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Abstract—The use of channel feedback from receiver to transmitter is
standard in wireline communications. While knowledge of the channel at
the transmitter would produce similar benefits for wireless communica-
tions as well, the generation of reliable channel feedback is complicated
by the rapid time variations of the channel for mobile applications. The
purpose of this correspondence is to provide an information–theoretic
perspective on optimum transmitter strategies, and the gains obtained by
employing them, for systems with transmit antenna arrays and imperfect
channel feedback. The spatial channel, given the feedback, is modeled as
a complex Gaussian random vector. Two extreme cases are considered:
meanfeedback, in which the channel side information resides in the mean
of the distribution, with the covariance modeled as white, andcovariance
feedback, in which the channel is assumed to be varying too rapidly
to track its mean, so that the mean is set to zero, and the information
regarding the relative geometry of the propagation paths is captured by
a nonwhite covariance matrix. In both cases, the optimum transmission
strategies, maximizing the information transfer rate, are determined as
a solution to simple numerical optimization problems. For both feedback
models, our numerical results indicate that, when there is a moderate
disparity between the strengths of different paths from the transmitter
to the receiver, it is nearly optimal to employ the simplebeamforming
strategy of transmitting all available power in the direction which the
feedback indicates is the strongest.

Index Terms—Antenna arrays, fading channels, feedback communica-
tion, space–time codes, spatial diversity, transmit beamforming, wireless
communication.

I. INTRODUCTION

Antenna arrays, at the receiver or at the transmitter, are widely recog-
nized as an effective means of improving the capacity and reliability of
a wireless communication link. In a typical cellular or personal com-
munication system, size and complexity limitations preclude deploy-
ment of an antenna array at the mobile, usually a small, hand-held unit.
On the other hand, it is reasonable to assume that the base station is
equipped with an antenna array. In such a setting, the use of transmit
antenna arrays provides a powerful method for increasing downlink
(base-to-mobile) capacity. There are two key techniques that have been
proposed in the literature for exploiting transmit antenna arrays.

1) Space–time coding [1]–[3], which provides diversity in a fading
environment. This does not require any knowledge of the spatial
channel on the part of the transmitter.

2) Transmit beamforming, which assumes that the transmitter has
accurate knowledge of the channel through feedback from the
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receiver, and can, therefore, perform spatial matched filtering or
(in a multiuser context) interference suppression [4], [5].

These two strategies are based on two different, and extreme, as-
sumptions regarding the channel feedback available at the transmitter:
space–time coding requires no feedback, whereas beamforming
requires accurate feedback. Clearly, there are situations where neither
of these assumptions is valid, and one would expect that the transmitter
strategy in such situations would be some blend of space–time coding
and beamforming. Our purpose in this correspondence is to make this
intuition precise by providing information–theoretic insights into the
appropriate transmitter strategies when the channel feedback available
to the transmitter is imperfect.

Characterization of the information–theoretic capacity of channels
with imperfect feedback is the subject of several recent publications.
The approach in this correspondence is motivated by the results ob-
tained in [6], [7], which provide forward and converse coding theo-
rems for certain channels with imperfect feedback. A similar feedback
model is adopted in [8], where optimum transmission strategies with
perfect and imperfect feedback are examined and classified. In [8], a
given transmission strategy is classified according to the rank of its
input spatial covariance matrix. For instance, a beamforming strategy
corresponds to a rank-one matrix while a covariance matrix with full
rank indicates a diversity strategy. Such a classification is also adopted
in this correspondence. With perfect channel feedback, it is shown in
[8] that the optimal strategy entails transmission in a single direction
specified by the feedback (beamforming strategy). Conversely, with no
channel feedback, it is shown in [9] and [10] that the optimum strategy
is to transmit equal power in orthogonal independent directions (diver-
sity strategy). Many practical diversity transmission strategies are an-
alyzed in [9]. Optimum power control and variable-rate transmission
strategies when the same side information is available to transmitter
and receiver, as well as when the side information is available only to
receiver, are analyzed in [11]. The remainder of this correspondence is
organized as follows. Section II contains the system model and formal
problem statement. Section III contains our main results. Numerical
results are presented in Section IV. Section V contains a discussion of
these results and of possible directions for future work.

II. M ODELING AND OVERVIEW

It is assumed that the transmit antenna hasM elements, and that the
receive antenna has a single element. The channel coefficients from the
M transmit elements to the receive element are denoted by theM�1
complex vectorhhh. We consider the following abstraction to model par-
tial knowledge of the channel at the transmitter. The corresponding
system model is depicted in Fig. 1.

