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Abstract—Modern communication receivers heavily leverage
Moore’s law, which enables low-cost implementations of so-
phisticated functionalities in digital signal processing (DSP).
However, as communication systems scale up in bandwidth,
the availability of analog-to-digital converters (ADCs) becomes
a fundamental bottleneck for such DSP-centric design. In this
paper, we investigate a canonical problem of blind carrier phase
and frequency synchronization in order to obtain insight into
the performance limitations imposed by severe quantization
constraints. We consider an ideal Nyquist sampled QPSK
system with coarse phase quantization, implementable with
one bit ADCs after analog linear combinations of in-phase (I)
and quadrature (Q) components. We propose blind Bayesian
algorithms for rapid phase acquisition, followed by continu-
ous feedback-based phase/frequency tracking, based on jointly
modeling the unknown phase and frequency, the unknown data,
and the severe nonlinearity introduced due to coarse phase
quantization. Our performance evaluation shows that excellent
performance, close to that of an unquantized system, is achieved
by the use of 12 phase bins (implementable using 6 one-bit
ADCs).

I. INTRODUCTION

Modern communication transceiver designs leverage
Moore’s law for low-cost implementation (e.g., for today’s
WiFi and cellular systems), by using DSP to perform sophis-
ticated functionalities such as synchronization, equalization,
demodulation and decoding. The central assumption in such
designs is that analog signals can be faithfully represented in
the digital domain, typically using ADCs with 8-12 bits of
precision. We would like to extend this approach to emerging
communication systems employing bandwidths of multiple
GHz, such as emerging millimeter wave wireless networks
(e.g., using the 7 GHz of unlicensed spectrum in the 60
GHz band), as well as for signal processing in bandwidth
efficient optical communication systems. The key bottleneck
to doing this is the ADC: the cost and power consumption
of high-precision ADCs become prohibitive at multi-GHz
sampling rates [1]. Since we would like to continue taking
advantage of Moore’s law despite this bottleneck, it is nat-
ural to ask whether DSP-centric architectures with samples
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quantized at significantly less precision (e.g., 1-4 bits) can be
effective. Shannon-theoretic analysis (for idealized channel
models) has shown that the loss in channel capacity due to
limited ADC precision is relatively small even at moderately
high signal-to-noise ratios (SNRs) [2]. This motivates a
systematic investigation of DSP algorithms for estimating and
compensating for channel non-idealities (e.g., asynchronism,
dispersion) using severely quantized inputs. In particular, we
consider in this paper a canonical problem of blind carrier
phase/frequency synchronization based on coarse phase-only
quantization (implementable using digitally controlled linear
analog preprocessing of I and Q samples, followed by one-
bit ADCs), and develop and evaluate the performance of a
Bayesian approach based on joint modeling of the unknown
data, frequency and phase, and the known quantization non-
linearity.
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Fig. 1. Receiver Architecture

Receiver architecture: We consider differentially encoded
QPSK over an AWGN channel. In order to develop funda-
mental insight into carrier synchronization, we do not model
timing asynchronism or channel dispersion. In the model de-
picted in Fig. 1, the analog preprocessing front-end performs
downconversion, ideal symbol rate sampling, and applies a
digitally controlled derotation phase on the complex-valued
symbol rate samples before passing it through the ADC block.
The ADC block quantizes the phase of the samples into a
small number of bins. Phase quantization (which suffices for
hard decisions with PSK constellations) has the advantage of
not requiring automatic gain control (AGC), since it can be
implemented by passing linear combinations of the in-phase
and quadrature components through one-bit ADCs (quantiza-
tion into 2n phase bins requires n such linear combinations)



