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Space—Time Transmit Precoding With Imperfect Feedback
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Abstract—The use of channel feedback from receiver to transmitter is
standard in wireline communications. While knowledge of the channel at
the transmitter would produce similar benefits for wireless communica-
tions as well, the generation of reliable channel feedback is complicated
by the rapid time variations of the channel for mobile applications. The
purpose of this correspondence is to provide an information—theoretic
perspective on optimum transmitter strategies, and the gains obtained by
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receiver, and can, therefore, perform spatial matched filtering or
(in a multiuser context) interference suppression [4], [5].

These two strategies are based on two different, and extreme, as-
sumptions regarding the channel feedback available at the transmitter:
space—time coding requires no feedback, whereas beamforming
requires accurate feedback. Clearly, there are situations where neither
of these assumptions is valid, and one would expect that the transmitter
strategy in such situations would be some blend of space—time coding
and beamforming. Our purpose in this correspondence is to make this
intuition precise by providing information—theoretic insights into the

appropriate transmitter strategies when the channel feedback available

employing them, for systems with transmit antenna arrays and imperfect {4 the transmitter is imperfect.

channel feedback. The spatial channel, given the feedback, is modeled as Characterization of the information—theoretic capacity of channels
a complex Gaussian random vector. Two extreme cases are considered: pacity

meanfeedback, in which the channel side information resides in the mean With imperfect feedback is the subject of several recent publications.
of the distribution, with the covariance modeled as white, anccovariance The approach in this correspondence is motivated by the results ob-
feedback, in which the channel is assumed to be varying too rapidly tained in [6], [7], which provide forward and converse coding theo-
to track its mean, so that the mean is set to zero, and the information o ¢ for certain channels with imperfect feedback. A similar feedback
regarding the relative geometry of the propagation paths is captured by . . ;i L . .
a nonwhite covariance matrix. In both cases, the optimum transmission model is adopted in [8], where optimum transmission strategies with
strategies, maximizing the information transfer rate, are determined as perfect and imperfect feedback are examined and classified. In [8], a
a solution to simple numerical optimization problems. For both feedback given transmission strategy is classified according to the rank of its
models, our numerical results indicate that, when there is a moderate jnnt spatial covariance matrix. For instance, a beamforming strategy
disparity between the strengths of different paths from the transmitter . . - L
to the receiver, it is nearly optimal to employ the simplebeamforming corre.sp(.)nds to a'rankl-one matrix while a cova.rllanc.e matrlx with full
strategy of transmitting all available power in the direction which the —rankindicates a diversity strategy. Such a classification is also adopted
feedback indicates is the strongest. in this correspondence. With perfect channel feedback, it is shown in
[8] that the optimal strategy entails transmission in a single direction
specified by the feedback (beamforming strategy). Conversely, with no
channel feedback, it is shown in [9] and [10] that the optimum strategy
is to transmit equal power in orthogonal independent directions (diver-
sity strategy). Many practical diversity transmission strategies are an-
alyzed in [9]. Optimum power control and variable-rate transmission
Antenna arrays, at the receiver or at the transmitter, are widely recsffategies when the same side information is available to transmitter
nized as an effective means of improving the capacity and reliability and receiver, as well as when the side information is available only to
a wireless communication link. In a typical cellular or personal conteceiver, are analyzed in [11]. The remainder of this correspondence is
munication system, size and complexity limitations preclude deplogrganized as follows. Section Il contains the system model and formal
ment of an antenna array at the mobile, usually a small, hand-held upioblem statement. Section Ill contains our main results. Numerical
On the other hand, it is reasonable to assume that the base statioesglts are presented in Section IV. Section V contains a discussion of
equipped with an antenna array. In such a setting, the use of trandimise results and of possible directions for future work.
antenna arrays provides a powerful method for increasing downlink
(base-to-mobile) capacity. There are two key techniques that have been
proposed in the literature for exploiting transmit antenna arrays.

Index Terms—Antenna arrays, fading channels, feedback communica-
tion, space—time codes, spatial diversity, transmit beamforming, wireless
communication.

|. INTRODUCTION

Il. MODELING AND OVERVIEW

1) Space-time coding [1]-[3], which provides diversity in a fadin It is assumed that the transmit antenna haglements, and that the
pace—l Ing [1=13], which provi versity | NYeceive antenna has a single element. The channel coefficients from the
environment. This does not require any knowledge of the spatig

) M transmit elements to the receive element are denoted hy/tkd
channel on the part of the transmitter. . . .
complex vectoh. We consider the following abstraction to model par-
2) Transmit beamforming, which assumes that the transmitter Higl knowledge of the channel at the transmitter. The corresponding
accurate knowledge of the channel through feedback from tRgstem model is depicted in Fig. 1.
Problem Setup:The input to the channel is given by tid x 1
complex vector:. The receiver know#, and receives
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distribution which maximizes the mutual information, subject to
an instantaneous power constrafif||z(¢)||*} < P(#).