Problem Setup:The input to the channel is given by theM � 1
complex vectorxxx. The receiver knowshhh, and receives

y = xxxHhhh+ n

wheren � N (0; �2) is circularly symmetric complex Gaussian noise
with variance�2=2 per dimension, and whereaaaH denotes conjugate
transpose of vectoraaa. The transmitter receives channel feedbackfff from
the receiver. Givenfff , the transmitter knows that the channelhhh is dis-
tributed according to a complex Gaussian distributionN (���; ���);where
��� and��� denote the mean and covariance ofhhh. Note that both��� and���
can be functions offff .

Problem: Forhhh�N (���; ���), what is the input distributionp(xxx) that
maximizes the mutual informationI(xxx; y jhhh ), subject toEfkxxxk2g �
P .

0018–9448/01$10.00 © 2001 IEEE
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Fig. 1. System model.

Note: For notational simplicity, throughout this correspondence
hhh � N (���; ���) is assumed to be aproper1 complex Gaussian random
vector, so that its distribution is completely specified by��� and���.
If hhh is not a proper complex Gaussian vector, then the problem
needs to be reformulated in terms of real-valued variables. Our main
results, Theorems 3.1 and 3.2, apply to real as well as complex-valued
channels.

The preceding maximization problem can be simplified as follows.
Let po(xxx) be the maximizing input distribution with covariance matrix
QQQ and powerEfkxxxkg2 =tracefQQQg = P . For fixedhhh, the channel is
an additive Gaussian noise channel, with input distribution constrained
to have covarianceQQQ. As shown in [10], the maximum mutual informa-
tion of this channel islog(hhhHQQQhhh=�2 + 1) and the maximizing input
distribution is proper complex Gaussian,po(xxx) = N (000; QQQ). Since
po(xxx) is not a function ofhhh, it also maximizesI(xxx; y jhhh ). The opti-
mization problem is now one of finding the optimum choice of the co-
variance matrixQQQo maximizing the mutual informationI(xxx; y jhhh ) for
power constraintP . The problem can be stated as follows:

max
QQQ

Ehhh log
hhhHQQQhhh

�2
+ 1 (1)

subject to the power constrainttracefQQQg = P , where�2 is variance
of the additive circularly symmetric complex Gaussian noise. Note that
the expectation in (1) is computed using distributionhhh � N (���; ���).

A given transmission strategy is completely characterized by its co-
variance matrixQQQ. The strategy consists of transmitting independent
complex circular Gaussian symbols along the corresponding directions
specified by the eigenvectors ofQQQ, with the corresponding eigenvalues
specifying the powers allocated in each direction. Adapting definitions
in [8], a transmission strategy is defined as beamforming if the rank of
QQQ is one, and asq-fold diversity if rankfQQQg = q. In other words, beam-
forming is a strategy where transmission is performed only in a single
direction, whileq-fold diversity utilizesq transmit directions. Under
this definition, the space–time coding techniques recently proposed in
[1]–[3] can be viewed as attempting to provide full (M -fold) diversity.

A. Discussion

When the channel feedbackfff is a deterministic function of the
channel realizationshhh, recent results by Caire and Shamai [7] and by
Viswanathan [6] imply that an achievable information transfer rate
between the input and the output in the preceding system model can
be computed in the following two steps.

1) At timet, based on the “instantaneous” information provided by
the current channel feedback vectorfff(t), find the optimum input

1As defined in [12], a complex Gaussian vectoryyy with mean��� is proper if
Ef(yyy � ��� )(yyy � ��� ) g = 000.

distribution which maximizes the mutual information, subject to
an instantaneous power constraintEfkxxx(t)k2g � P (t).

2) Based on the solution to Step 1), and on the joint distribution of
the channel and the feedback, find the optimum power profile
fP (t); 0 � t < 1g.

While the results reported in this correspondence may be viewed as
solving Step 1) of the preceding approach in a specific setting, such
an interpretation would not hold in most practical situations, where the
feedback may be noisy. In this case, maximization of the mutual in-
formation based on the instantaneous feedback as outlined in Step 1)
need not be optimal, since knowledge of the feedback values at multiple
times can help combat the randomness in the feedback. However, the
framework of this correspondence can form the basis for a practical, al-
beit suboptimal, design in such situations. For example, the transmitter
may derive a (possibly suboptimal) estimate of��� and��� based on more
than one value of the feedback, and may then (again suboptimally) use
the problem setup in (1) to find a strategy that maximizes the long-term
information transfer rate.

