz, denoted by Chirp50 and

151

Chapter 4. Collaborative Estimation in Dispersive Environments

Chirp200; and (ii) sinusoids, spaced 2 Hz apart, over bands of width 50 Hz and

200 Hz, denoted by Sines50 and Sines200. We now describe each of these sources

in detail. A chirp signal, whose instantaneous frequency increases linearly from

f0 Hz to f1 Hz over a time window of T seconds, is given by,

xchirp(t) = cos

(

2π

(

f0 +
f1 − f0

T
t

)

t

)

0 ≤ t ≤ T (4.29)

Both Chirp50 and Chirp200 last for T = 4 seconds and begin at f0 = 1000 Hz.

While Chirp200 goes up to a frequency f1 = 1200 Hz, Chirp50 only goes up to

f1 = 1050 Hz. Sines50 and Sines200 are the sum of sinusoids spaced 2 Hz apart

in the bands 1000 Hz-1050 Hz and 1000 Hz-1200 Hz respectively. The individual

sinusoids have the same amplitude; their phases rise linearly from 0 at the start

of the band to π/2 in the middle of the band and then fall back to 0 at the end

of the band. We use a sampling frequency fs = 16000 Hz to record the data.

Speaker-microphone response: We first conducted an outdoor experiment to

characterize the distortions introduced (if any) by the speaker and the micro-

phone, and separate them from the effects of the indoor propagation channel. We

placed the speaker on a table in an open lawn, to avoid reflections, and positioned

the microphone right in front of the speaker. In this Line-of-Sight (LoS) environ-

ment, the normalized correlations between Chirp200 and its recording on three

occasions were 0.9940, 0.9967 and 0.9928 [where a value of 1 indicates a perfect

152

Chapter 4. Collaborative Estimation in Dispersive Environments

match]. This suggests that the speaker and microphone are nearly ideal in the

band of interest and can be ignored in subsequent analyses. Furthermore, any

deviations in the recorded signal from the ground truth can only be due to the

propagation environment.

Indoor acoustic channel: The autocorrelation function of Chirp200 is reason-

ably “spiky”: it takes sizable values only when the Chirp200 waveform is relatively

well aligned with itself. Thus, we can obtain a coarse estimate of the delay spread

of the indoor propagation channel (which is all that our algorithm needs) by sim-

ply crosscorrelating the recording at one of the sensors with time-shifted versions

of the true Chirp200 waveform. We plot the crosscorrelation in Figure 4.3 and

observe that it takes relatively large values over a time window of 100 ms. This

suggests that the delay spread of the channel is on the order of 100 ms with a

corresponding coherence bandwidth of about 5-10 Hz.

Preprocessing: The low frequency components in the recorded signals con-

tain substantial energy from background hum. Since the hum is registered at all

the sensors, it counts as “signal” rather than spatially uncorrelated “noise.” In

order to investigate the performance of our algorithm, we would like to control

the source signal being sensed, hence we filter out the received signal energy in

the bands from 0-950 Hz to eliminate the hum. We then coarsely synchronize the

recorded waveforms in a data-driven fashion: we pick a reference sensor at ran-

153

Chapter 4. Collaborative Estimation in Dispersive Environments

0 20 40 60 80 100 120 140 160

−60

−40

−20

0

20

40

60

Time (milliseconds)

C
ro

ss
 c

or
re

la
tio

n
≈ 100 ms

Figure 4.3: An estimate of the indoor propagation channel

dom, matched-filter the recorded waveforms at other sensors against the reference

waveform, and shift them in time so that they are “aligned” with the reference

waveform. Finally, the recordings at one of the twelve “sensors” - corresponding

to a particular source-microphone arrangement - had a very good correlation with

the true signal, indicating that it had a near Line-of-Sight channel to the source.

Since our goal is to understand the limits of recovering signals in the face of sig-

nificant multipath, we exclude this sensor from further processing.

154

Chapter 4. Collaborative Estimation in Dispersive Environments

Parameters & Results: Guided by our coarse characterization of the indoor

channel delay spread, we set Bcoh = 5 Hz. We choose the overlap between adja-

cent bands χ to be 50%. We declare a band to be good if its energy is greater

than (1/10)th of the band with maximum energy i.e. η = 0.1. Note that there is

always a “global” delay ambiguity in the estimate: we can delay the signal by τ

and correspondingly advance all the channels by τ to explain the received data.

Therefore, we quantify the performance of the L-to-R Stitching algorithm by the

normalized crosscorrelation, denoted by ρL−to−R, between the source x and its

estimate x̂, maximized over all possible time-shifts τ of the estimate:

ρL−to−R = max
τ

(Dτ x̂)Tx

||x|| ||x̂|| (4.30)

where D is the delay operator that shifts the vector x by one sample. We note

that 0 ≤ ρL−to−R ≤ 1 with ρL−to−R = 1 indicating a perfect match between x

and x̂. We compare the L-to-R output against a solution that ignores multipath

and approximates the channel to consist only of a single tap. Since the optimal

estimate with this approximation is given by an SVD of the received signals (this

can be shown in an identical fashion to the proof in Section 4.3.2), we refer to this

estimate as the “SVD estimate” and denote its correlation with the truth by ρSV D.

We compare these estimates in Table 4.1 and make the following observations:

• The L-to-R algorithm consistently performs better than the SVD estimate.

155

Chapter 4. Collaborative Estimation in Dispersive Environments

Therefore, accounting for the multipath channel and piecing together estimates

from different bands yields a better reconstruction even when the signal bandwidth

is relatively small (∼ 50 Hz).

• We illustrate the gains provided by the L-to-R stitching algorithm visually,

by plotting the true Chirp200 waveform, the corresponding recorded signals at

four sensors and the estimated signal in Figure 4.4. The true chirp waveform, in

the topmost plot, has a constant envelope. In the four subsequent plots, we show

the recorded signals at four sensors (chosen at random out of the 11 sensors used

in the processing). It is clear that the recorded signals are significantly different

from the source signal and do not have a constant envelope. Next, we note that

the chirp signal can be considered as a sinusoid with time-varying frequency f(t)

and constant envelope. Thus, the amplitude of the recorded signal at time t

approximately equals the channel gain at frequency f(t), and the time domain

envelope of the recorded signal gives a coarse estimate of the channel frequency

response in the signal band. From the variations in the envelope, we see that all the

channels experience “deep fades”, where the channel response at some frequencies

is close to zero. The reconstructed waveform is shown in the last plot and we see

that it exhibits significantly smaller variations in its envelope and resembles the

signal to a greater degree, reflected by an increased correlation coefficient with the

true source (0.82 for the reconstruction vs a maximum of 0.68 at any individual

156

Chapter 4. Collaborative Estimation in Dispersive Environments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−1

0

1

Time (seconds)

T
ru

e
S

ig
na

l

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.01

0

0.01

Time (seconds)

S
en

so
r

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.02

0

0.02

Time (seconds)

S
en

so
r

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.01

0

0.01

Time (seconds)

S
en

so
r

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.02

0

0.02

Time (seconds)

S
en

so
r

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.01

0

0.01

Time (seconds)

E
st

im
at

ed

S
ig

na
l

Figure 4.4: The topmost plot shows the true Chirp200 waveform, with a con-
stant envelope. The following four plots show the recorded waveforms at differ-
ent sensors. Notice that these waveforms undergo “deep fades” and no longer
have a constant envelope. The final plot shows the reconstructed Chirp200 wave-
form, whose envelope shows lesser variation, illustrating the benefits of the L-to-R
algorithm.

sensor).

• From Table 4.1, we observe that the reconstruction is very good when the

signal bandwidth is small and worsens as the bandwidth increases. For example,

the reconstruction is nearly perfect when the source is Chirp50, with ρL−to−R =

0.97. In contrast, when the bandwidth of the chirp signal is increased to 200 Hz,

157

Chapter 4. Collaborative Estimation in Dispersive Environments

Signal ρL−to−R ρSVD
Chirp50 0.97 0.84
Chirp200 0.82 0.7
Sines50 0.87 0.72
Sines200 0.68 0.56

Table 4.1: Results of L-to-R processing and single tap approximation of the
recorded signals.

ρL−to−R drops to 0.82. Similarly, ρL−to−R is 0.87 for the Sines50 source and drops

to 0.68 when the bandwidth is increased to 200 Hz.

• To understand why reconstruction is poorer as signal bandwidth increases,

we investigate how well a source of bandwidth 200 Hz is reconstructed over smaller

bands of width 50 Hz. To do this, we filter the source x and the estimate x̂, so

that they possess energy only in a 50 Hz band, say 1000 Hz-1050 Hz. We then use

the correlation metric in (4.30) to quantify the fit between the filtered versions of

x and x̂. From the results in Table 4.2, we see that (a) the fit over bands of width

50 Hz is very good (the chirp signal is reconstructed nearly perfectly over each

50 Hz-band with ρL−to−R ≈ 0.98) and (b) for both signals, the quality of the fit,

measured by ρL−to−R, is remarkably consistent across bands.