2) Based on the solution to Step 1), and on the joint distribution of
the channel and the feedback, find the optimum power profile
{P(t),0 <t < o}.

Channel
h

Receiver

Transmitter

While the results reported in this correspondence may be viewed as
solving Step 1) of the preceding approach in a specific setting, such
an interpretation would not hold in most practical situations, where the
feedback may be noisy. In this case, maximization of the mutual in-
formation based on the instantaneous feedback as outlined in Step 1)
need not be optimal, since knowledge of the feedback values at multiple
times can help combat the randomness in the feedback. However, the
framework of this correspondence can form the basis for a practical, al-
beit suboptimal, design in such situations. For example, the transmitter

Note: For notational simplicity, throughout this correspondenc&dy derive a (possibly suboptimal) estimatgand® based on more
h ~ N(p, ¥) is assumed to be gropef complex Gaussian random than one value of the feedback, and may then (again suboptimally) use

f Feedback
Channel

Fig. 1. System model.

vector, so that its distribution is completely specified joyand £.  the problem setupin (1) to find a strategy that maximizes the long-term

If h is not aproper complex Gaussian vector, then the probleniformation transfer rate. S _
needs to be reformulated in terms of real-valued variables. Our mairPresently, the general solution to the optimization problem in (1) for
results, Theorems 3.1 and 3.2, apply to real as well as complex-valiig@ general form ok ~ A/ (u, ) is not known. The following special

channels.
The preceding maximization problem can be simplified as follows. 1)
Letp°(z) be the maximizing input distribution with covariance matrix
Q and powerE{||z||}* =trace{Q} = P. For fixedh, the channel is
an additive Gaussian noise channel, with input distribution constrained
to have covarianc®. As shown in [10], the maximum mutual informa-
tion of this channel isog(h” Qh/o? + 1) and the maximizing input
distribution is proper complex Gaussigif(z) = A (0, Q). Since
p°(2) is not a function ofh, it also maximized (z; y |h ). The opti-
mization problem is now one of finding the optimum choice of the co-
variance matrixQ° maximizing the mutual informatioh(z; y |k ) for
power constrainP. The problem can be stated as follows:

H
max Ep, {log <h ?h + 1)}
Q o

subject to the power constraitiace{Q} = P, wheres? is variance
of the additive circularly symmetric complex Gaussian noise. Note that 1)
the expectation in (1) is computed using distributtos A (g, ).

A given transmission strategy is completely characterized by its co-
variance matrixQ. The strategy consists of transmitting independent
complex circular Gaussian symbols along the corresponding directions
specified by the eigenvectors @, with the corresponding eigenvalues
specifying the powers allocated in each direction. Adapting definitions
in [8], a transmission strategy is defined as beamforming if the rank of
Q is one, and ag-fold diversity ifrank{@} = ¢. In other words, beam-
forming is a strategy where transmission is performed only in a single
direction, whileg-fold diversity utilizesg transmit directions. Under
this definition, the space—time coding techniques recently proposed in
[1]-[3] can be viewed as attempting to provide full(fold) diversity.

2)

1)

A. Discussion

When the channel feedbagk is a deterministic function of the
channel realizationB, recent results by Caire and Shamai [7] and by 2)
Viswanathan [6] imply that an achievable information transfer rate
between the input and the output in the preceding system model can
be computed in the following two steps.

1) Attimet, based on the “instantaneous” information provided by
the current channel feedback vecfgt ), find the optimum input

1As defin‘ed in [12], a complex Gaussian vecgowith meang,, is proper if
—p )Y —n, =0.
E{(y Ny )T =0

cases have been previously considered in the literature.

The optimum covariance for the special case of no feedback,
h ~ N(0, oI), is derived by Telatar in [10]. In that case, the
diversity strategy with power distributed equally in orthogonal
independent transmit directions is optimum.