Presently, the general solution to the optimization problem in (1) for
the general form ofhhh � N (���; ���) is not known. The following special
cases have been previously considered in the literature.

1) The optimum covariance for the special case of no feedback,
hhh � N (000; �III), is derived by Telatar in [10]. In that case, the
diversity strategy with power distributed equally in orthogonal
independent transmit directions is optimum.

2) The optimum transmission strategy in the low signal-to-noise
ratio (SNR) regime(�!1) for the special casehhh � N (000; ���)
is found in [8]. It is shown that beamforming in the direction
corresponding to the largest eigenvalue of the channel covariance
matrix��� is asymptotically optimum as the SNR tends to zero.

B. Summary of Results

In this correspondence, the optimum distribution is characterized in
the following two cases.

1) Mean Feedback: In this case, the channel distribution is modeled
at the transmitter ashhh � N (���; �III), where the mean��� may be
interpreted as an estimate of the channel based on the feedback,
and� may be interpreted as the variance of the estimation error.
In practice, these quantities could be computed at the transmitter
based on knowledge of the joint statistics ofhhh andfff . An example
of such a computation is given in Section IV as part of the nu-
merical results for mean feedback.

The quality of the mean feedback depends on thefeedback
SNRk���k2=�, and this ratio is zero when no feedback is avail-
able. Our results show that the optimum solution is to use beam-
forming along��� (QQQ is unit rank) when the feedback SNR is larger
than a threshold, and to useM -fold diversity (QQQ is full rank) oth-
erwise. In the latter case, the power is distributed according to a
water pouring strategy between the direction��� and the remaining
M � 1 orthogonal directions, which receive equal powers.

2) Covariance Feedback: The channel distribution known to the
transmitter ishhh � N (000; ���). This models a situation in which
the channel may be varying too rapidly for the feedback to give
an accurate estimate of the current channel value. However,
the relative geometry of the propagation paths changes more
slowly, and is reflected in the covariance matrix���. See [13]
for a physical channel model justifying these assumptions.
In practice, the covariance matrix could be computed at the
receiver via long-term time averaging of the channel realizations
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and reliably transmitted to the transmitter through a low data
rate feedback channel.

For covariance feedback, our results show that the optimum
solution consists of independent Gaussian inputs along theM
eigenvectors of���. The solution resembles water pouring, in that
eigenvectors corresponding to larger eigenvalues receive more
power (the power along some of the eigenvectors may be zero,
so that the optimal diversity order may be less thanM ).

III. RESULTS

Notation: Let UUUAAA���AAAUUU
H
AAA denote the spectral decomposition of

a nonnegative definite matrixAAA, where���AAA is a diagonal matrix
containing the eigenvalues ofAAA, andUUUAAA is a unitary matrix containing
as columns the eigenvectors ofAAA. Likewise, UUUo���o(UUUo)H is the
spectral decomposition of the optimum covariance matrixQQQo and
�oi ; i = 1 � � �M , denote the optimum eigenvalues. LetAAA[i] denote the
ith column of matrixAAA, andaaa[i] denote theith component of column
or row vectoraaa.

Theorems 3.1 and 3.2 characterize the optimum strategies for mean
and covariance feedback, respectively. Proofs of both theorems follows
the same general outline: first, we “guess” the optimum transmission
directions; next, we project the channel realizations onto these direc-
tions; finally, convex optimization arguments are invoked to prove that
the guessed directions are indeed optimum.

Theorem 3.1 (Mean Feedback):Let hhh � N (���; �III). Then, the
maximizing covariance matrix in (1) is given byUUUo[1] = ���=k���k,
andUUUo[2]; . . . ; UUUo[M ] are arbitrarily chosen, except for the restric-
tion thatUUUo[1]; . . . ; UUUo[M ] are orthonormal. Furthermore,

�o2 = � � � = �omin � �o

where�o = (P � �o1)=(M � 1).
Proof: Consider the optimization problem of (1), which can be

equivalently expressed as

max
QQQ

Ehhh log hhhHQQQhhh+ �2 (2)

subject to the power constrainttracefQQQg = P . LetUUU��� denote an or-
thonormal matrix such thatUUU���[1] = ���=k���k andUUU���[1]; . . . ; UUU���[M ]
are orthonormal and arbitrary. MatrixUUU��� contains as columns our
choice for the transmitting directions of the optimum strategy. Below
we establish that this choice is globally optimum, that is,UUU��� = UUUo.