[3]. The quantized phase observations are processed in DSP
by the estimation and control block: this runs algorithms
for nonlinear phase and frequency estimation, computes
feedback for the analog preprocessor (to aid in estimation and
demodulation), and outputs demodulated symbols. Design of
this estimation and control block is the subject of this paper.
We break the synchronization problem into two steps (a)
rapid blind acquisition of initial frequency/phase estimates,
(b) continuous tracking while performing data demodulation.
Contributions: For the acquisition step, we develop a
Bayesian algorithm for blind phase estimation, which in-
cludes design of the feedback to the analog preprocessor to
aid in estimation. The feedback evolves with the posterior
distribution of the phase, and we show that an information-
theoretically motivated greedy strategy is useful in improving
performance at high SNR. Since frequency offsets between
transmitter and receiver are typically much smaller than the
symbol rate, the phase is well approximated as constant over
multiple symbols, hence acquisition is performed ignoring
frequency offset. For the tracking step, we use a two-tier
algorithm: decision-directed phase estimation over blocks,
ignoring frequency offsets, and an extended Kalman filter
(EKF) for long-term frequency/phase tracking. The feedback
to the analog preprocessor now aims to compensate for the
phase offset, in order to optimize the performance of coherent
demodulation. We provide numerical results demonstrating
the efficacy of our approach for both steps, and show that
the bit error rate with 8-12 phase bins (implementable using
linear I/Q processing and 4-6 one bit ADCs) is close to that
of a coherent system, and is significantly better than that of
standard differential demodulation (which does not require
phase/frequency tracking) with unquantized observations.

Related work: A phase-quantized carrier-asynchronous
system model similar to ours was studied in [4]. However,
instead of explicit phase/frequency estimation and compen-
sation as in this paper, block noncoherent demodulation,
approximating the phase as constant over a block of symbols,
was employed in [4]. Whereas a performance degradation of
about 2 dB compared to the unquantized block noncoherent
case was reported in [4], the algorithm proposed in this
paper performs better, with bit error rates almost identical
to the unquantized coherent system. Moreover, the analog
preprocessing used in the tracking step is simpler compared
to the dither scheme proposed in [4]. A receiver architecture
similar to ours (mixed signal analog front-end and low-power
ADC with feedback from a DSP block) was implemented for
a Gigabit/s 60 GHz system in [5], including blocks for both
carrier synchronization and equalization. While the emphasis
in [5] was on establishing the feasibility of integrated circuit
implementation rather than algorithm design and perfor-
mance evaluation as in this paper, it makes a compelling
case for architectures such as those in Fig. 1 for low-power
mixed signal designs at high data rates. Other related work on
estimation using low-precision samples includes frequency
estimation [6], amplitude estimation for PAM signaling [7],

channel estimation [8] and analysis of effects of quantization
for fading channels [9][10].

II. SYSTEM MODEL

We now specify a mathematical model for the receiver
architecture depicted in Fig. 1. The analog preprocessor
applies a phase derotation of e−jθk for the kth sample.
In order to simplify digital control of the derotation, we
restrict the allowable derotation values θ to a finite set of
values, denoted by C; in our simulations, we consider a phase
resolution of the order of 2π/128, which produces negligible
degradation in coherent demodulation performance. After
derotation, the sample is quantized into one of M = 2n
phase bins:

[
(m− 1) 2π

M ,m 2π
M

)
for m = 1, ....,M . In our

simulations, we consider M = 8 and M = 12 (Figs. 3(a)
and 4(a)). As mentioned earlier, such phase quantization can
be easily implemented by taking n linear combinations of I
and Q samples followed by 1-bit ADCs. For example, M = 8
bins can be obtained by 1-bit quantization of I , Q, I+Q and
I −Q. We always include boundaries coinciding with the I
and Q axes, since these are the ML decision boundaries for
coherent QPSK demodulation.

Denoting the phase-quantized observation corresponding
to the kth symbol by zk, we therefore have the following
complex baseband measurement model:

zk = QM

(
arg
(
bke

j(φc+k·2πTs∆f)e−jθk + wk

))
(1)

where,
• M := number of bins over [0, 2π) for phase quantization;
• zk ∈ {1, 2, ......,M} are the observations,
• QM : [0, 2π) → {1, 2, ......,M} denotes the quantiza-

tion function, QM (x) =
⌈
x · M2π

⌉
for x ∈ [0, 2π),

• bk ∈
{
ejπ/4, ej3π/4, ej5π/4, ej7π/4

}
normalized QPSK

symbol transmitted, assumed to be uniformly dis-
tributed,

• φc,∆f := the unknown phase and frequency offset,
• Ts:= symbol time period,
• θk ∈ C = {mod(i · dθ, 2π)} , i ∈ I, the derotation value

for the kth symbol, dθ denoting the phase resolution,
• wk:= independent complex AWGN, Re(wk) =

Im(wk) ∼ N (0, σ2), where SNR per bit = Eb
N0

= 1
2σ2 .

