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ABSTRACT 

Quantization index modulation (QIM) techniques have been gain- 
ing popularity in tlie data hiding community bccause of their ro- 
hustness and infonnation~theorctic optiinality against a large . 
of atkicks. In tbis paper. we consider detecting the prescncc of 
QlM hidden dala. which is an unprtant con~itleration when data 
biding is used for covert communication. or steganography. For a 
giveii host distribution. we are able to quanlify detectability con-  
pactly in terms of a parameter related to the robustness of the hid- 
ing scheme to attacks. Using detection theory we show that QlM 
quickly transilions from easily detectable to virtually undetectable 
as this parameter varies. We also ohtaio perforinance benchmark 
for QIM hiding in images. indicatiiig that a scheme designed to be 
robust to. say. a moderate degree of JPEG compression. should be 
easily detectable. While practical application of detection theory 
to images is difficult because of statistical variations across un- 
ages, we employ supervised learning to show that standard QIM 
schemes for images are indeed quite easily detectable. However. 
it remains an open issue as lo whelber it is possible to devise QIM 
variants that are less vulnerable to steganalysis. 

1. INTRODUCTION 

Quantization Index Modulation (QIM) refers to a class of data hid- 
ing schemes that exploit Costa's [I]  now famous findings by em- 
bedding information in the choice of quantizers. Over the past few 
years, QIM-based data hiding has received increasing atlention 
from the data hiding community because it is more robust than es- 
tablished techniques such as spread spectrum and least significant 
bit (LSB) hiding. Recently proposed QIM schemes include Cben 
and Wornell's QIM and dither modulation [2], Eggen et al's scalar 
Costa scheme (SCS) [ 3 ] ,  and application tailored implementations 
such as 14.5, 6.71. 

Given that steganograpliy. or covert communication, is an Un- 
portant application of data hiding, it is natural to ask how easy it 
is to detect the presence of data hidden using QIM. Thus, the sub- 
ject of this paper is sregannlysis (i.e., defection of steganographic 
communication) of QIM-based hiding. To date, there appears to 
have been little systematic investigation of this issue, a notable ex- 
ception being the work of Guillon et al[8] on steganalysis of SCS, 
based on modeling QIM as inducing additive quantization noise. 
We employ amorc detailed model of QIM in the pment  work and 
apply both defection theory and supervised learning techniques to 
draw our conclusions. 
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Section 2 studics. under idealized conditions. the fundniiiental 
limits of steganalysis for QIM. We consider independent antl iden- 
tically distributed (i.i.d.) host (or cover) data. and asstune tllal the 
stegailalyst knows the host distribution. Using liyputhesis testing 
techniques a s  in [9]. we provide performance benchmarks for scv- 
cral variants of QlM. The detectability oI-QIM for a given host dis- 
Iribution can vary widely. depeuding on the design level of rohust- 
ness against attacks. QlM is more easy to detect for distrihutions of 
transfonn ilomaiu unage coefficients. which exhibil a strong peak 
a1 zero which is changed significantly by standard QlM variants. 
This implies that QIM hiding io images in the transform domain 
shoulcl be easily detectable. In practice. the host distribution for 
an image is not known. antl exhibits significant variations from 
image to unage. However. in Section 3.  we show that standard su- 
pervised learning techniques using tlie received distribution as tlie 
feature approach detection-theoretic performance limits. In par- 
ticular. QIM-based hiding designed to resist moderate levels of 
JPEG compression is quite easily detectable. Lyu and Farid have 
also used learning systems for steganalysis [IO] with promising 
results. However, since their feature set is chosen without rqa rd  
to the steganography scheme it is widely applicable, but takes a 
performance hit due to its generaliiy. A side-by-side comparison 
would not be illuminating, since they detect non-QIM hiding. Our 
conclusions are stated in  Section 5.  