The optimum transmission strategy in the low signal-to-noise
ratio (SNR) regimés — oo) for the special caske ~ A (0, ¥)

is found in [8]. It is shown that beamforming in the direction
corresponding to the largest eigenvalue of the channel covariance
matrix ¥ is asymptotically optimum as the SNR tends to zero.

B. Summary of Results

In this correspondence, the optimum distribution is characterized in
the following two cases.

Mean Feedback: In this case, the channel distribution is modeled
at the transmitter a ~ N (u, oI), where the meap may be
interpreted as an estimate of the channel based on the feedback,
anda may be interpreted as the variance of the estimation error.
In practice, these quantities could be computed at the transmitter
based on knowledge of the joint statisticdaindf. An example

of such a computation is given in Section IV as part of the nu-
merical results for mean feedback.

The quality of the mean feedback depends onfeeslback
SNR||||? /e, and this ratio is zero when no feedback is avail-
able. Our results show that the optimum solution is to use beam-
forming alongu (@ is unit rank) when the feedback SNRis larger
than a threshold, and to udé-fold diversity @ is full rank) oth-
erwise. In the latter case, the power is distributed according to a
water pouring strategy between the directioand the remaining
M — 1 orthogonal directions, which receive equal powers.

Covariance Feedback: The channel distribution known to the
transmitter ish ~ A"(0, ). This models a situation in which
the channel may be varying too rapidly for the feedback to give
an accurate estimate of the current channel value. However,
the relative geometry of the propagation paths changes more
slowly, and is reflected in the covariance matkx See [13]

for a physical channel model justifying these assumptions.
In practice, the covariance matrix could be computed at the
receiver via long-term time averaging of the channel realizations
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and reliably transmitted to the transmitter through a low datgl] ~ A'(||p

, «). Performing this change of variables in (3), we

rate feedback channel. obtain an equivalent necessary condition
For covariance feedback, our results show that the optimum
solution consists of independent Gaussian inputs alondithe v (Aw — Awe)v
eigenvectors oE. The solution resembles water pouring, in that Ey { W} <0 (4)

eigenvectors corresponding to larger eigenvalues receive more

power (the power along some of the eigenvectors may be Ze\r/vot’lereA is any diagonal matrix with nonnegative entries satisfyin
so that the optimal diversity order may be less th#h w Y clag 9 fying

the power constraint.

It is now shown thal¥#“ is also optimum for the unrestricted opti-
IIl. RESULTS mization problem, i.e.Q° = W*°. In view of the strict concavity of
}he cost function and the convexity of the constraint region, a sufficient
condition for the overall optimality oFV? is§f (W*; Q — W*°) < 0
for all nonnegative definite matric€} satisfying the power constraint.
Equivalently, the sufficient condition can be expressed as

Notation: Let UsA U4 denote the spectral decomposition o
a nonnegative definite matrild, where A, is a diagonal matrix
containing the eigenvalues df, andU 4 is a unitary matrix containing
as columns the eigenvectors df. Likewise, U°A°(U°)" is the
spectral decomposition of the optimum covariance mafik and i .
A2, i=1---M,denote the optimum eigenvalues. l4] denote the E, {h (Q@-W )h} <0 (5)
ith column of matrix4, anda[i] denote theth component of column R'Wh+ o2 | ~
or row vectora.

Theorems 3.1 and 3.2 characterize the optimum strategies for megyain, making the substitution = Uﬁh, we obtain as the sufficient
and covariance feedback, respectively. Proofs of both theorems folloyghdition
the same general outline: first, we “guess” the optimum transmission
directions; next, we project the channel realizations onto these direc- vt (Q - AWO> v
tions; finally, convex optimization arguments are invoked to prove that E,
the guessed directions are indeed optimum.

Theorem 3.1 (Mean Feedbacklket h ~ A'(p, oI). Then, the

T Awevta? ©)

WhereQ = UﬁQUu is related to@) by an orthonormal transforma-

maxirr:izing covaroiance matrix in (1) is given Wy°[1] = u/llull, tion, and hence is nonnegative definite with the same trace, so that it
gndU [2],7. LU [M] are arbitrarily chosen, except for the restricy g satisfies the power constraint. Decompoghigto a sum of ma-
tion thatU”[1], ..., U”[M] are orthonormal. Furthermore, trices D andQ containing diagonal and off-diagonal terms, respec-
o o  _ o tively, expression (6) is rewritten as
>‘2 :"':Amin:A

whereX® = (P — \7)/(M - 1). v (D - Awo) v v Ov

Proof: Consider the optimization problem of (1), whichcanbe FE,{ ———— - 2+ Fp{ ———— > < 0. (7)