The carrier frequency offset ∆f is typically of the order
of 10-100 ppm of the carrier frequency. For example, for a
60 GHz link, the offset could be as large as 6 MHz, but is
still orders of magnitude smaller than the symbol rate, which
is of the order of Gsymbols/sec. Thus, it can be set to zero
without loss of generality in the acquisition step (described
in Section III), where we derive estimates of the unknown
phase φc based on a small block of symbols. We do model
the frequency offset in the tracking step (Section IV).

III. PHASE ACQUISITION

Setting ∆f = 0, the measurement model (1) specializes
to

zk = QM (uk)



uk = arg
(
ejpk

π
4 ejβk + wk

)
(2)

βk = φc − θk

where uk denotes the unquantized phase, βk captures the
net rotation of the transmitted QPSK symbol and pk’s are
independent and uniformly distributed over {1, 3, 5, 7}, since
we are interested in blind estimation (without the use of
training symbols). We now drop the subscript k to simplify
notation. Conditioned on β we can express the density of u
as follows (derivation is presented in the appendix):

fu(α;β) =

4∑
i=1

1

4
fu|p=2i−1(α;β) ; α ∈ [0, 2π)

fu(α;β) =

4∑
i=1

1

4

ai(2− erfc( ai
σ
√

2
))e

a2i−1

2σ2

2σ
√

2π
+
e−

1
2σ2

2π


(3)

where ai = cos
(

(2i− 1)
π

4
+ β − α

)
Looking at the expression above, if we define the density
for β = 0 as fu(α) = fu(α; 0), then the density at non-
zero values of β can be evaluated simply by circular shifts
(by 2π) of fu(α). Another property to note is the periodicity
of fu(α) with period 90◦ (as shown in Fig. 2), which is
due to the uniform distribution over the QPSK constellation.
Conditional distribution of the quantized measurements can
now be computed by evaluating the appropriate integrals:

P (zk = m|βk) =

∫ m 2π
M

(m−1) 2π
M

fu(α− βk) dα (4)

where m ∈ {1, 2, .......,M}

Using the expression above, given the kth phase measure-
ment in bin m, the single step likelihood of the phase is given
by lk(φ|m) = log(p(zk = m|φ)) if the derotation phase
θk = 0◦. Nonzero θk simply results in a circular shift of
lk(φ|m). Due to the periodicity of fu(α), it suffices to limit
φ to the interval [0, 90◦]. We drop the subscript k as noise is
independent over symbols and l(φ|m) = lk(φ|m) ∀ k. The
Bayesian estimator, as discussed next, essentially involves
successively adding these single step likelihoods as more
measurements are made. An interesting property to note is
the periodicity of l(φ|m) in m with period M/4, which
follows from the symmetry induced by equiprobability of
the transmitted symbols. For example, if M = 8 (Fig. 3(a)),
a measurement zk in bin 1 or bin 3 results in the same
likelihood function. Fig. 2 shows the three distinct likelihoods
for M = 12 (6 one-bit ADCs).