2. OPTIMAL DETECTION OF QIM HIDING 

The simplest form of quantization based data hiding quantizes the 
host signal with a quantizer indexed by the message. If s is the 
stego signal, m the message, and x the cover or host signal, we 
have s(x, m) = qnz (x). The stego signal will consist only of val- 
ues in the set of quantizer outputs. This is appropriate if the signal 
is expected to he quantized. for compression for example. Dither 
modulation [2]. can produce a stego signal covering all of the val- 
ues of the host signal. Here the quantizers arc shifted according to 
achanging dither level, i.e. s ( x , m )  = qm(x + d) - d. 

There exist more advanced flavors of QIM, which pmvide ad- 
vantages to simpler versions. However most practical implemen- 
tations we have seen use either simple QIM, or dither modulation, 
with uniform scalar quantizers. We focus on these cases. 

Let P x ( x )  be the probability mass function (PMF) of the host. 
We assume X is i.i.d. so the ldimensional PMF is sufficient for 
classification. Since we are using scalar quantizers and i.i.d. data, 
we wiIl use scalar notation from here on out: S = si, X = 2,. 
etc. We can find the PMF of S as a function of Px (x ) .  We begin 
with a non-hiding, uniform scalar quantizer. The output levels are 
the integer multiples of the step-size, A', and the probability of a 
given output, A, is just the sum of probabilities that are quantized 
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to that output. Defining the range of input values quantized to a 
single output value as .k“(a) [a - A’/>, a + A’/>) then the 

Where I: is any integer. If now a choice of quantizer is used to 
liide binary diita. B. we split the original quantizer into 2 comer  
subsets. each with step-size A = ‘U*. The quantizer associated 
with sending a 1 is identical to that as for sending 0. but shifted by 
Aj2. Assuming the probability o f 0  is equal to I .  we have 

Where X(S) [s - A12, I -1- A/”) is tlie analogous range for 
the ncw A. Unlike slaiidarfl quantization. tbese regions overlap 
for adjacent values 01- 5 .  We note at this point tliat if the goal of 
the steg~oographer is to mimic an existing quantizer. for example 
a cotnprcssion scl~einc. then the hider can stop here. without using 
dither modulation. I n  [4] and 171. the autbors usc this to imitate 
the outpit of JPEG aod JFEGZOOO respectively. w e  examine the 
detection of this first case below. 

For dilber modulatioo. we let D be a pscurlorandom variable 
uniforinly distributed over [-A/4: A/4) so that the output will 
cover a11 the values of the input. ancl will not leave tell-tale signs 
of quantization. In this rnngc. h ( 1 )  = %/A where t is the 
granularity of the data. With this dithering. any s is valid. subject 
to the granularity of the system. For every received S there is one 
and only one valid value of d that could have made that value of 
S. For any valid s, Ps(s) = P ( B  = 0 , l )  n P.Y(z E X ( s ) )  n 
P D ( ~  = required). Again assuming equiprobable message data 
and plugging in for PD we have 

(3) 
& 

PS(S) = --Px(z E X ( s ) )  A 
Armed with equations (I), (2). and (3) we can find the perfor- 

mancc of a detector operating in two scenhos. The first is dis- 
tinguishing between host values that have been quantized versus 
QIM data embedding (without dithering). The second case is dis- 
tinguishing between an unquantized host and a host with dithered 
QIM data embedded. 

The optimal detector in the Neyman-Pearson sense of maxi- 
mizing the probability of detection while maintaining a given false 
alarm probability is the well known likelihood ratio test [I I]: 

Before we analyze the performance of this detector for some 
example PMPs, we can gain some insight into what will be de- 
tectable simply by inspecting L ( y ) .  

Case I: Quantized host versus non-dithered QIM hiding 
Here we compare to A rather than X. The yi in y are inde- 

pendent, so L ( y )  is: 

Basically hiding sums over twice the range, and compensates by 
halving the total. Therefore a smoothly varying PMF will be more 
difficult to detect than a spikey one. 