First, consider a restricted optimization problem where the optimiza-
tion is restricted to only nonnegative definite matricesWWW satisfying the
power constraint, such thatUUUWWW = UUU���. Using the spectral decomposi-
tionWWW = UUU������WWWUUUH��� we have thattracef���WWW g = P as our constraint.
The constraint set of the restricted problem is convex and compact,
while the cost function is strictly concave inWWW . Hence, there exists
a unique matrixWWW o (with UUUWWW = UUU���) which solves the restricted
optimization problem. The matrixWWW o must satisfy the necessary op-
timality condition�f(WWW o;WWW �WWW o) � 0 for all matricesWWW in the
restricted constraint set, where�f(WWW o;WWW �WWW o) is a Frechet differ-
ential [14, p. 178] of the cost functionf in the directionWWW �WWW o,
evaluated atWWW o. Differentiating, the necessary condition can be ex-
pressed as

Ehhh
hhhH(WWW �WWW o)hhh

hhhHWWW ohhh+ �2
� 0: (3)

Consider a projection of the channelhhh onto the “guessed” directions,
given byvvv = UUUH���hhh. The components ofvvv are independent with proper
complex Gaussian distributionsvvv[i] � N (0; �), for i = 2 � � �M , and

vvv[1] � N (k���k; �). Performing this change of variables in (3), we
obtain an equivalent necessary condition

Evvv
vvvH(���WWW ����WWW )vvv

vvvH���WWW vvv + �2
� 0 (4)

where���WWW is any diagonal matrix with nonnegative entries satisfying
the power constraint.

It is now shown thatWWW o is also optimum for the unrestricted opti-
mization problem, i.e.,QQQo = WWW o. In view of the strict concavity of
the cost function and the convexity of the constraint region, a sufficient
condition for the overall optimality ofW o is �f(WWW o;QQQ �WWW o) � 0
for all nonnegative definite matricesQQQ satisfying the power constraint.
Equivalently, the sufficient condition can be expressed as

Ehhh
hhhH(QQQ�WWW o)hhh

hhhHWWW ohhh+ �2
� 0: (5)

Again, making the substitutionvvv = UUUH���hhh, we obtain as the sufficient
condition

Evvv
vvvH ~QQQ����WWW vvv

vvvH���WWW vvv + �2
� 0 (6)

where ~QQQ = UUUH���QQQUUU��� is related toQQQ by an orthonormal transforma-
tion, and hence is nonnegative definite with the same trace, so that it
also satisfies the power constraint. Decomposing~QQQ into a sum of ma-
trices ~DDD andQ̂QQ containing diagonal and off-diagonal terms, respec-
tively, expression (6) is rewritten as

Evvv
vvvH ~DDD ����WWW vvv

vvvH���WWW vvv + �2
+Evvv

vvvHQ̂QQvvv

vvvH���WWW vvv + �2
� 0: (7)

The first summand in (7) is less than or equal to zero by the neces-
sary condition for optimality given in (4), since matrix~DDD satisfies the
power constraint (tracef ~DDDg =tracef~QQQg = P ), and is diagonal and
nonnegative. The second sum can be decomposed into a weighted sum
of the terms of the form

Evvv
vvv[i]�vvv[j]

vvvH���WWW vvv + �2
� 0 i 6= j: (8)

Note that theM -dimensional probability distribution ofvvv is symmetric
with respect to all axes, excluding thevvv[1] axis (due to the nonzero
mean ofvvv[1]). Furthermore, the function under the expectation in (8)
is antisymmetric. We conclude that the expectation in (8) is zero, so
that the sufficient condition in (7) is indeed satisfied byWWW o.

It remains to be shown that the eigenvalues�o2 through�oM are equal.
This easily follows from substitutingWWW o into the cost function and
noticing that the cost function is symmetric with respect to the eigen-
values of interest. An application of the Jensen’s inequality yields the
desired result.