. vHAwov + o2 vHAwov + o2
equivalently expressed as

H 2
g 2 {10€ (h Qh+o )} @) The first summand in (7) is less than or equal to zero by the neces-

sary condition for optimality given in (4), since matdX satisfies the

subject to the power constraimace{@} = P. LetUy denote an or- power constraintttace{ D} =trace{Q} = P), and is diagonal and
thonormal matrix such thdf u[1] = p/||pl| andUk[1], ..., Uu[M] nonnegative. The second sum can be decomposed into a weighted sum
are orthonormal and arbitrary. Matr{ contains as columns our of the terms of the form
choice for the transmitting directions of the optimum strategy. Below
we establish that this choice is globally optimum, thalig, = U°. v[i]*v[j]

First, consider a restricted optimization problem where the optimiza- Ey {m
tion is restricted to only nonnegative definite matrigEssatisfying the

power constraint, such thel = Up. Using the spectral decomposi-\ e that theis -dimensional probability distribution afis symmetric
tionW = UpAwUy we have thatrace{Aw } = P asour constraint. i respect to all axes, excluding thél] axis (due to the nonzero
Th'_a constraint set qf th_e regtrlcted problem is convex and cqmpar%an ofv[1]). Furthermore, the function under the expectation in (8)
Wh"? the cost.funfnor? Is strictly concave ,W' Hence, there e,X'StS is antisymmetric. We conclude that the expectation in (8) is zero, so
a unique matrd¥” (with Uwe = g") which solves the restricted y,,; ye sufficient condition in (7) is indeed satisfied W .

qptlrr_uzatlon _p_roblke‘m. 'I;he matri R must satisfy the_ NEcessary ob- it remains to be shown that the eigenvaldgshroughi§, are equal.
tlmal.lty condltlon(?f(W W -W Z < 0 for ‘3” matrlcesW |n.the This easily follows from substituting¥“ into the cost function and
restricted constraint set, whef¢(W*; W — W) is a Frechet differ- noticing that the cost function is symmetric with respect to the eigen-

ential [14, p. 1078] _Of the PO_St functiofi in the directio_n_W - W, values of interest. An application of the Jensen’s inequality yields the
evaluated aW?®. Differentiating, the necessary condition can be €X3esired result 0O

pressed as

}§0i¢m ®)

To complete the solution, it remains only to specify the valugfof
R (W —W°)h Computation of\{ in Theorem 3.1: The power constraint implies
h {m} <0 (3) that){ liesin the rang® < A\¢? < P. Although a closed-form analytic
solution for this quantity does not appear to be availabfecan be
Consider a projection of the chanikebnto the “guessed” directions, determined numerically by a one-dimensional search over the range.
given byv = Uﬁh. The components af are independent with proper Another possibility is to use the observation that, as a function of the
complex Gaussian distributiom$i] ~ A(0, a),fori =2-.- M, and two parameters; and\®, the cost function is concave, while the power



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001 2635

6.5 T ; T T T T T T T
: ‘ : : | — Optimum Strategy : :
S R N DU SR +—- PureDiversty | i /|
- Beamforming

» o
n ”» wn

Information Transfer Rate (bits per transmission)
'S

35

3
2.5

2
15 ; j ; ; i L ; ; ;

5 6 7 8 9 10 11 12 13 14 15
SNR (dB)
Fig. 2. Information transfer rate achievable with the optimum, pure diversity and beamforming strdtegieS,(g, o), M = 2, a® = 0.9. The curves for

the optimum and beamforming strategies coincide.

constraintis convex. Hence, these parameters can be numerically detefinite matrices satisfying the power constraint in (9). By the con-

mined by the projected gradient descent algorithm [15], which in thigxity of the restricted optimization problem, there exists a unique di-

case is guaranteed to converge to the global minimum. agonal matrixD°, with real nonnegative entries, which solves the re-
The mean feedback model was previously considered in [8], wherstacted optimization problem. Furthermoi®; satisfies the necessary

similar computation is performed for two antenna eleméffs= 2).  condition of optimality on the restricted constraint set which is used to

Specifically, the optimum transmit directions established analyticalshow its overall optimality.

in Theorem 3.1 are determined in [8] by numerical simulations, and Similarly to (7), it is sufficient to establish thd“ satisfies the fol-

a sufficient condition on feedback SNR||? /« for the beamforming lowing inequality for all nonnegative complex matrio@ssatisfying

strategy to be optimum is given. the power constraint

Theorem 3.2 (Covariance Feedback)eth ~ A'(0, E). Then, the

eigenvectors of the maximizing covariance matrix in (1) sa#isfy= H(F o .