Case 11: Nonquantized host versus dither modulation hiding: 

(‘/A) Cg<-A/?<%<!,,+A/? P.y(L) 

Px (Yi ) i=1 

This is exactly the ratio of the average (over A) to the original. 
Dither modulation hiding tllerefore acts as a moving average hlter 
on the PMF. Intuitively. host PMFs with high frequency compo- 
nents relative to A will be much easier to detect than a smoothly 
varying PMll Indeed. as is noted in 1x1. a uniformly distributed 
host would be impossible to detect. 

Typically a stegmographer will be hiding i n  data transformed 
to make it suitable for compression. This data will generally havc 
values concentrated towanls the mean. That is. the PMF will tend 
to have a large spike at tbe center. See for example the histognin 
of DCL‘ coefficients of an image in Figure I .  For PMts  such as 
these. the detectability is strongly linked to the concentration of 
prohtiblity iiear the mean compared to the stcp size of the quati- 
tizers. or the ratio of the standard deviation to A. A is directly 
proportional to tlie robustness 01. the hiding. 

a0 A 1 
~P - 1 0  a K‘ IS0 

Fig. 1. The empirical PMF of tbe DCT values of an image. The 
PMF looks not unlike a Laplacian, and has a large spike at zero. 

‘l‘o quantify this observation, we can find the pcrformance of 
the detector for a given host distribution. We Cannot estimate the 
average probability of error of the detector, because the priors can 
not be known; who knows how many steganographers exist? As 
a metric we use the s u m  of the probabilities of false a l am and 
missed detection. For a known PMF, we find upper bounds on 
these probabilities by using Chemoff bounds (for details. see for 
example [ I  I]) .  Chernoff bounds all6w us to find a bound on the 
performance even at very low probability of error, which is not 
possible with simulations. We hnd the detectability is extremely 
sensitive to the ratio ajA,  see Figure 2. Here, we are detecting a 
Laplacian PMF at rate 1. Within a short range of a /A,  the detec- 
tion metric goes from nearly certain detection to almost random 
detection. Gaussian PMFs have a similar relationship. 

The hider then should choose to embed in either a high vari- 
ance host, or use a small A. However the choice of hosts may 
be limited, and a smaller A will weaken its robustness to exter- 
nal attacks. He or she may chwse then to embed less data than is 
pssible in order to avoid detection. We introduce a rate, R, mea- 
sured in bits per host sample to characterize this. For scalar QIM, 
0 < R 5 1. As R is reduced the detectable difference between the 
hidden statistics and host statistics is diluted by the host samples 
that pass unchanged. We can easily adjust equations (2) and (3) to 
reflect this: 

Ps(s,R) = RPs(s,l)  + (1 - R)Px(s)  (4) 
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where FS(B.  I )  is tlie previous full-emheckling stego PMI; 
The hypothesis that (lata is hiclden is now composite. To detect 

this. we use the generalized likelihood ratio test where L ( y )  is 
now: 

To estimate enor prohahilities with the GLRT, we use computer 
simulation rather than Chernoll bounds. Eliding at a lower rate cer- 
Vainly decreases tlis detectability. Tliere is however a catch. The 
message the sender wants to send covertly has a predetermined 
length. The lower the rate, tlie more host samples the hider must 
use to embed the message. Since this increase in the number of 
samples increases the steganalyzer's ability to detect the hidden 
data, the increase in privacy caused by lowering the rate is some- 
what offset. Therefore the hider may not be as safe as he or she 
thought. We illustrate this witli an example. Suppose a hider is 
sending a 15000 bit message in 50000 host samples ( R  = .3) IC 
the host is a Gaussian with (./A) = 1 the detector has an er- 
ror sum of 0.070. If we hold the number of samples conslant but 
halve the rate to R = .15, the sum oferrors is 0.366. However this 
will only send 7500 bits. To send the eiitire message the hider will 
have to use 100000 host samples. The performance taking this into 
account is 0.205. 