Digging deeper, we find that the delay between the reconstructed signal (over

50 Hz-bands) and the true signal in these bands varies across bands (see Table 4.3).

We conjecture, therefore, that these delay variations across 50 Hz-bands cause the

signal contributions from these bands to combine “incoherently”, thereby affecting

158

Chapter 4. Collaborative Estimation in Dispersive Environments

Signal Band 1 Band 2 Band 3 Band 4
Chirp200 0.982 0.952 0.983 0.987
Sines200 0.882 0.859 0.869 0.847

Table 4.2: Fit between source and estimate in bands of width 50 Hz is very good.
Band i spans the frequencies [1000 + 50(i− 1), 1000 + 50i] Hz.

the quality of the reconstruction over a larger band. In Section 4.6, we show that

delay variations are indeed the cause of fundamental ambiguities, and can be used

to systematically construct multiple explanations of the recorded data. In

Band 1 Band 2 Band 3 Band 4
Chirp200 287 203 123 172
Sines200 320 214 156 164

Table 4.3: Delay between the true source and the estimate over bands of width
50 Hz (in samples @ fs = 16 kHz). We see that the estimates in different bands
have different delays with respect to the source. Band i spans the frequencies
[1000 + 50(i− 1), 1000 + 50i] Hz.

addition to our indoor experiments, we simulated the L-to-R algorithm extensively

to characterize its performance statistically and investigate its robustness with

channel variations. We report these results in the next section.

4.5 Simulation Results

We simulated the performance of the L-to-R algorithm with two classes of

signals, which we call chirp and “random”. We consider three signals within each

class with different bandwidths. All the chirp signals have the general form spec-

159

Chapter 4. Collaborative Estimation in Dispersive Environments

ified in (4.29), beginning at f0 = 1000 Hz and lasting for T = 4 seconds. The

bandwidths considered are 50 Hz, 200 Hz and 300 Hz, and we denote these sig-

nals by Chirp50, Chirp200 and Chirp300 respectively. The “random” signals lie

in the band [1000, 1000 +W] where the bandwidth of the signal W , once again,

takes the values 50 Hz, 200 Hz and 300 Hz. We denote these signals by Ran-

dom50, Random200 and Random300 respectively. We describe the construction

of Random200; the other Random signals are generated by a similar procedure.

Random200 lies in the frequency band from 1000 Hz to 1200 Hz and lasts for

T = 4 seconds. The signal amplitudes and phases are chosen randomly at each of

the discrete frequency indices {4000, 4001, 4002, . . . , 4799} corresponding to this

band: the amplitude is a Gaussian random variable with unit variance and the

phase is uniform in [0, 2π]. We simulate a setting with S = 6 sensors using a

sampling frequency of fs = 16 kHz. The channel to each of these sensors is gen-

erated at random as follows: it consists of fifteen taps located uniformly within a

delay spread τmax of 20 ms. The tap amplitudes are chosen uniformly between -2

and 2. We add independent Gaussian noise to each recording so that the signal-

to-noise ratio (SNR) is 5 dB. We choose a coherence bandwidth Bcoh = 5 Hz for

the processing in Stage 1 with 70% overlap between the bins (χ = 0.7). We run

100 trials of the algorithm with the channel realizations varying randomly across

trials. We compare the performance of the L-to-R algorithm and the SVD Esti-

160

Chapter 4. Collaborative Estimation in Dispersive Environments

Signal ρav,L−R ρav,SV D ρmin,L−R ρmin,SV D
Random50 0.978 0.926 0.932 0.69
Chirp50 0.977 0.925 0.939 0.722

Random200 0.946 0.738 0.876 0.539
Chirp200 0.942 0.713 0.827 0.535

Random300 0.914 0.670 0.744 0.490
Chirp300 0.925 0.664 0.807 0.462

Table 4.4: Performance of the L-to-R stitching algorithm and the SVD Estimate
with Chirp and “Random” signals of varying bandwidths.

mate by the average of the correlation coefficients ρL−to−R and ρSV D across trials.

We also quantify the robustness of these estimates by the minimum values of the

corresponding correlation coefficients over the 100 trials. We present the results

in Table 4.4 and make the following observations:

• Small signal bandwidth: Consider the signals of bandwidth 50 Hz. As in

our experiments, we see that the L-to-R stitching algorithm produces nearly per-

fect reconstructions on the average when the bandwidth of the signal is small. For

example, with the Chirp50 signal, the average correlation ρav,L−to−R is 0.977. Fur-

thermore, the L-to-R algorithm is robust, with the minimum correlation over 100

trials being large; for example, with the Random50 signal, ρmin,L−to−R = 0.932.

The SVD estimate also performs fairly well on the average with ρav,SV D = 0.925

for the Chirp50 signal. This is reasonable: since the bandwidth of the signal is

small, the effects of frequency selective fading are not very pronounced. However,

the SVD estimate is not robust, with ρmin,SV D = 0.69 for the Random50 signal.

161

Chapter 4. Collaborative Estimation in Dispersive Environments

This indicates that ignoring the dispersive nature of the channels can occasionally

lead to poor reconstruction, even over small bands.

• Moderate signal bandwidth: When the signal bandwidth increases to

200 Hz, the L-to-R algorithm continues to perform well on the average and is rea-

sonably robust. The average correlation ρav,L−to−R is still large (≈ 0.94) for both

the random and chirp signals. The minimum correlation ρmin,L−to−R is lower than

in the small bandwidth case, but is still fairly high (≈ 0.83-0.87) for both signals.

However, the SVD estimator performs very poorly over such bandwidths; even

the average correlation ρav,SV D is only on the order of 0.72. This demonstrates

the need to account for multipath propagation as the signal bandwidth increases.

• Large signal bandwidth: For signals with large bandwidths (300 Hz), the

L-to-R estimator continues to perform well on the average with ρav,L−to−R ≈ 0.91

for both Chirp300 and Random300 signals. However, we observe occasional

glitches in the performance with the L-to-R estimator : ρmin,L−to−R drops to

0.74 with the Random300 signal.

We draw two conclusions from the simulation results: (1) The L-to-R stitching

algorithm is robust to channel variations when the bandwidth of the signal is a

small (∼ 10x) multiple of the coherence bandwidth. (2) The statistical results of

the simulations are in excellent agreement with the experimental findings: both

162

Chapter 4. Collaborative Estimation in Dispersive Environments

predict excellent performance for the L-to-R algorithm over small bandwidths and

deterioration in the performance over larger bandwidths.

4.6 Multiple Explanations

In this section, we show that the deterioration in the normalized correlation be-

tween the reconstructed signal and the true signal that we discovered from our ex-

periments and simulations is actually because of a fundamental ambiguity caused

by delay variations across bands. In particular, we show that multiple source

estimates which are considerably different from the true source can explain the

received data, while respecting constraints on the channel delay spreads, when the

bandwidth of the signal becomes “large.” Since our L-to-R stitching algorithm

does not account for time domain constraints explicitly (it reproduces the signal

well, but need not produce channel estimates that fall within the hypothesized de-

lay spreads), we propose a “global stitching” algorithm which respects these time

domain constraints, and show that multiple explanations can still be constructed

by making small perturbations of the delay across adjacent bands as we stitch

them together, as follows:

• Step (a): As before, we estimate the signals and channels in each coherence

band with the alternating optimization algorithm from Stage 1 (see Section 4.3.2),

163

Chapter 4. Collaborative Estimation in Dispersive Environments

and denote the signal estimate in band b by Ŝb and the channel to sensor i by

Ĝi,b. Suppose that these estimates explain the data in band b accurately. We

perturb the solution in band b by delaying the signal estimate Ŝb by τb samples.

The channel estimates Ĝi,b are correspondingly advanced by τb samples, ensuring

that the recorded data in each band continues to be explained well. By choosing

the delays τb to vary with the band index b, we can ensure that the reconstructed

source does not combine “coherently” across bands with the true source, thereby

leading to a poor reconstruction.

• Step (b): The challenge now is to use the perturbed versions of the signal

and channel estimates from different bands to produce an estimate of the source

and channels over the entire band that satisfies all constraints. We propose an

algorithm to choose the scaling coefficients zb, to be assigned to band b, so that

the two available constraints are met: (i) the reconstructed channels must be re-

stricted to the given delay spread P = fsτmax and (ii) the recorded data must be

matched as closely as possible by the source and channel estimates. The proposed

algorithm is more complex than the L-to-R stitching algorithm, since it is forced

to exploit constraints that are “global”; however, its utility lies in the fact that it

provides alternate explanations that satisfy all the constraints (the L-to-R algo-

rithm does not provide such guarantees) and thereby, demonstrates fundamental

164

Chapter 4. Collaborative Estimation in Dispersive Environments

ambiguities. We refer to this algorithm as the global stitching algorithm. We now

explain each step of the processing involved in obtaining alternate solutions.

4.6.1 Distorting the outputs of Stage 1

Denote the signal estimate in band b at the output of Stage 1 by Ŝb =

(Ŝb[0], Ŝb[1], . . . , Ŝb[L − 1]) and the corresponding channel estimate to sensor i

by Ĝi,b = (Ĝi,b[0], Ĝi,b[1], . . . , Ĝi,b[L − 1]). Suppose that we wish to delay the

signal estimate from band b by τb samples (in the time domain). In the frequency

domain, this corresponds to a “distorted” signal estimate Ŝ
#
b , whose lth sample is

given by,

Ŝ
#
b [l] = Ŝb[l] exp

(

−j2π lτb
N

)

, l = 0, 1, . . . , L− 1 (4.31)

where N = fsT is the total number of received samples. We advance all the

channel estimates by τb to ensure that the recorded signals in band b continue to

be explained well and obtain “distorted” channel estimates Ĝ
#
i,b satisfying,

Ĝ
#
i,b[l] = Ĝi,b[l] exp

(

j2π
lτb
N

)

l = 0, 1, . . . , L− 1 (4.32)

We choose the delays τb to satisfy the following properties:

• Not too large: The distorted channels Ĝ
#
i,b[l] must also be quadratic func-

tions of the frequency index l, otherwise they cannot be explained by the global

stitching algorithm in Step (b) with the allowed delay spread. Therefore, the

165

Chapter 4. Collaborative Estimation in Dispersive Environments

terms exp(−j2π lτb
N

), l = 0, 1, . . . , L − 1 must not vary significantly with l. This

can be achieved by choosing Lτ ∗/N ≪ 1, where τ ∗ = maxb |τb| is the maximum

injected delay across bands. In our simulations, we choose Lτ ∗/N ≈ 0.05.