. . . . v (D—-D°%)v v Qv
Us. That is, the optimal strategy is to employ independent complex g . / +E, _ _L<p (10)
circular Gaussian inputs along the eigenvectorXE of v4 D% + o? vID% 402 | ©

Proof: For conciseness, only an outline of the argument is pre-
sented, since, with slight modifications, arguments used to prove The-
orem 3.1 also apply here. In this case, our “guess” for the optimughereD andQ) contain the diagonal and off-diagonal terms(fre-
transmit directions is given by the columnslét. After projecting the  spectively. Following arguments identical to those used to show that
channel onto the “guessed” directionsitas- U4 h, the optimization (7) holds, the proof of the theorem is concluded. O

problem in (1) can be equivalently expressed as ) ) o
Computation of the Optimum Distribution in Theorem 3.2:fol-

lows from Theorem 3.2 that, fgg = 0, the transmit directions are
max Ey {log (vHQv + 02> } (9) precisely the eigenvectors of the channel covariance mgtrio com-
Q pletely specify the transmission strategy, one needs to solve falthe
transmit powers given by the diagonal entrieddf. This is an}M -di-
subject to the power constraimace{@} = P, wherev ~ N (0, As)). mensional water pouring problem which can be solved by a number of
To establish the theorem, it suffices to show that the maximizing coumerical algorithms, such as the projected gradient descent algorithm
variance matrix in (9) is diagonal. [15]. Intuitively, higher power should be transmitted in the directions
As in the proof of Theorem 3.1, consider a restricted optimizatiaof the larger eigenvalues &, since large eigenvalues correspond to
problem, where the search is restricted to only diagonal nonnegatsteonger, and hence more reliable, channels.
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Fig. 3. Information transfer rate achievable with the optimum, pure diversity and beamforming strdtegieé(p, oI), M = 2,a¢ = 0.6.

IV. NUMERICAL RESULTS specified by the conditional mean, is then giver@hy = pp™ /| ul)?,
Mean Feedbackh ~ A'(, aI): To obtain numerical results for while @, = (1/M)I specifies the input covariance matrix for diver-

this case, the following Rayleigh fading channel model is simulate%l'.ty transmission. In Figs. 2—4, the information transfer rate is plotted

Leth(¢) be andA R(1) random process with forgetting factorh(t) = versus SNR (in decibels), where
ah(t — 1) +w(t), wherew(t) is anM x 1 vector of independent and
identically distributed (i.i.d.) circularly symmetric Gaussians, each of
variances?2 . The feedback channel is modeled as a lossless channel
with delayd: at timet, the transmitter observet) = h(t — d) at anda? = 0.9, 0.6, and0.3, respectively. Parametef indicates the

the output of the feedback channel. It is straightforward to show th&ggdback quality and, more precisely, can be related to the average feed-
conditioned onf(t), h ~ AN (p, oI), wherep = a’h(t — d) and back SNR per antenna element as

a = a2 (1—a*)/(1 — a*). The distribution off(t) = h(t — d) is

the same as that d(t) and is given byf ~ N(0, 02 /(1 — a*)I). E{||lpl*}/Ma = a®* /(1 — a**).