A. Bayesian Estimation given Derotation Phases θk

Conditioned on the past derotation values θk1 (which are
known) and the quantized phase observations zk1 , applying
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Fig. 2. (top) Probability Density of unquantized phase u at β = 0,
fu(α) (bottom) Single step likelihoods l(φ|m) given z = m and θ = 0◦

(M = 12, SNR=5dB). blue: l(φ|1) = l(φ|4) = l(φ|7) = l(φ|10), green:
l(φ|2) = l(φ|5) = l(φ|8) = l(φ|11), red: l(φ|3) = l(φ|6) = l(φ|9) =
l(φ|12)

Bayes rule gives us a recursive equation for updating the
posterior of the unknown phase as:

p(φ|zk1 , θk1 ) =
p(zk|φ, θk)p(φ|zk−1

1 , θk−1
1 )

p(zk|θk)
(5)

Normalizing the pdf obviates the need to evaluate the de-
nominator. We now go to the log domain to obtain an
additive update for the cumulative log likelihood. Denoting
by l1:k(φ) = log

(
p
(
φ|zk1 , θk1

))
the cumulative update up to

the kth symbol, we update it recursively simply by adding
the single step update lk(φ) = log (p (zk|φ, θk)), as follows:

l1:k(φ) = l1:k−1(φ) + lk(φ) (6)

The maximum a posteriori (MAP) estimate after N symbols
is given by

φ̂MAP;N = argmax p(φ|zN1 , θN1 ) = argmax l1:N (φ)

We start with a uniform prior p(φ) over [0◦, 90◦). Single step
likelihoods, l(φ|m) for m = 1, ...,M/4, can be precomputed
and stored offline, and circularly shifted by the derotation
phase θk as the estimation proceeds. The recursive update
(6) requires only the latest posterior to be stored.

B. Choosing the Derotation Phases θk
Setting the values of the derotation phases provides a

means of applying a controlled dither prior to quantization.
In this subsection, we investigate whether it could be used
for speeding up the phase acquisition. We start by looking at
two motivating scenarios where the naive strategy of setting
θk = constant ∀ k fails to give satisfactory results.

Example 1: Consider 8 phase quantization bins and φc =
10◦ (Fig. 3). Choosing θk = 0◦ ∀ k results in a bimodal
posterior with a spurious peak at φ = 35◦. Due to symmetry
of the phase boundaries and equiprobable distribution over
the transmitted symbols, the set of observations (1,3,5,7) and



(2,4,6,8) leads to the posterior being updated in identical
ways. With probability of getting bin 3 for φ = 35◦ being
equal to the probability of getting bin 1 for φ = 10◦, there is
an unresolvable ambiguity between the two phases. In gen-
eral for any phase α, we have P (zk = i|φ = α, θk = 0) =
P (zk = j|φ = 45◦ − α, θk = 0) ∀ i, j ∈ {1, 3, 5, 7} or
∀ i, j ∈ {2, 4, 6, 8}; which gives rise to a bimodal posterior
with peaks at α and 45◦ − α. Such ambiguities were also
noted in the block noncoherent system considered in [3]. One
approach to alleviate this ambiguity is to dither θk randomly;
this dithers the spurious peak while preserving the true peak,
leading to a unimodal distribution for the posterior computed
over multiple symbols. Another approach is to break the
symmetry in the phase quantizer, using 12 phase bins instead
of 8. However, even this strategy can run into trouble at very
high SNR, as shown by the next example.
Example 2: Now consider 12 phase bins and no noise (or very
high SNR), again with true phase offset φc = 10◦. Since there
is no noise, all observations fall in bins 2,5,8,11, resulting in
a flat phase posterior over the interval [75◦, 90◦] ∪ [0◦, 15◦]
if there is no dither (θk ≡ 0◦). This could lead to an error
as high as 25◦ (Fig. 4). On the other hand, using randomly
dithered θks results in an accurate MAP estimate, with the
combination of shifted versions (shifted by θk) of the flat
posterior leading to a unimodal posterior with a sharp peak.
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Fig. 3. Example 1: SNR=5dB, 8 uniform quantization regions

While randomly dithered derotation is a robust design
which overcomes the shortcomings of the naive strategy of
no dither, it is of interest to ask whether we can do better.
Optimizing the sequence of derotation phases in order to
minimize a performance criterion such as the mean squared
error in the estimated phase is a difficult problem: even a
genie-aided system which knows the true phase φc (which
of course would obviate the need for phase estimation in the
first place) leads to a computationally intractable Partially
Observable Markov Decision Problem (POMDP). Instead,
we propose an information-theoretically motivated greedy
entropy strategy that minimizes the entropy of the posterior
distribution across choices of derotation phase over the next
step.
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Fig. 4. Example 2: SNR=35dB, 12 uniform quantization regions