• Substantial variation: To produce an “alternate explanation” that differs

substantially from the true source, we need “substantial” variation in τb across

bands . In our simulations, we choose the variation max
b
τb − min

b
τb to be 300

samples (at 16 kHz, with a signal of bandwidth 200 Hz). A sinusoidal variation

(smooth yet tracing out the entire allowable “perturbation budget”) is found to

be effective.

We now describe the global stitching algorithm which combines the distorted

channel and signal estimates from different bands, to produce corresponding esti-

mates over the entire frequency range. In this process, we ensure that all available

constraints are satisfied.

4.6.2 Global Stitching Algorithm

Consider the distorted channel estimate Ĝ
#
i,b from a “good” band b. Since the

perturbations in each band are not too large, the distorted channel estimate Ĝ
#
i,b

can still be approximated by a scaled version of the true channel Hi[Ib], so that,

Ĝ
#
i,b ≈

1

zb
Hi[Ib], b ∈ Λgood (4.33)

166

Chapter 4. Collaborative Estimation in Dispersive Environments

Equivalently, given a hypothetical weight zb, the reconstructed channel in band

b is given by zbĜ
#
i,b. These weights must be chosen so that the corresponding

channel in the time domain gi satisfies three properties: (1) It is real-valued. (2)

The channel length is restricted to P = fsτmax samples where τmax is the delay

spread of the channel (i.e. gi is a P -dimensional vector). (3) In a “good” band b,

the Fourier transform of the channels gi must roughly be equal to the hypothesized

channel Ĝ
#
i,bzb.

Denote the Fourier matrix by F ∈ CN×P with F (m, p) = exp(−j2πmp
N

) and

0 ≤ p ≤ P − 1 and 0 ≤ m ≤ N − 1. Let Ib denote the indices corresponding

to band b. Then, Fb denotes the submatrix obtained by picking the rows of F

contained in Ib. With these definitions, we see that the time domain constraints

on the channel can be phrased as: Choose weights {zb, b ∈ Λgood} so that

Fbgi ≈ Ĝ
#
i,bzb, b ∈ Λgood, i = 1, 2, . . . , S (4.34)

and gi is a real-valued vector with P dimensions. Since there are no constraints

on the signal, (4.34) captures all the available constraints, and any set of weights

{zb, b ∈ Λgood} that satisfying these constraints will lead to a valid reconstruction.

To obtain {zb, b ∈ Λgood} satisfying (4.34), we minimize the least-squares cost

function

J({gi}, {zb}) =

S
∑

i=1

∑

b∈Λgood

||Fbgi − Ĝ
#
i,bzb||2 (4.35)

167

Chapter 4. Collaborative Estimation in Dispersive Environments

where gi is a P -dimensional real-valued vector. Let Re(A) and Im(A) denote

the element-by-element real and imaginary parts of the matrix A respectively.

Expressing Fb, Ĝ
#
i,b and zb in terms of their real and imaginary parts, we can

rewrite the cost function J({gi}, {zb}) in terms of the purely real variables gi and

z̃b as,

J̃({gi}, {z̃b}) =

S
∑

i=1

∑

b∈Λgood

||F̃bgi − Ĝi,bz̃b||2 (4.36)

where F̃b =









Re(Fb)

Im(Fb)









, Ĝi,b =









Re(Ĝ#
i,b) −Im(Ĝ#

i,b)

Im(Ĝ#
i,b) Re(Ĝ#

i,b)









and z̃b =









Re(zb)

Im(zb)









.

We minimize the cost function J̃ by a three-step process:

1. For any given set of values {z̃b, b ∈ Λgood}, we compute the channel estimates

in the time domain gi that minimize J̃({gi}, {z̃b}).

2. We substitute these channel estimates into J̃ to obtain a “reduced” cost

function J̃red that depends only on z̃b.

3. We optimize the reduced cost function J̃red over z̃b to obtain the global

optimum of J̃({gi}, {z̃b}).

Before explaining these steps in detail, we massage the objective function in (4.36)

into a form where the solution becomes apparent. Let the “good” bands, which

are elements of Λgood, be denoted by b1, b2, . . . , bM . By grouping terms in (4.36)

168

Chapter 4. Collaborative Estimation in Dispersive Environments

across bands, we can show that,

J̃({gi}, {z̃}) =
S
∑

i=1

||F̃gi − Ĝiz̃||2 (4.37)

where F̃ =
[

F̃ T
b1
F̃ T
b2
. . . F̃ T

bM

]T

, z̃ =
[

z̃Tb1 z̃
T
b2
. . . z̃TbM

]T
and Ĝi =

















Ĝi,b1 . . . 0

...
. . .

...

0 . . . Ĝi,bM

















Step 1 - Find gi given z̃: Suppose that we are given a set of hypothetical

weights z̃ and our goal is to estimate the channels {gi} that minimize J̃ . From

(4.37), we see that the best estimate of the channel to sensor i can be obtained

as:

ĝi = arg min
gi

||F̃gi − Ĝiz̃||2 (4.38)

This is a standard least-squares problem with solution

ĝi = F̃ †
Ĝiz̃ (4.39)

where F̃ † denotes the pseudoinverse of F̃ .

Step 2 - The reduced cost function J̃red(z̃): Given a set of hypothetical

weights z̃, the lowest achievable cost over all possible channels is obtained by

substituting the estimates from (4.39) into (4.37). Thus, we obtain the reduced

169

Chapter 4. Collaborative Estimation in Dispersive Environments

cost function J̃red(z̃),

J̃red(z̃) =
S
∑

i=1

||F̃ F̃ †
Ĝiz̃− Ĝiz̃||2

=

S
∑

i=1

||(I− F̃ F̃ †)Ĝiz̃||2 (4.40)

The reduced cost function has an intuitive interpretation: given a set of arbitrary

weights z̃, the hypothesized channel at sensor i in the frequency domain is given

by Ĝiz̃. However, the postulated channel does not necessarily lie in the class of al-

lowed channels: the space of Fourier transforms of real-valued channels restricted

to a length of P samples. We denote this class of allowed channels by Ω. The

matrix (I−F̃ F̃ †) projects the postulated channel Ĝiz̃ onto the orthogonal comple-

ment of Ω. Therefore, J̃red measures the energy in the portion of the hypothesized

channels that cannot be explained by the class of allowed channels and tries to

minimize it.

Step 3: Obtaining the weights z̃: Using Pythagoras’ theorem, we inter-

pret the reduced cost function J̃red(z̃) as ||Γz̃||2 where the matrix Γ is defined

as Γ ,

















(I− F̃ F̃ †)Ĝ1

...

(I− F̃ F̃ †)ĜS

















. Therefore, the optimal weights can be obtained by

minimizing J̃red(z̃) = ||Γz̃||2. To eliminate the trivial solution z̃ = 0, we impose

the condition ||z̃|| = 1. With this constraint, the optimal weights z̃opt are given

170

Chapter 4. Collaborative Estimation in Dispersive Environments

by choosing the right singular vector of Γ corresponding to its smallest singular

value.

Estimating the signal and channels given z̃: We substitute the optimal

weights obtained from Step 3 into (4.39) to obtain time domain estimates of the

channels ĝi. We then estimate the signal in the frequency domain by Maximal

Ratio Combining. To do this, we first form a frequency domain estimate of the

channels Ĝi = F ĝi. Let the signal estimate in the frequency domain be denoted

by X̂. We set X̂ = 0 within the “bad” bands. Within the good bands, we estimate

the signal via Maximal Ratio Combining as,

X̂[l] =

∑S
i=1 Ĝ∗

i [l]Yi[l]
∑S

i=1 |Ĝi[l]|2
(4.41)

where Yi[l] is the recorded sample at sensor i and frequency index l.

Complexity: The number of rows in the matrices F̃ and Γ grow in proportion

to the number of “good” bands - equivalently, the bandwidth of the signal - and

the recording window. Additionally, the number of columns in F̃ grows with the

channel length P . Therefore, computing the pseudoinverse of F̃ and the SVD of

Γ (to obtain z̃) can be expensive for signals with large time-bandwidth products

(say, bandwidth of 600 Hz, recorded for T = 4s).

171

Chapter 4. Collaborative Estimation in Dispersive Environments

4.6.3 Simulation Results

We now present simulation results that demonstrate fundamental ambiguities

in estimating signals with “large” bandwidths. We consider a “random” signal

(defined in Section 4.5) that lies in the frequency band from 0 to 200 Hz lasting

for T = 4 seconds. We simulate a setting with S = 6 sensors using a sampling

frequency of fs = 16 kHz. The channel to each of these sensors has a delay

spread τmax = 20 ms and is generated in the same fashion as in Section 4.5.