Hence,« can be rewritten as

SNR= E{||h|*}/s%,  E{|h|*} =1

Whena? = 0.9, the quality of the feedback is relatively high, which
o = E{||h|}(1 - azd)/M‘ means that the channel esti_mate spe_cified by the cor!ditional mean is
close to the true channel. This results in the beamforming strategy per-
forming identical to the optimum strategy. The diversity strategy in
Figs. 2—4 display information transfer rate (in bits per transmissiott)is case is too conservative, losing about 2 dB in performance over a
achievable with beamforming, diversity and the optimum transmissiovide range of SNRs as compared to the beamforming strategy. With
strategy for a two-element antenna array. The information transfer rate = 0.6, the conditional mean conveys less accurate information
achieved by a given transmission strategy is obtained by substitutiigput the state of the channel. Nevertheless, the performance of the
an appropriate covariance mat€kinto (1) and removing conditioning beamforming and optimum strategies is almost identical. This result is
on the feedback. The optimum transmission strategy uses the covaomewhat surprising, and highlights the robustness of the beamforming
ance matrix@” computed according to Theorem 3.1, whafeand strategy to imperfections in the feedback. Of course, the gap between
A° are numerically optimized using the projected gradient descent #ie performance of the diversity and optimum strategies is smaller than
gorithm, as described in the note following Theorem 3.1. Since optit Fig. 2. Finally, the channel feedback quality is poor whén= 0.3.
mization of the instantaneous input power, giventtace{@}, is not  This case turns out roughly equivalent to the case of no feedback, in that
undertakentrace{ @} is set equal to one for all transmission strategiethe diversity strategy performs close to the optimum strategy, while the
without loss of generality. The input covariance matrix for the beanbeamforming strategy performs about 1 dB worse than the optimum at
forming strategy, where beamforming is performed in the directidnigh SNRs.
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Fig. 4. Information transfer rate achievable with the optimum, pure diversity and beamforming strdtegie€(p, oI), M = 2,a¢ = 0.3.

Covariance Feedback ~ A(0, £): In this case, the transmitter tions, leading us to conjecture that, in general, such a beamforming
has no information about the mean, but has long-term knowledgestfategy is close to being optimal for small, when¥ has at least a
the spatial correlation matriX. The achievable long-term information moderate eigenvalue spread.
transfer rate for a transmit strategy with input covariance m&}ris
given by evaluating (1) with an appropriate covariance magixn
this case, it is not necessary to remove the conditioning on the feed-
back since the channel feedback is modeled as time-invariant. The inputor a single transmit element, prior work [6], [11], [7] has shown
powertrace{ @} and the channel poweE {||k||*} =trace{E} are set that, in terms of information—theoretic limits, there is little to be
to one, and the information transfer rates are obtained for the beagained by exploiting knowledge of the channel at the transmitter for a
forming, diversity, and optimum transmission strategies as a functionsifgle transmit antenna element. As our numerical results indicate, for
the channel SNRE{||h||*}/a2. Since the eigenvectors of the optimurrtransmit antenna arrays, the gain through even partial knowledge of
covariance matri)°, by Theorem 3.2, coincide with the eigenvectorshe channel can be substantial. For mean feedback, the beamforming
of £, without loss of generality, both matrices are taken to be diagorsitategy performs close to the optimal strategy when the feedback is
for the simulations. The diagonal entries@f are determined by the of reasonable quality. The beamforming strategy performs close to
projected gradient descent algorithm. The diversity strategy is impkie optimal strategy for covariance feedback when there is a stronger
mented by the input covariance matfix/} )I, and the beamforming path present which can be exploited by the beamforming. Overall, the
strategy is implemented by transmitting all of the available power lleamforming strategy appears to be a viable transmission strategy
the direction of the unit vector corresponding to the largest diagonshen meaningful channel feedback is present. Furthermore, the
entry of £. use of the beamforming strategy simplifies operation at the mobile,

Letv; denote théth eigenvalue (in this case thth diagonal entry) since only a single data stream needs to be decoded. The optimum
of X. Fig. 5 displays the information transfer rate (bits per transmissiomansmission strategies presented in this work are based on random
achieved by the transmission strategies with= 3,v; = v» = v3.In  coding arguments. Hence, future work in this area includes design
this case, the performance of the diversity strategy is optimum, whidé practical coding strategies for exploiting partial knowledge of the
the transmit beamforming strategy (equivalent here to using a singfgatial channel.
transmit antenna element) performs less than 1 dB worse than the opA possible extension of the information—theoretic approach taken in
timum over a wide range of SNR values. Fig. 6 displays the perfdhis correspondence is to consider optimum transmission strategies in
mance of the transmission strategiesiér= 3, v1 /v» = v1/vs = 2.  the context of the multiuser system model. The problem can be formu-
In this case, there is a single direction which is 3 dB stronger théated as a search for the optimum transmission strategies in a broadcast
the other directions specified 1%. Somewhat surprisingly, the beam-channel as a function of the quality of channel feedback at the trans-
forming strategy transmitting in the stronger direction achieves the pemitter. Such optimum strategies, if found, would provide a valuable
formance of the optimum strategy for all displayed values of SNRenchmark for the performance of the practical transmit beamforming
Hence, no penalty is incurred for not utilizing the lower power direcstrategies, such as those proposed in [4], [5].

V. CONCLUSION AND FUTURE WORK
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