Finally, in implementing these schemes on real world data; 
certain adjustments must be made to the basic scheme. For e x m -  
ple both [4] and [71 exclude low-valued coefficients from embed- 
ding, to avoid visual distortion of the final image. Furlhermore, 
as we mentioned above the host data typically has a characteris- 
tically sharp increase of probability near the mean, which will be 
noticeably smoothed by hiding. Setting a low-valued threshold for 
embedding also helps avoid this obvious artifact. This threshold- 
ing however leaves a new characteristic effect on the PMF near the 
low-values. The derivation of this modified stego PMF is straight- 
forward but lengthy and is skipped here for brevity. 

3. STEGANALYSIS WITH SUPERVISED LEARNING 

In the steganalytic method described in the previous section, it is 
assumed that the statistics of the host are known. This is obviously 
not the case in real world detection. Also, a hiding implementation 
will often allow a range of step-sizes, A. for embedding which is 

also unknown. The LRT gives us a "best-case" bound on detection. 
For practical tests. we must assume no prior knowledge. 

There is an alternative method. the SUpeNiSed leaming method. 
which makes no assumptions about the slatistics or A. Instead, i t  
finds the difference between cover images and images with hidden 
content entirely from the data through training. 

There are usually four steps in any supervised learning proce- 
dures: data set construction. feature extraction. traiiiiiig and test- 
ing. We describe these steps as follows: 

Dah set construrlion: For standard SupeNiSed learning tasks. 
a training and a testing set are occded. In our work. we use im- 
ages lrum three distinctively different image collections: digital 
orthopliolo quarter-quadmngle (DOQQI aerial images. Corel Pho- 
toCD (CPCD) Unagcs. arid imases laken with a Caiion digital cam- 
era (CAIIC). From e&ch coUcctioa. we create a training set and a 
testing set each consisting of500 randomly chosen images. Wilhin 
each set. we hide a raiidom bit strean in half of (lie hnages. and 
therefore. eai.11 set contains iiatiiral liost hnages and images with 
hiddco coiiteiit. The task is Io distinguish these two classes of i n -  
ares by triiiiiirig a classifier on the trainiiig data set and checking 
llic prediction accuracy ol  the classifier on tlie testing set. 

Feature extraction: Before trainiiig takes place, raw dala. or 
irnares in our case. need to be represented by a set of attributes. or 
features. We assume 1h;it our classifier is targeted to a particular 
implementation ofQIM. and choose tlie features to match. For our 
testiiig. we lested on a QlM irnplementatioo. [4]. tlial embeds in 
tlie 8x8 blockwise DCT coefticents of an hnage. Since the DCT 
teiids to decorrelate the intensity values. our model of an i.i.d. S 
as given in the previous section is justified. We therelore use a 
histogram as an empirical PMF for our feature vector. We corn- 
pute the histogram with 300 bins over all the coefficients that are 
typically embedded into, which gives us a 300 dimensional feature 
vector. 

In the QIM implementation we tested on, the hider chooses a 
A large enough to withstand a pre-determined JPEG compression 
quantization. We reler to this level as the design quality factor 
(QF). The smaller the design quality factor, the larger the step-size 
A. 

Training and  testing: We perform the supervised learing in 
two stages. In the first stage, we train the classifier on a training 
and testing set lrom the same image collection. Since images from 
the same collection are usually similar in content or texture, this is 
an easier task than the more general case. In the second stage, we 
create mixed training-and testing sets with images from all Uiree 
collections. This is a more difficult task but more general. 