Since we wish to establish fundamental results on ambiguity, we simulate an ideal

scenario with no noise added to the recorded signals. We choose a coherence

bandwidth Bcoh = 5 Hz for the processing in Stage 1 with no overlap between

the bins (it is not needed since we are processing Stage 1 estimates “globally”).

Therefore, only the first 40 bands in the received signals contain energy. We

delay the signal/channel estimates at the output of Stage 1 in these 40 bands, as

explained in (4.31) and (4.32), by choosing τb = (150 samples)× sin(2πb/40), b =

0, 1, . . . 39 and then reconstruct the signal and channels using the global stitching

algorithm. To ensure that the reconstructed channels are “well-conditioned”, we

fix the condition number (ratio of largest to smallest singular value) of F̃ to 100

before computing its pseudoinverse. We run 50 trials with the channel realizations

varying randomly across trials and focus our attention on two questions:

172

Chapter 4. Collaborative Estimation in Dispersive Environments

• How well is the source reconstructed?: We quantify the quality of

the reconstruction by the correlation ρsource between the source signal x and the

estimate x̂, defined as

ρsource = max
τ

x̂T (Dτx)

||x|| ||x̂|| (4.42)

where D the unit delay operator.

• How well is the received data explained?: We form an estimate of the

received signal at sensor i, denoted by ŷi, based on the estimated channel ĝi and

the estimated signal x̂. We estimate its fit with the recorded data yi using the

correlation coefficient ρfit,i, given by

ρfit,i =
ŷi
Tyi

||yi|| ||ŷi||

Finally, we quantify the performance of the algorithm in terms of explaining the

received data by the worst fit across sensors, given by ρfit,worst = mini ρfit,i. The

results are shown in Figures 4.5(a) and 4.5(b) and we make the following obser-

vations:

• Quality of Fit: From Figure 4.5(b), we see that the signal and channels

estimated by global stitching algorithm explain the received data nearly perfectly:

the worst fit across sensors ρfit,worst is typically greater than 0.99; even the lowest

value taken by the worst fit across iterations is 0.982.

• Quality of Reconstruction: From Figure 4.5(a), we see that the quality

173

Chapter 4. Collaborative Estimation in Dispersive Environments

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Trial Number

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (

ρ so
ur

ce
)

(a) Quality of Source Estimate

10 20 30 40 50
0.98

0.985

0.99

0.995

1

1.005

Trial Number

W
or

st
 fi

t a
cr

os
s

se
ns

or
s

(ρ
w

or
st

)

(b) Quality of explanation of received data

Figure 4.5: Plots of ρsource and ρworst,fit for the simulated scenarios. We see that
the quality of the source reconstruction ρsource fairly low and fluctuates a lot, even
though the data is consistently explained well (ρworst,fit > 0.98 always).

of source reconstruction, ρsource fluctuates a lot with varying channel realizations

and it can be as low as 0.58.

•Multiple Explanations: To take a particular example, in the 46th trial, the

correlation between the estimated source and the true source is 0.61, indicating

that the estimate is significantly different from the truth. However, the esti-

mates fit the recorded data nearly perfectly : the correlations ρfit,i are {0.9984,

0.9981,0.9981,0.9984,0.9983,0.9985}. This shows that a source estimate which is

significantly different from the original source can explain the recorded data nearly

perfectly, while respecting constraints on the channel delay spreads. Furthermore,

we can generate as many additional explanations as we wish by varying the profile

174

Chapter 4. Collaborative Estimation in Dispersive Environments

of the injected delays τb, subject to the broad rules specified in Section 4.6.1.

• Impact of injecting additional delays: To understand the influence of

the injected delays, we compare these results with the case where we do not de-

lay the estimates from different bands in Stage 1 before stitching them together.

When we do not inject any delay, the average value of ρsource over 50 channel re-

alizations is 0.90. On the other hand, when we introduce delays into the outputs

of Stage 1, the average value of ρsource drops to 0.69, demonstrating the adverse

impact of the injected delays on signal reconstruction.

175

Chapter 5

Conclusions

The examples provided in this dissertation illustrate that it is possible to

solve complex problems even under minimalist assumptions on observation and

communication models. We now summarize these results, outline some directions

for future work and conclude with a broader discussion on the promise held by

minimalist approaches to other problems in sensor networks.

5.1 Implicit Timing Synchronization

We established the basic feasibility of implicit timing synchronization in TDM

networks, leveraging the timing information present in the existing communica-

tion. We investigated phase-only and phase-frequency adjustment algorithms,

both of which were guided by the insights derived from a synchronous averaged

system. We concluded that phase-only adjustments suffice for small networks, but

176

Chapter 5. Conclusions

frequency adjustments, occurring on a slower timescale, are necessary for larger

networks. Simulations show that with such phase-frequency adjustments, we can

achieve synchrony upto tens of microseconds in omnidirectional networks and tens

of nanoseconds in directional networks.

Future Work: A significant amount of effort is required in translating our ideas

to practice, starting with more detailed simulations that explicitly model traf-

fic patterns, medium access control, and initial establishment of coarse timing

synchronization (including estimation of propagation delays). The proposed al-

gorithm can be implemented as follows: a timing synchronization application,

layered on top of the network protocol stack, generates packets only at startup,

but not for synchronization maintenance. During the maintenance phase, the

implicit timestamps could be sent to this application from the physical layer (if

extremely accurate timing synchronization is needed) or from the MAC layer (if

lower synchronization accuracy suffices) to adjust the clock. Substantial effort is

needed to translate these ideas into an implementation on a sensor mote or open

source platforms such as the WARP radios.

177

Chapter 5. Conclusions

5.2 Localizing multiple events from ToAs

We investigated the feasibility of localizing multiple events that occur in quick

succession from their ToAs and proposed a robust, low-complexity algorithm to

do this. For the case of two events, we showed that if we have “enough” sensors

(nine of them, not lying on a branch of a hyperbola), we can guarantee perfect

localization. On the other hand, if we have too “few” sensors (an example with

six sensors), there could be ambiguities in localizing the events. We proposed a

three-stage algorithm that relies on cutting down the set of candidate solutions

by discretizing the times at which events occur and then using a linear program

to solve the ToA-to-event association problem. Simulations show excellent per-

formance in estimating the number of events as well as their locations and times.

Future Work: A detailed investigation is needed to extend the fundamental fea-

sibility results, assuming ideal sensing conditions, to scenarios where more than

two events occur. We also need to understand the limits of localizing multiple

events when the measurements are noisy. Finally, we believe that general ap-

proach of parallelizing the evidence is also applicable to the problem of localizing

multiple events with other types of sensors such as Angle of Arrival (AoA) and

binary proximity sensors [37].

178

Chapter 5. Conclusions

5.3 Collaborative Estimation In Dispersive En-

vironments

We proposed an algorithm to reconstruct an unknown signal recorded at mul-

tiple sensors through an unknown dispersive channel. We solved the problem with

manageable complexity by switching to the frequency domain. This allowed us to

solve a number of easier subproblems and then combine their results appropriately.

The proposed technique works well when the bandwidth of the signal is within

10-20 times the coherence bandwidth of the channel, but we demonstrated funda-

mental ambiguities over larger bands. Such ambiguities arise by the introduction

of small delay differences across bands, which result in multiple combinations of

signal and channels that can explain a given set of observations.

Future Work: It remains an open issue as to whether and how additional knowl-

edge about the signal and/or channels can be best leveraged to alleviate these

ambiguities. For example, when the signal has sufficient frequency diversity (pre-

cisely defined in [51]), multiple explanations for the recorded data can exist only

if the channels seen by the different sensors have common zeros. The direction

for future investigations depends on whether or not typical acoustic multipath

channels have common zeros. If they do, we cannot hope to reconstruct the signal

perfectly and it would be of interest to predict the degradation in the estimate due

179

Chapter 5. Conclusions

to the common zeros. If they do not, we need to modify the proposed frequency

domain algorithm to incorporate this fact, while continuing to reconstruct the

source in a robust manner with low-complexity.

5.4 Minimalism all the way

These problems constitute only a small subset of the scenarios where a min-

imalist design is attractive in sensor networks. Indeed, we need to solve a chain

of problems before we can deploy a sensor network and we now give examples to

argue that adhering to minimalism is useful in designing every link of this chain.

Typically, we are confronted with the following sequence of issues while de-

signing a sensor network: choose sensors to observe the environment → design

algorithms to detect interesting activity at each sensor → reduce high dimen-

sional observations to low-dimensional “feature vectors” that capture the essence

of the activity→ design protocols to forward these feature vectors to a fusion cen-

ter → use the relationship between the phenomenon of interest and the recorded

observations to make inferences. As we will see in the following examples, de-

signing each of these stages minimally leads to a variety of benefits: it reduces

the computational load, allows the system to be adaptive, increases the network

efficiency and makes the system robust to variations in the surroundings.

180

Chapter 5. Conclusions

Neuromorphic cameras [22] are a good example of reducing the sensing process

to a bare minimum. In contrast to conventional cameras that produce a steady

stream of data, sensors in a neuromorphic camera produce an output only when

the light that is incident on them changes “sufficiently”. Since scenes are relatively

static, the volume of data produced by a neuromorphic camera is considerably

smaller, thereby reducing the computational load. However, image processing al-

gorithms will have to be designed afresh, accounting for the nature of the data

produced by the new hardware.