To complete the solution, it remains only to specify the value of�o1.
Computation of�o1 in Theorem 3.1: The power constraint implies

that�o1 lies in the range0 � �o1 � P . Although a closed-form analytic
solution for this quantity does not appear to be available,�o1 can be
determined numerically by a one-dimensional search over the range.
Another possibility is to use the observation that, as a function of the
two parameters�o1 and�o, the cost function is concave, while the power
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Fig. 2. Information transfer rate achievable with the optimum, pure diversity and beamforming strategies,hhh � N (���; �III), M = 2, a = 0:9. The curves for
the optimum and beamforming strategies coincide.

constraint is convex. Hence, these parameters can be numerically deter-
mined by the projected gradient descent algorithm [15], which in this
case is guaranteed to converge to the global minimum.

The mean feedback model was previously considered in [8], where a
similar computation is performed for two antenna elements(M = 2).
Specifically, the optimum transmit directions established analytically
in Theorem 3.1 are determined in [8] by numerical simulations, and
a sufficient condition on feedback SNRk���k2=� for the beamforming
strategy to be optimum is given.

Theorem 3.2 (Covariance Feedback):Lethhh � N (000; ���). Then, the
eigenvectors of the maximizing covariance matrix in (1) satisfyUUUo =
UUU���. That is, the optimal strategy is to employ independent complex
circular Gaussian inputs along the eigenvectors of���.

Proof: For conciseness, only an outline of the argument is pre-
sented, since, with slight modifications, arguments used to prove The-
orem 3.1 also apply here. In this case, our “guess” for the optimum
transmit directions is given by the columns ofUUU���. After projecting the
channel onto the “guessed” directions asvvv = UUUH��� hhh, the optimization
problem in (1) can be equivalently expressed as

max
QQQ

Evvv log vvvHQQQvvv + �2 (9)

subject to the power constrainttracefQQQg = P , wherevvv � N (000; ������).
To establish the theorem, it suffices to show that the maximizing co-
variance matrix in (9) is diagonal.

As in the proof of Theorem 3.1, consider a restricted optimization
problem, where the search is restricted to only diagonal nonnegative

definite matrices satisfying the power constraint in (9). By the con-
vexity of the restricted optimization problem, there exists a unique di-
agonal matrixDDDo, with real nonnegative entries, which solves the re-
stricted optimization problem. Furthermore,DDDo satisfies the necessary
condition of optimality on the restricted constraint set which is used to
show its overall optimality.

Similarly to (7), it is sufficient to establish thatDDDo satisfies the fol-
lowing inequality for all nonnegative complex matricesQQQ satisfying
the power constraint

Evvv
vvvH ~DDD �DDDo vvv

vvvHDDDovvv + �2
+Evvv

vvvHQ̂QQvvv

vvvHDDDovvv + �2
� 0 (10)

where ~DDD andQ̂QQ contain the diagonal and off-diagonal terms ofQQQ, re-
spectively. Following arguments identical to those used to show that
(7) holds, the proof of the theorem is concluded.

Computation of the Optimum Distribution in Theorem 3.2:It fol-
lows from Theorem 3.2 that, for��� = 000, the transmit directions are
precisely the eigenvectors of the channel covariance matrix���. To com-
pletely specify the transmission strategy, one needs to solve for theM
transmit powers given by the diagonal entries ofDDDo. This is anM -di-
mensional water pouring problem which can be solved by a number of
numerical algorithms, such as the projected gradient descent algorithm
[15]. Intuitively, higher power should be transmitted in the directions
of the larger eigenvalues of���, since large eigenvalues correspond to
stronger, and hence more reliable, channels.
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Fig. 3. Information transfer rate achievable with the optimum, pure diversity and beamforming strategies,hhh � N (���; �III), M = 2, a = 0:6.

IV. NUMERICAL RESULTS

Mean Feedback:hhh � N (���; �III): To obtain numerical results for
this case, the following Rayleigh fading channel model is simulated.
Lethhh(t) be anAR(1) random process with forgetting factora,hhh(t) =
ahhh(t� 1)+www(t), wherewww(t) is anM � 1 vector of independent and
identically distributed (i.i.d.) circularly symmetric Gaussians, each of
variance�2w. The feedback channel is modeled as a lossless channel
with delayd: at timet, the transmitter observesfff(t) = hhh(t � d) at
the output of the feedback channel. It is straightforward to show that,
conditioned onfff(t); hhh � N (���; �III), where��� = adhhh(t � d) and
� = �2w(1 � a2d)=(1 � a2). The distribution offff(t) = hhh(t � d) is
the same as that ofhhh(t) and is given byfff � N (000; �2w=(1 � a2)III).
Hence,� can be rewritten as