4. RESULTS 

With knuwn design quality factor: In this experiment, we set 
the design quality factor at 50  to hide data in images in both the 
training and testing sets, which means when we make a detection, 
we already know that if there is data hidden in an image, the de- 
sign quality factor is 50. Both the host images and the images with 
hidden content are then compressed to IPEG at the same quality 
factor in order to avoid detection of JPEG compression. The re- 
sults of detection error lor this test are shown in Table 1. We find 
that if the design quality factor is known, the detection with super- 
vised learning gives very low error rates, which remailis low even 
at Severe JPEG compression. But we understand the design quality 
factor is an extra information which is not uslwlly available for the 
detector and it is expected to make detection simpler, In the next 

1167 



FinalQF I00 

CPCD 0 
CADC 0 

Tahle 1. If the design quality factor is known (set at SO). a very low 
detection error can be achieved at all compression rates. Here ‘0‘ 
mentis no errors occurred in 500 I ~ S L F  so the emr  rate is < 0.002 

90 80 70 60 so 
L X I Q Q O O O O O ~  

n ,004 n .nu ,052 
o o o n ,016 

FiiialQF in0 
DOQQ o 

CADC ,004 
CPCD ,088 

Tahle 2. If the desipn quality factor is unknown. the detection C I T ~  

is higher than previous results. but still sufficiently law. Also. the 
final JPEG compression plays an imporliint role. As compression 
heconies lower, the detection heconies less accurate. 

90 80 70 iin so 
n o o n ,016 

0 .nM .in4 ,212 .292 
444 ,144 ,132 ,248 ,220 

quality factor. the delection accuracy becomes lower, as expected. 
We also find that now the JPEG compression becomes an impor- 
tant factor. As compression becomes more severe, the detection 
error goes up. This is expected because the compression of images 
disrupts lhe nrtifacts introduced by data hiding. therefore mnking 
the hidden content less detectable. 

Mixed data sel: In tlie previous tests, we build a classifier 
and then perform detection on images from the same collection. 
Images from the same collection may have similar content, texture, 
or processing artifacts, and in real world detection tasks, we do not 
know which collection the images are from. Therefore, we design 
this testto partially remove this restriction. We create training and 
testing sets with images from all three image collections with equal 
proportion. The results are shown in Table 3 

FinalQF I 100 I 90 I 80 I 70 I 60 I 50 
Mixedset I ,001 I ,004 I ,000 1 ,001 I ,117 I ,083 

Table 3. If the training and testing set are created with images from 
B mixture of three collections, the supervised learning method GM 
still make very accurate detection. 

In this test, we found that although we train our classifier and 
attempt to detect images from mixture of three collections, we still 
get very accurate prediction at all compression rates. This sug- 
gests that the difference between different data collections ils well 
as changes due to hidden data can be learned from a one-slep su- 
pervised learning. 

5. CONCLUSION 

Our detection-theoretic results for i.i.d. hosts show that the ease 
with which QIM can be detected depfnds strongly an the host 
statistics. Specifically. host PMFs with a sharp peak at the mean 
chango considerably after QIM based hiding. which then becomes 
easy to detect. This  characteristic does hold fnr typical transform 
domain image dale. which has strong peaks at zero. While thc 
knowledge of host distribution assumed in our detcclion-theoretiu 
analysis docs not hold for imagc data (where the shtistics can vary 
significantly from image to hnage). stantliitl supervised learning 
techniques arc shown to perform well. The mmlthods employed 
h u e  only employ the first-order statistics. and their performance 
could plunlinlly be further improved by exphiling host memory. 

We caution the render apoinst drawing the conclusion that QIM 
is inherently easily detectable. The dclcctability could be reduced 
hy rrducinp the dcsign level of robustness against attacks. or by 
reducing the embedding rate. More lunilamentally. our work only 
considers currently proposed QIM schemes. which appcar to have 
k e n  designed with rohustness. rather than covertni.ss. in mind. 
We leave o p n  the issue ol‘ whether it  is possible to design QIM 
schemes that arc. hoth rohust ;md covert. and point I D  some recent 
thcnrctical results that indicate the potentinl for such schemes [ 121. 
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