To design sensor networks that “learn” in an automated manner, we need a

minimalist approach to detect interesting patterns of activity without detailed

models for the signal. In such networks, each sensor could estimate the typical

background activity over time, identify deviations from the background and use

the observations at other sensors to cross-check these deviations. If enough sen-

sors agree, a deviation could be declared interesting, thereby allowing the sensor

network to detect new sources and adapt to uncertain environments.

In large networks, we require minimalist networking protocols to aggregate

data from many sensors at a fusion center with little overhead. Consider the fol-

lowing thought experiment: we deploy temperature sensors over a large region to

monitor climate change. In the normal mode of operation, a subset of sensors

forward their data (perhaps subsampled in time) to a fusion center via a multihop

181

Chapter 5. Conclusions

network. When the fusion center observes that the readings in some regions are

“out of the ordinary”, it requests the sensors in these areas to forward their data

with the highest possible fidelity. We now need to solve two problems:

• Since many sensors that are close to each other need to transmit simulta-

neously, they have to cooperate in accessing the shared wireless medium

so that their transmissions do not collide. Thus, we need decentralized al-

gorithms which ensure that the overhead involved in such cooperation is

negligible, when compared to the volume of data being transported.

• Since the sensors of interest are roughly in the same “direction” from the

fusion center, using a greedy routing protocol to direct the data along the

shortest path can lead to congestion. We need a simple algorithm that

routes the data with little overhead and avoids hotspots, while provisioning

for multiple regions of interesting activity.

Choosing a minimalist model while making inferences provides insurance against

unpredictable variations in the sensing process. The concept of binary proximity

sensors provides the perfect illustration for this idea. A binary proximity sensor –

it could be acoustic, Passive Infrared or seismic, to give three examples – simply

outputs a 1 if something interesting has occurred in its vicinity and a 0 otherwise.

Even an inexpensive sensor in a poor sensing environment is extremely likely to

182

Chapter 5. Conclusions

provide this level of information. This guarantees – on paper and in practice –

a base level of performance. Next, since the sensors can be inexpensive, we can

deploy many of them to improve the performance to a desired level. To give

another example, consider an algorithm that tracks objects from the frames of

a video using “fine” features such as color and texture. Such an algorithm will

work very well in a favorable environment, but is susceptible to changes in the

ambient lighting (for example). On the other hand, an algorithm that works with

coarser features – like the processing in the retina that only uses local differences

in brightness to ultimately build complex scenes – is better equipped to handle

unforeseen variations in the ambience.

183

Appendices

184

Appendix A

In this appendix, we provide detailed derivations for some results in Chapter

2.

A.1 An expression for the excess phases ϕex[s] in

the averaged system

We begin by obtaining an approximate expression for the phases in slot s

(where s is large) by substituting equation (2.8) into equation (2.6),

ϕ[s] ≈ (ϕ[0] + sψ)1 + (I +
s−1
∑

k=1

Gk)δ (A.1)

We now simplify this expression by showing that Gkδ = Gkexδ. Since 1Tδ = 0, we

have

Gkδ = Gkδ − 11T

N
δ =

(

Gk − 11T

N

)

δ (A.2)

185

Appendix A.

Using the spectral decomposition of Gex, we see that, Gkex =
∑N

l=2 λ
k
l vlv

T
l =

Gk − 11T/N . Substituting this into equation (A.2), we get Gkδ = Gkexδ. We now

substitute this result back into equation (A.1) to obtain,

ϕ[s] ≈ (ϕ[0] + sψ)1 +

s−1
∑

k=0

Gkexδ (A.3)

Next, we compute the mean phase across nodes in slot s. We have,

ϕ[s] =
1Tϕ[s]

N
= (ϕ[0] + sψ)

1T1

N
+

s−1
∑

k=0

1TGkexδ (A.4)

The term 1T1/N is simply 1. We now show that 1TGkex = 0T . Since Gkex =

Gk − 11T/N , we get

1TGkex = 1TGk − 1T1

N
1T = 1TGk − 1T (A.5)

Since G is symmetric and stochastic, all its powers are also symmetric and stochas-

tic. Thus, we have 1TGk = ((Gk)T1)T = (Gk1T)T = 1T where the second equality

follows from the symmetry and the third from the stochasticity of G. Substi-

tuting back into equation (A.5), we get 1TGkex = 0T . Therefore, the expres-

sion for the mean phases in equation (A.4) reduces to ϕ[s] = ϕ[0] + sψ. Since

ϕex[s] = ϕ[s]− ϕ[s]1, from equation (A.3), we get

ϕex[s] =

(s−1
∑

k=0

Gkex
)

δ

186

Appendix A.

Since the eigenvalues of Gex, namely λ2, λ3, . . . , λN , are less than 1 in magnitude,

the Neumann sum
∑∞

k=0 G
k

ex converges to
(

I−Gex
)−1

[26]. Therefore, we have the

desired result, ϕex[s]→
(

I− Gex
)−1

δ as s→∞.

A.2 Linear Programming Formulation

We begin by defining the directed phase error between nodes i and j to be

eij = φi[s]− φj[s] = cTijϕ[s] where cij is defined as: cij [i] = 1, cij [j] = −1, cij [l] =

0 ∀l 6= i, j. Since the mean component of ϕ[s] does not contribute to the error, we

have, cTijϕ[s] = cTijϕex[s] = cTij(I−Gex)−1δ. We note that the phase error between

nodes i and j is a linear function of the skews δ. To obtain an estimate of the

overhead required to maintain a TDM schedule, we maximize this quantity over all

allowed excess frequencies δ. The first constraint that the excess frequencies must

satisfy is 1Tδ = 0. Next, we note that the excess frequencies must be bounded

since the node frequencies Fl = fl/fnom are bounded by 1± ρmax. We see this as

follows: denoting the average frequency across nodes by ψ, we have, Fi = ψ + δi.

Therefore, ψ and δi must satisfy (1− ρmax) ≤ ψ + δi ≤ (1 + ρmax) ∀i. We denote

these constraints compactly as (1−ρmax)1 ≤ ψ1+δ ≤ (1+ρmax)1. Finally, since

ψ is the mean frequency, it is also bounded by 1± ρmax. Therefore, the problem

187

Appendix A.

of maximizing the directed error between nodes i and j can be stated as,

Maximize
δ,ψ Jij = cTij(I− Gex)−1δ

subject to δ, ψ ∈ Λ

where Λ is the set of allowed excess and mean frequencies given by Λ = {ψ, δ :

1Tδ = 0, (1 − ρmax)1 ≤ ψ1 + δ ≤ (1 + ρmax)1, 1 − ρmax ≤ ψ ≤ 1 + ρmax}. We

call this formulation problem Pij . This problem is a linear program since the

constraints and the objective function are linear in the decision variables ψ and

δ. To find the worst error across all neighboring nodes, we solve such a linear

program for each pair of neighbors i and j and pick the largest among resulting

errors.

We consider the special case of ψ = 1 to provide some insight into solutions of

these linear programs. In this case, the problem of maximizing the directed phase

error between nodes i and j can be simplified as,

Maximizeδ Jij = cTij(I− Gex)−1δ

subject to δ ∈ Λ̃

where Λ̃ = {δ : ||δ||∞ ≤ ρmax, 1
Tδ = 0}. We call this reduced problem P̃ij . It is

known [10] that one of the optimizers of any linear program occurs at an “extreme

point” of the feasible set (in this case, Λ̃). Therefore, we characterize the extreme

188

Appendix A.

points of Λ̃ to understand the structure of the solution to problem P̃ij . We begin

with the definition of an extreme point: δex is an extreme point of Λ̃, if it cannot

be expressed as (δ1 + δ2)/2 for any two points δ1, δ2 ∈ Λ̃ such that δ1 6= δ2. We

use this definition to make two observations that characterize the extreme points

of Λ̃.

Observation 1: Let δex = (δex,1, δex,2, . . . , δex,N) be an extreme point of Λ̃.

Then, at most one of its components can take the value 0.

Proof: We prove the observation by contradiction. First, we note that ||δex||∞ ≤

ρmax and 1Tδex = 0 since δex ∈ Λ̃. Assume that there are two positions m and

m′ such that δex,m = δex,m′ = 0. We construct two vectors δ+ = δex + ξ, δ− =

δex − ξ where ξ = (ξ1, ξ2, . . . , ξN) is defined as follows: ξm = ρmax/2, ξm′ =

−ρmax/2, ξl = 0 ∀l 6= m,m′. We see that ||δ+||∞ ≤ max(||δex||∞, ρmax/2) ≤ ρmax

since, ||δex||∞ ≤ ρmax. Also, 1Tδ+ = 1Tδex + 1Tξ = 0 + 0 = 0. Therefore, δ+ is

also contained in the feasible set Λ̃. Similarly, we can show that δ− ∈ Λ̃. We now

arrive at a contradiction : we have just expressed the extreme point δex as the

average of δ+ and δ−, i.e. δex = (δ+ + δ−)/2. Therefore, we conclude that our

original assumption is wrong and that at most one component of δex can take the

value 0.

Observation 2: Let δex = (δex,1, δex,2, . . . , δex,N) be an extreme point of Λ̃.

Then, each component δex,i takes one of the three values ±ρmax, 0.

189

Appendix A.