� = Efkhhhk2g(1� a2d)=M:

Figs. 2–4 display information transfer rate (in bits per transmission)
achievable with beamforming, diversity and the optimum transmission
strategy for a two-element antenna array. The information transfer rate
achieved by a given transmission strategy is obtained by substituting
an appropriate covariance matrixQQQ into (1) and removing conditioning
on the feedback. The optimum transmission strategy uses the covari-
ance matrixQQQo computed according to Theorem 3.1, where�o1 and
�o are numerically optimized using the projected gradient descent al-
gorithm, as described in the note following Theorem 3.1. Since opti-
mization of the instantaneous input power, given bytracefQQQg, is not
undertaken,tracefQQQg is set equal to one for all transmission strategies
without loss of generality. The input covariance matrix for the beam-
forming strategy, where beamforming is performed in the direction

specified by the conditional mean, is then given byQQQ
B
= ������H=k���k2,

whileQQQ
D
= (1=M)III specifies the input covariance matrix for diver-

sity transmission. In Figs. 2–4, the information transfer rate is plotted
versus SNR (in decibels), where

SNR= Efkhhhk2g=�2; Efkhhhk2g = 1

andad = 0:9; 0:6; and0:3, respectively. Parameterad indicates the
feedback quality and, more precisely, can be related to the average feed-
back SNR per antenna element as

Efk���k2g=M� = a2d=(1� a2d):

Whenad = 0:9, the quality of the feedback is relatively high, which
means that the channel estimate specified by the conditional mean is
close to the true channel. This results in the beamforming strategy per-
forming identical to the optimum strategy. The diversity strategy in
this case is too conservative, losing about 2 dB in performance over a
wide range of SNRs as compared to the beamforming strategy. With
ad = 0:6, the conditional mean conveys less accurate information
about the state of the channel. Nevertheless, the performance of the
beamforming and optimum strategies is almost identical. This result is
somewhat surprising, and highlights the robustness of the beamforming
strategy to imperfections in the feedback. Of course, the gap between
the performance of the diversity and optimum strategies is smaller than
in Fig. 2. Finally, the channel feedback quality is poor whenad = 0:3.
This case turns out roughly equivalent to the case of no feedback, in that
the diversity strategy performs close to the optimum strategy, while the
beamforming strategy performs about 1 dB worse than the optimum at
high SNRs.
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Fig. 4. Information transfer rate achievable with the optimum, pure diversity and beamforming strategies,hhh � N (���; �III), M = 2, a = 0:3.

Covariance Feedback:hhh � N (000; ���): In this case, the transmitter
has no information about the mean, but has long-term knowledge of
the spatial correlation matrix�. The achievable long-term information
transfer rate for a transmit strategy with input covariance matrixQQQ is
given by evaluating (1) with an appropriate covariance matrixQQQ. In
this case, it is not necessary to remove the conditioning on the feed-
back since the channel feedback is modeled as time-invariant. The input
powertracefQQQg and the channel powerEfkhhhk2g =tracef���g are set
to one, and the information transfer rates are obtained for the beam-
forming, diversity, and optimum transmission strategies as a function of
the channel SNR,Efkhhhk2g=�2. Since the eigenvectors of the optimum
covariance matrixQQQo, by Theorem 3.2, coincide with the eigenvectors
of ���, without loss of generality, both matrices are taken to be diagonal
for the simulations. The diagonal entries ofQQQo are determined by the
projected gradient descent algorithm. The diversity strategy is imple-
mented by the input covariance matrix(1=M)III , and the beamforming
strategy is implemented by transmitting all of the available power in
the direction of the unit vector corresponding to the largest diagonal
entry of���.

Let �i denote theith eigenvalue (in this case theith diagonal entry)
of���. Fig. 5 displays the information transfer rate (bits per transmission)
achieved by the transmission strategies withM = 3, �1 = �2 = �3. In
this case, the performance of the diversity strategy is optimum, while
the transmit beamforming strategy (equivalent here to using a single
transmit antenna element) performs less than 1 dB worse than the op-
timum over a wide range of SNR values. Fig. 6 displays the perfor-
mance of the transmission strategies forM = 3, �1=�2 = �1=�3 = 2.
In this case, there is a single direction which is 3 dB stronger than
the other directions specified by���. Somewhat surprisingly, the beam-
forming strategy transmitting in the stronger direction achieves the per-
formance of the optimum strategy for all displayed values of SNR.
Hence, no penalty is incurred for not utilizing the lower power direc-

tions, leading us to conjecture that, in general, such a beamforming
strategy is close to being optimal for smallM , when��� has at least a
moderate eigenvalue spread.