Proof: We prove the observation by contradiction. First, we write δex,i = αex,iρmax

with |αex,i| ≤ 1 since ||δex||∞ ≤ ρmax. Assume that for some index m, δex,m takes a

value other than±ρmax, 0. Therefore, we can write δex,m = νρmax with −1 < ν < 1

and ν 6= 0. Since
∑N

i=1 δex,i = 0, we get ν = −∑i6=m αex,i. Since ν is not an

integer, we see that there must exist another indexm′ 6= m so that−1 < αex,m′ < 1

and αex,m′ 6= 0. We now construct two vectors δ+ = δex + ξ, δ− = δex − ξ where

ξ = (ξ1, ξ2, . . . , ξN) is defined as follows: ξm = π0, ξm′ = −π0, ξl = 0∀l 6= m,m′.

We choose π0 small enough so that ||δ+||∞ and ||δ−||∞ are both less than ρmax.

We can show, as before, that δ+ and δ− sum to zero and thereby, conclude that

δ+, δ− ∈ Λ̃. We now arrive at the same contradiction as before, and conclude that

our original assumption was wrong. This shows that every entry of δex takes one

of the three values ±ρmax, 0.

We now put these observations together to arrive at the desired result. Since

the elements of δex add up to zero, the number of entries in δex that take the

value ρmax and −ρmax must be equal. Furthermore, at most one entry in δex can

be zero. From these facts, it is easy to see that: (1) If the number of nodes N is

even, then exactly N/2 entries of δex equal ρmax and the other N/2 entries equal

−ρmax and (2) If the number of nodes N is odd, then (N − 1)/2 entries of δex

equal ρmax, another (N − 1)/2 entries equal −ρmax and there is one entry that

is equal to zero. Since one of the optimizers of any linear program occurs at an

190

Appendix A.

extreme point, we conclude that the largest directed phase error between nodes

i and j occurs with roughly half the nodes running at the maximum frequency

and the other half running at the minimum frequency for any network topology.

Furthermore, since the feasible sets for all the problems P̃ij are the same, this

conclusion applies to the directed phase error between any neighboring nodes i

and j and therefore, we get the desired result.

A.3 Actual System - Phase Only Adjustments

We begin with the expression for the excess phases from equation (2.13),

ϕex[s] ≈
(

I +

s−1
∑

k=1

Gs−1Gs−2 . . . Gs−k

)

δ (A.6)

We denote the average of ϕex[s] over realizations of {Gt}s−1
t=0 , with a fixed set of

skews δ, by ϕex[s] = E(ϕex[s]). Using the linearity of expectation, we get,

ϕex[s] =

(

I +
s−1
∑

k=1

E
(

Gs−1Gs−2 . . . Gs−k

)

)

δ (A.7)

Since Gs−1, Gs−2, . . . , Gs−k are picked independent of one another, we have

E(Gs−1Gs−2 . . . Gs−k) = E(Gs−1)E(Gs−2) . . .E(Gs−k)

While this result is well known for scalar valued random variables, we can eas-

ily prove it for matrices as well. Since Gt is picked from {G1,G2, . . . ,GM} with

191

Appendix A.

probabilities {p1, p2, . . . , pM}, we have

E(Gt) =
M
∑

i=1

piGi = G ∀t

where G is the system matrix for the averaged system. Substituting in equation

(A.7), we have,

ϕex[s] =

(s−1
∑

k=0

Gk
)

δ

We can now excise the first eigenmode of G, as we did in Section A.1, and obtain

ϕex[s] =

(s−1
∑

k=0

Gkex
)

δ

The phase errors between neighbors are simply the pairwise differences between

the corresponding entries of ϕex[s]. We can obtain all such pairwise differences by

operating on the excess phases ϕex[s] with a matrix C. We denote the maximum

error between any pair of nodes by ||Cϕex[s]||∞. We can easily show that ||v||∞ is

a convex function of its argument v. Using this fact, we apply Jensen’s inequality

to ||Cϕex[s]||∞ and obtain,

E(||Cϕex[s]||∞) ≥ ||E(Cϕex[s])||∞

= ||CE(ϕex[s])||∞ = ||Cϕex[s]||∞ (A.8)

For a given set of skews δ, we recognize that ||Cϕex[s]||∞ is the maximum pairwise

phase difference for the averaged system and E(||Cϕex[s]||∞) is the average of the

192

Appendix A.

maximum pairwise phase difference in the original system. Thus, we conclude that

the largest error from the averaged system provides a lower bound to the worst

error in the actual system, averaged over many realizations of communication

patterns.

A.4 Estimating skews from raw phases

We show here that
(

I− G
)

ϕ[s] =
(

I− Gex
)

ϕex[s]. First, since 1Tϕex = 0, we

have,

(

I− Gex
)

ϕex[s] =

(

I− Gex −
11T

N

)

ϕex[s]

=
(

I− G
)

ϕex[s] (A.9)

where the second equality follows from the fact that G = Gex + 11T/N . Next,

since G is stochastic, we have,
(

I− G
)

1 = 1 − 1 = 0. Therefore, we can add

(

I− G
)

ϕ[s]1 to the right hand side of equation A.9 and obtain,

(

I− Gex
)

ϕex[s] =
(

I− G
)

(ϕex[s] + ϕ[s]1)

=
(

I− G
)

ϕ[s] (A.10)

where the second equality follows from the the fact that ϕ[s] = ϕ[s]1 + ϕex[s].

Thus, we have the desired result.

193

Appendix A.

A.5 Expression for the skew estimate - Aver-

aged system

We first obtain an expression for the entries of G. By definition, the (i, j)th

element of G is G(i, j) =
∑M

m=1 pmGm(i, j). We consider the case i 6= j first. If

Nj transmits a packet to Ni when the mth matching matrix Gm is in operation,

we have Gm(i, j) = β; otherwise, Gm(i, j) = 0. Therefore, the only matrices

Gm that contribute to G(i, j) are those such that Gm(i, j) = β. Summing over

the probabilities of picking such matrices, we can obtain the probability that Nj

transmits to Ni. We denote this probability by qj→i. With these definitions,

we see that G(i, j) is exactly qj→iβ. Since G is stochastic, we have G(i, i) =

1 − β∑j 6=i qj→i. We denote the ith component of ϕ∞ by ϕ∞,i and that of Lϕ∞

by [Lϕ∞]i. We now expand the matrix vector product L = (I−G)ϕ∞ and equate

its ith component to δi. By this process, we get,

[Lϕ∞]i = β

N
∑

j=1

qj→i(ϕ∞,i − ϕ∞,j) = δi (A.11)

194

Appendix A.

A.6 Evolution of the excess phases across a round

Applying equation (2.5) to phase evolution within a round, from slot (s−1, r)

to (s, r), we have

ϕ[s, r] = Gϕ[s− 1, r] + δ[s, r] + ψ[s, r]1 (A.12)

Since the frequencies are unchanged from the beginning of round r, the mean and

excess frequencies are also unchanged from their values at the start of round r i.e.

ψ[s, r] = ψ[0, r] and δ[s, r] = δ[0, r]. Using this observation, and stepping back in

time repeatedly using equation (2.5), we obtain

ϕ[s, r] = sψ[0, r]1 + Gsϕ[0, r] +

(s−1
∑

k=0

Gk
)

δ[0, r] (A.13)

We now compute the mean phase across nodes in slot s of round r, denoted by

ϕ[s, r]. Since ϕ[s, r] = 1Tϕ[s, r]/N , we have,

ϕ[s, r] = sψ[0, r]
1T1

N
+ 1TGsϕ[0, r] + 1T

(s−1
∑

k=0

Gk
)

δ[0, r] (A.14)

Consider the terms separately. The term 1T1/N is simply 1. We see that 1TGk =

1T ∀k: 1TGk =
(

(Gk)T1
)T

= (Gk1)T = 1T where the second equality follows from

the symmetry and the third from the stochasticity of G. Thus, the second term in

equation (A.14) simplifies to 1Tϕ[0, r] = ϕ[0, r]. We also use the fact that 1TGk =

1T to show that the third term
∑s−1

k=0(1
TGk)δ is annihilated:

∑s−1
k=0(1

TGk)δ =

195

Appendix A.

∑s−1
k=0 1Tδ = 0 where the second equality follows from the fact that 1Tδ = 0.

Putting these terms together, the mean phase in slot of s of round r is given

by ϕ[s, r] = sψ[0, r] + ϕ[0, r]. Since the excess phases ϕex[s, r] are given by

ϕ[s, r]− ϕ[s, r]1, we have, from equation (A.13),

ϕex[s, r] = Gsϕ[0, r]− ϕ[0, r]1 +

s−1
∑

k=0

Gkδ (A.15)

Since Gs is also stochastic, we have Gs1 = 1, giving us,

ϕex[s, r] = Gs(ϕ[0, r]− ϕ[0, r]1) +
s−1
∑

k=0

Gkδ (A.16)

= Gsϕex[0, r] +
s−1
∑

k=0

Gkδ (A.17)

where the second equality follows from the definition of the excess phases. Since

Gkδ = Gkexδ (see Section A.1), we obtain the desired result:

ϕex[s, r] = Gsϕex[0, r] +

s−1
∑

k=0

Gkexδ

A.7 Recursive bounds on the excess phases

The phases in the last slot of round r and the first slot of round r+1 are related

by the phase evolution equation: ϕ[0, r + 1] = ϕ[Wr − 1, r] + ψ[0, r]1 + δ[0, r].