V. CONCLUSION AND FUTURE WORK

For a single transmit element, prior work [6], [11], [7] has shown
that, in terms of information–theoretic limits, there is little to be
gained by exploiting knowledge of the channel at the transmitter for a
single transmit antenna element. As our numerical results indicate, for
transmit antenna arrays, the gain through even partial knowledge of
the channel can be substantial. For mean feedback, the beamforming
strategy performs close to the optimal strategy when the feedback is
of reasonable quality. The beamforming strategy performs close to
the optimal strategy for covariance feedback when there is a stronger
path present which can be exploited by the beamforming. Overall, the
beamforming strategy appears to be a viable transmission strategy
when meaningful channel feedback is present. Furthermore, the
use of the beamforming strategy simplifies operation at the mobile,
since only a single data stream needs to be decoded. The optimum
transmission strategies presented in this work are based on random
coding arguments. Hence, future work in this area includes design
of practical coding strategies for exploiting partial knowledge of the
spatial channel.

A possible extension of the information–theoretic approach taken in
this correspondence is to consider optimum transmission strategies in
the context of the multiuser system model. The problem can be formu-
lated as a search for the optimum transmission strategies in a broadcast
channel as a function of the quality of channel feedback at the trans-
mitter. Such optimum strategies, if found, would provide a valuable
benchmark for the performance of the practical transmit beamforming
strategies, such as those proposed in [4], [5].
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Fig. 5. Information transfer rate achievable with the optimum, pure diversity and beamforming strategies,hhh � N (000; ���), M = 3, � = � = � . The curves
for the optimum and diversity strategies coincide.

Fig. 6. Information transfer rate achievable with the optimum, pure diversity and beamforming strategies,hhh � N (000; ���), M = 3, � =� = � =� = 2. The
curves for the optimum and beamforming strategies coincide.
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On the Capacity of a Pulse-Position-Hopped CDMA System

Ola Wintzell, Student Member, IEEE, Dmitri K. Zigangirov, and
Kamil Sh. Zigangirov, Fellow, IEEE

Abstract—Pulse-Position-Hopped (PPH) code division multiple access
(CDMA) is a new promising multiple-access technique which is very well
suited for short-range multipath communications and has several benefits,
such as coherent reception and low transmit power density. In this cor-
respondence, we analyze the error-correcting capability of a system em-
ploying PPH-CDMA. The results show that the system capacity is propor-
tional to the bandwidth, in a similar fashion as for carrier-based transmis-
sion techniques.

Index Terms—Impulse radio, time hopping, ultra-wide bandwidth
(UWB).

I. INTRODUCTION

The current emphasis on constant-envelope spread-spectrum modu-
lations has caused engineers to ignore one design, which has consid-
erable potential, namely pulse-position hopping (PPH), also known as
time hopping. Under the names impulse radio multiple access (IRMA)
and ultra-wide bandwidth (UWB) transmission, this modulation is pro-
posed and analyzed in [1]–[5]. PPH transmission has several benefits,
such as coherent reception and low transmit power density.

In [1], the basics of the technology for generation of the narrow
pulses of duration less than 1 ns and the very low spectral density is
thoroughly described. The study of the capacity of a binary pulse po-
sition modulation (PPM) IRMA system [3] shows that it can reach an
order of several thousands of active users per cell. In [6], an experi-
mental design is described and measurements of the multipath channel
are presented. There are several patents covering receiver structures,
see for instance [4], and systems, see for instance [5]. We will study
a slightly different modulation method in comparison to [3], namely,
binary on–off modulation. In this correspondence, we will present an
information-theoretical analysis of a PPH code-division multiple-ac-
cess (CDMA) system and will present a lower bound to the overall
effective capacity of the system in the downlink and the uplink di-
rections. Our approach follows classical information-theoretical anal-
ysis methods [7]; similar methods were applied for analysis of direct-
sequence CDMA (DS-CDMA) and frequency-hopping CDMA (FH-
CDMA) systems in [8].

The remaining part of this correspondence is organized as follows.
In Section II, the system model is described, in Sections III and IV, the
effective capacity of the uplink and downlink system is estimated, and
in Section V conclusions and future work are discussed.
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