We can once again calculate and subtract out the mean from both sides of this

equation to infer that ϕex[0, r+1] = ϕex[Wr−1, r]+δ[0, r]. Taking infinity norms

196

Appendix A.

on both sides and applying the triangle inequality, we get

||ϕex[0, r + 1]||∞ ≤ ||ϕex[Wr−1, r]||∞ + ||δ[0, r]||∞ (A.18)

However, we know from equation (2.17) that,

ϕex[Wr − 1, r] = GWr−1

ex ϕex[0, r] +DWr−1δ[0, r] (A.19)

Taking infinity norms on both sides of this equation and applying the triangle

inequality, we get,

||ϕex[Wr − 1, r]||∞ ≤ ||GWr−1

ex ||∞||ϕex[0, r]||∞

+ ||DWr−1||∞||δ[0, r]||∞ (A.20)

Substituting this in equation (A.18), we get,

||ϕex[0, r + 1]||∞ ≤ ||GWr−1

ex ||∞||ϕex[0, r]||∞

+ (1 + ||DWr−1||∞)||δ[0, r]||∞ (A.21)

which proves the desired result.

197

Appendix A.

A.8 LLN arguments for the actual system

Since the third term in equation (2.25) is sufficient to obtain the excess-

averaged-phase we denote it by ϕav,suf . We set ϕav,suf = Hδ[0] where

H ,
1

SR

SR−1
∑

s′=2

[

I +
s′−1
∑

p=1

Gs′−1Gs′−2 . . . Gs′−p

]

=
SR − 2

SR
I +

1

SR

SR−1
∑

s′=2

s′−1
∑

p=1

Gs′−1Gs′−2 . . . Gs′−p (A.22)

We now express the matrix H as the sum of matrices Hp, 0 ≤ p ≤ SR−2, with the

matrix Hp collecting all the terms in H which are products of p system matrices.

To do this, we interchange the order of the sums in equation (A.22) and get,

H =
SR − 2

SR
I +

1

SR

SR−2
∑

p=1

SR−1
∑

s′=p+1

Gs′−1Gs′−2 . . . Gs′−p

We can set H0 = (SR − 2)/(SR)I and Hp = 1
SR

∑SR−1
s′=p+1Gs′−1Gs′−2 . . . Gs′−p, 1 ≤

p ≤ SR − 2 and see that each term in the sum for Hp is a product of p system

matrices. First, we show that Hp ≈ Gp using the LLN, when p is small. In such

cases, Hp is virtually independent of the precise schedule in operation during this

round of slots.

An expression for Hp for small values of p: We begin with the simplest

of these matrices H0. For large values of SR, we can approximate (SR − 2)/(SR)

198

Appendix A.

by 1 and consequently H0 ≈ I when SR ≫ 2. Next, we consider the simplest

“nontrivial” matrix H1. By definition, we have,

H1 =
1

SR

SR−1
∑

s′=2

Gs′−1 =
G1 +G2 + . . .+GSR−2

SR
(A.23)

Since the matrices {Gt}∞t=0 are chosen indpendently from the set Sm = {G1,G2, . . . ,GM}

with probabilities {p1, p2, . . . , pM} respectively, we can use the law of large num-

bers when SR is large and obtain,

H1 =
SR − 2

SR

G1 +G2 + . . .+GSR−2

SR − 2
≈ SR − 2

SR
G (A.24)

where G, as before, denotes the average system matrix
∑M

i=1 piGi. When SR ≫ 2,

we can approximate (SR − 2)/SR by 1 and therefore, H1 ≈ G.

We now consider the matrix H2. By definition, H2 = 1
SR

∑SR−1
s′=3 Gs′−1Gs′−2.

Expanding the sum, we get,

H2 =
G2G1 +G3G2 +G4G3 + . . .+GSR−2GSR−3

SR
(A.25)

We cannot apply the law of large numbers to equation (A.25) directly because the

terms in the sum are not independent. For example, the first two terms have G2 in

common and therefore, cannot be independent. However, the correlation between

the terms in the sum is fairly weak - only adjacent terms have any dependence at

all. For example, the first term G2G1 is completely independent of the third term

G4G3 and any future terms. Therefore, we can break the dependence among the

199

Appendix A.

terms by splitting the sum into two parts: one part consisting of the odd terms

and the other part containing the even terms. After such a split, we get,

H2 =
G2G1 +G4G3 + . . . GSR−3GSR−4

SR

+
G3G2 +G5G4 + . . . GSR−2GSR−3

SR
(A.26)

where we have assumed, for concreteness, that SR is odd. Since the constituent

elements of the doublet matrices, such as G2G1, G4G3 are independent, each dou-

blet has an average value of G2
. Now, consider either sum in equation (A.26):

it consists of (SR − 3)/2 terms, which are all independent of one another. Ap-

plying the law of large numbers separately to each sum, we see that they both

approach SR−3
2SR
G2

. Note that we need when SR−3
2

to be “large enough” to apply

the LLN to each interleaved sum. Therefore, H2 ≈ 2 × SR−3
2SR
G2 ≈ G2

for large

values of SR. In a completely analogous fashion, we can split the expression for

Hp into p “interleaved” sums and use the LLN on each sum to conclude that

Hp ≈ SR−(p+1)
SR

Gp ≈ Gp as long as SR−(p+1)
p

is large enough to apply the LLN.

Next, we show that when p becomes large, Hp tends to a rank-one matrix of the

form 1αT
p for some vector αp.

An expression for Hp for large values of p: Each term in the sum for Hp =

1
SR

∑SR−1
s′=p+1Gs′−1Gs′−2 . . . Gs′−p is a product of p stochastic matrices. Thus, if p is

larger than the critical limit Sw, a generic term of the form Gs′−1Gs′−2 . . . Gs′−p,

200

Appendix A.

is equal to a rank-one matrix 1αT
s′,p. Substituting into the expression for Hp, we

get

Hp = 1αT
p (A.27)

Let SG be large enough for us to set λ
S
G

2 ≈ 0 (and hence, GSG

ex ≈ 0). We choose

the number of slots in a round SR ≫ S∗ = max(SG, Sw) so that we can apply the

LLN and approximate Hp by Gp for p ≤ S∗. We summarize the discussion in the

form of three conclusions:

1. Since S∗ is much smaller than SR, Hp ≈ Gp, p < S∗

2. Since S∗ is larger than the critical limit Sw, Hp ≈ 1αT
p ∀p ≥ S∗ for some

vector αp

3. Since S∗ is larger than SG, λS
∗

2 is negligible

Adding these terms to form H and substituting into the expression for ϕav,suf ,

we get,

ϕav,suf = Hδ[0] ≈ κ1 +

S∗−1
∑

p=0

Gpδ[0] (A.28)

where κ =
∑SR−2

p=S∗ (αT
p δ[0]). Since the first term only contributes to the mean

of the averaged phases, it can be thrown out. Thus, we get the excess-averaged-

phases ϕav,ex to be

ϕav,ex ≈
S∗−1
∑

p=0

Gpδ[0]

201

Appendix A.

Since Gpδ[0] = Gpexδ[0] (see Section A.1), we have,

ϕav,ex ≈
S∗−1
∑

p=0

Gpexδ[0] (A.29)

We can now write
∑S∗−1

p=0 G
p

ex =
∑∞

p=0 G
p

ex −
∑∞

p=S∗ Gpex. Since all eigenvalues

of Gex are less than 1, the Neumann sum
∑∞

p=0 G
p

ex converges to
(

I− Gex
)−1

.

Approximating Gsex by the dominant term in its spectral decomposition, λs2v2v
T
2 ,

we get,
∞
∑

p=S∗

Gpex =
λS

∗

2

1− λ2
v2v

T
2 ≈ 0

where the second equality follows from the fact that λS
∗

2 is negligible. Using these

conclusions in equation (A.29), we get the desired result,

ϕav,ex ≈
(

I− Gex
)−1

δ[0]

202

Appendix B

We show that omitting the constraints µie = wieδe from the integer program

in (3.50) does not change the optimal solution.

Technically, the complete integer program formulation must be:

max J =
∑

s

∑

i∈Ω#
s

P
∑

e=1

cieµie +
∑

s

∑

i∈Ωs

ciOµiO

∑

i∈Ω#
s

µie = δe ∀s, e

P
∑

e=1

µie + µiO = 1 ∀i ∈ Ω1 ∪ Ω2 . . . ∪ ΩN

µie = wieδe ∀e, i

δe, µie, µiO, wie ∈ {0, 1} ∀i, e

(B.1)

This formulation cannot be converted to a linear program directly, since the con-

straints we just added involve products of variables. On the other hand, the formu-

lation in (3.50) can be converted to linear program via relaxation, and therefore,

is desirable. We now show that the formulations in (3.50) and (B.1) equivalent.

203

Appendix B.

We begin by observing that the variables wie do not appear in the objective

function. Therefore, any value that they take, while respecting the constraints,

has the same cost. Thus, one approach to solve the complete formulation in (B.1)

could be the following: first, we solve the “partial” formulation in (3.50) and then

pick wie ∈ {0, 1} to satisfy µie = wieδe. However, there is a problem with this

approach – the solution to the partial formulation could potentially produce µie, δe

such that the equation µie = wieδe has no solution, when wie ∈ {0, 1}. We now

show that this cannot happen.

The equation µie = wieδe (all variables are binary valued) has a solution for wie

if µie ≤ δe. The first set of constraints already ensures that this will be the case –

since every term in the LHS of
∑

i∈Ω#
s
µie = δe is non-negative, each one of them

is no larger than the RHS. Thus, any solution to the formulation in (3.50) will

satisfy µie ≤ δe, ensuring that the equations µie = wieδe can be solved. Therefore,

the formulations in (3.50) and (B.1) are equivalent.

204

Bibliography

[1] A. Ali, S. Asgari, T. Collier, M. Allen, L. Girod, R. Hudson, K. Yao, C. Tay-
lor, and D. Blumstein. An empirical study of collaborative acoustic source
localization. Journal of Signal Processing Systems, 2009.

[2] M. Allen, L. Girod, R. Newton, S. Madden, D. Blumstein, and D. Estrin.
Voxnet: An interactive, rapidly-deployable acoustic monitoring platform. In
Proc. IPSN 2008.

[3] P. Barooah, J. Hespanha, and A. Swami. On the effect of asymmetric com-
munication on distributed time synchronization. In Proc. 46th IEEE CDC,
pages 5465–5471, 2007.

[4] A. Beck, P. Stoica, and J. Li. Exact and approximate solutions of source
localization problems. Signal Processing, IEEE Transactions on, 56(5):1770–
1778, 2008.

[5] A. Bishop, B. Fidan, K. Dogancay, B. Anderson, and P. Pathirana. Exploiting
geometry for improved hybrid aoa/tdoa-based localization. Signal Processing,
88(7):1775–1791, 2008.

[6] R. Blum, S. Kassam, and H. Poor. Distributed detection with multiple sensors
i. advanced topics. Proceedings of the IEEE, Jan 1997.

[7] Y. Chan and K. Ho. A simple and efficient estimator for hyperbolic location.
Signal Processing, IEEE Trans., 42(8), 1994.

[8] J. Chen, R. Hudson, and K. Yao. Maximum-likelihood source localization
and unknown sensor location estimation for wideband signals in the near-
field. Signal Processing, IEEE Transactions on, 50(8):1843–1854, 2002.

[9] J. Chen, R. Hudson, and K. Yao. Maximum-likelihood source localization
and unknown sensor location estimation for wideband signals in the near-
field. Signal Processing, IEEE Transactions on, Aug 2002.

205

Bibliography

[10] G. Dantzig and M. Thapa. Linear Programming: Theory and extensions.
Springer Verlag, 2003.

[11] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. ACM SIGOPS Operating Systems Review,
36:147–163, 2002.

[12] N. Freris and P. Kumar. Fundamental limits on synchronization of affine
clocks in networks. In Invited paper in the 46th IEEE CDC, 2007.

[13] S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync protocol for sensor
networks. In Proceedings ACM SenSys 2003, pages 138–149. ACM New York,
NY, USA, 2003.

[14] X. Gang and K. Shalinee. Discrete-Time Second-Order Distributed Con-
sensus Time Synchronization Algorithm for Wireless Sensor Networks.
EURASIP Journal on Wireless Communications and Networking, 2009, 2008.

[15] M. Gavish and A. Weiss. Performance analysis of bearing-only target loca-
tion algorithms. Aerospace and Electronic Systems, IEEE Transactions on,
28(3):817–828, 1992.

[16] A. Giridhar and P. Kumar. Distributed time synchronization in wireless
networks: Algorithms and analysis (I). In Proc. IEEE CDC 2006.

[17] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and implementation
of a self-calibrating distributed acoustic sensing platform. In Proc. Sensys
2006.

[18] L. Huang and T. Lai. On the scalability of IEEE 802.11 ad hoc networks. In
Proc. 3rd ACM MOBIHOC, 2002.

[19] D. Hubel and T. Wiesel. Brain mechanisms of vision. Scientific American,
241(3):150, 1979.

[20] D. Klein, S. Venkateswaran, J.T.Isaacs, J. Burman, T. Pham, J. Hespanha,
and U.Madhow. Localization with sparse acoustic sensor networks using uavs
as information seeking data mules. In Submitted to ACM Transactions on
Sensor Networks.

[21] Y. Li and Z. Ding. Blind channel identification based on second order cyclo-
stationary statistics. In Proc. ICASSP 1993.

206

Bibliography

[22] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120db 30mw asyn-
chronous vision sensor that responds to relative intensity change. In Solid-
State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers.
IEEE International, pages 2060–2069. IEEE, 2006.

[23] H. Liu, G. Xu, L. Tong, and T. Kailath. Recent developments in blind channel
equalization: From cyclostationarity to subspaces. Signal Processing, 1996.

[24] G. Mao, B. Fidan, and B. Anderson. Wireless sensor network localization
techniques. Computer Networks, 51(10), 2007.

[25] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding time synchro-
nization protocol. In Proc. ACM SenSys 2004, pages 39–49, 2004.

[26] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[27] R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological oscil-
lators. SIAM J. on Appl. Math., pages 1645–1662, 1990.

[28] R. Olfati-Saber and R. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Trans. on Automatic Control,
49(9):1520–1533, 2004.

[29] S. Pradhan and K. Ramchandran. Distributed source coding using syndromes
(DISCUS): design and construction. Information Theory, IEEE Transactions
on, 2003.

[30] W. Ren. Second-order consensus algorithm with extensions to switching
topologies and reference models. In American Control Conference, 2007.
ACC’07, pages 1431–1436, 2007.

[31] W. Ren and E. Atkins. Distributed multi-vehicle coordinated control via local
information exchange. International J. of Robust and Nonlinear Control,
17(10-11):1002–1033, 2007.

[32] W. Ren and R. Beard. Consensus seeking in multiagent systems under dy-
namically changing interaction topologies. IEEE Transactions on Automatic
Control, 50(5):655, 2005.

[33] S. Sanghavi. Equivalence of lp relaxation and max-product for weighted
matching in general graphs. In Information Theory Workshop, 2007. ITW’07.
IEEE, pages 242–247. IEEE.

207

Bibliography

[34] L. Schenato and G. Gamba. A distributed consensus protocol for clock syn-
chronization in wireless sensor network. In Proc. IEEE CDC 2007.

[35] O. Shalvi and E. Weinstein. New criteria for blind deconvolution of nonmini-
mum phase systems (channels). Information Theory, IEEE Transactions on,
2002.

[36] G. Sharma, R. Mazumdar, and N. Shroff. On the complexity of scheduling
in wireless networks. In Proc. ACM MobiCom 2006.

[37] N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri. Target tracking with
binary proximity sensors. ACM Transactions on Sensor Networks (TOSN),
5(4):30, 2009.

[38] O. Simeone, U. Spagnolini, Y. BarNess, and S. Strogatz. Distributed synchro-
nization in wireless networks. IEEE Signal Processing Magazine, 25(5):81–97,
2008.

[39] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton. Sensor network-based countersniper system. In
Proc. Sensys 2004.

[40] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton. Sensor network-based countersniper system.
In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 1–12. ACM, 2004.

[41] S. Singh, R. Mudumbai, and U. Madhow. Distributed coordination with
deaf neighbors: efficient medium access for 60 GHz mesh networks. IEEE
INFOCOM 2010, 2010.

[42] R. Solis, V. Borkar, and P. Kumar. A new distributed time synchronization
protocol for multihop wireless networks. In Proc. of the 45th IEEE CDC,
2006.

[43] P. Sommer and R. Wattenhofer. Gradient Clock Synchronization in Wireless
Sensor Networks. In Proc. ACM/IEEE IPSN, 2009.

[44] L. Tong and S. Perreau. Multichannel blind identification : from subspace to
maximum likelihood methods. Proceedings of the IEEE, 1998.

208

Bibliography

[45] L. Tong, G. Xu, B. Hassibi, and T. Kailath. Blind channel identification
based on second-order statistics: A frequency-domain approach. Information
Theory, IEEE Transactions on, 2002.

[46] L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based
on second-order statistics: A time domain approach. Information Theory,
IEEE Transactions on, 2002.

[47] R. Viswanathan and P. Varshney. Distributed detection with multiple sensors
i. fundamentals. Proceedings of the IEEE, 1997.

[48] H. Wang, C. Chen, A. Ali, S. Asgari, R. Hudson, K. Yao, D. Estrin, and
C. Taylor. Acoustic sensor networks for woodpecker localization. 2005.

[49] X. Wang, Z. Wang, and B. O’Dea. A toa-based location algorithm reducing
the errors due to non-line-of-sight (nlos) propagation. Vehicular Technology,
IEEE Transactions on, 52(1):112–116, 2003.

[50] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-
inspired sensor network synchronicity with realistic radio effects. In Proc.
ACM SenSys 2005, pages 142–153, 2005.

[51] G. Xu, H. Liu, L. Tong, and T. Kailath. A least-squares approach to blind
channel identification. Signal Processing, IEEE Transactions on, 1995.

[52] X. Xu, N. Rao, and S. Sahni. A computational geometry method for localiza-
tion using differences of distances. ACM Transactions on Sensor Networks
(TOSN), 6(2):10, 2010.

[53] X. Xu, S. Sahni, and N. Rao. On basic properties of localization using
distance-difference measurements. In Information Fusion, 2008 11th Inter-
national Conference on, pages 1–8. IEEE, 2008.

209