C. Greedy Entropy Policy

At step k − 1 (i.e. after observing k − 1 symbols) the net
belief about the phase is captured by the posterior fk−1(φ) =
p
(
φ|zk−1

1 , θk−1
1

)
. The uncertainty in this posterior, which is

captured by its entropy, is a measure of the confidence in
the MAP estimate (argmax

φ
fk−1(φ)) after k − 1 steps. For

each possible action θ ∈ C in the next step, we compute the
Expected Entropy of the posterior after kth step, denoted by
H̄k(θ), as follows:

H̄k(θ) =

M/4∑
m=1

P (zk = m|θk = θ)×

H
[
p
(
φ|zk−1

1 , θk−1
1 , θk = θ, zk = m

)]
(7)

where H denotes the entropy computed using a finely dis-
cretized version of the posterior,

p(zk = m|θk = θ) =
∑
φ

p [zk = m|θk = θ, φ] fk−1(φ)

p
(
φ|zk−1

1 , θk−1
1 , θk = θ, zk = m

)
= c · fk−1(φ) · p (zk = m|φ, θ)

Note that φ ∈ [0, π2 ] and c is a normalizing constant (such
that density sums to 1). The last equation follows from
(5). Due to symmetry in probability of quantized phase
measurements, we only need to sum over M/4 terms. The
size of the set C is limited by the resolution of the allowed
derotation values dθ and size of the quantization bin 2π/M
i.e. |C| = d(2π/M)/dθe. The next action chosen is the one
that leads to minimum expected future entropy:

θk = argmin
θ∈C

H̄k(θ)

D. Simulation Results

The performance of phase acquisition is evaluated using
Monte Carlo simulations averaging over randomly generated
channel phases. Fig. 5 plots results for two values of SNR:
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Fig. 5. Simulations of different strategies for choosing the feedback θk with 4 and 6 ADCs (8 and 12 phase bins)

a low value of 5 dB and a high value of 15 dB. The perfor-
mance measures are the root mean squared error (RMSE),
which captures average behavior, and the probability of the
phase error being smaller than a threshold, which captures
the tail behavior. We make the following observations: (a)
Increasing the number of bins from 8 to 12 (4 ADCs to 6
ADCs) provides significant improvement, moving the curves
significantly towards the unquantized limits. (b) The greedy
entropy policy with 6 ADCs performs close to MAP estima-
tion with unquantized observations, indicating it cannot be
far away from the optimal control policy. (c) At high SNR,
the naive policy of keeping the derotation values constant
performs the worst, as expected. The greedy entropy policy
drives the MSE to zero more quickly than random dithering.
(d) At low SNR, there is little to distinguish between the dif-
ferent derotation policies for 6 ADCs, since the noise supplies
enough dither to give a rich spread of measurements across
different bins. However, when the quantization is more severe
(4 ADCs), the greedy entropy policy provides performance
gains over random dithering even at low SNR. To summarize,
we find that efficient dithering policies could be very effective
for rapid phase acquisition under the scenarios of more severe

quantization and higher SNRs.
Once an accurate enough phase estimate is obtained in

the acquisition step, we wish to begin demodulating the
data, while maintaining estimates of the phase and frequency.
In the next section, we describe an algorithm for decision
directed (DD) tracking. In this DD mode, the phase derotation
values θk aim to correct for the channel phase to enable
accurate demodulation, in contrast to the acquisition phase,
where the derotation is designed to aid in phase estimation.

IV. PHASE/FREQUENCY TRACKING

We must now account for the frequency offset in order
to track the time-varying phase, and to compensate for it
via derotation in order to enable coherent demodulation. The
phase can be written as φc(k) = φ0 + 2πkTs∆f = φ0 +
kη, where η is the normalized frequency offset, defined as
the rate of change of phase in radians per symbol. To get
a concrete idea of how fast the phase varies, consider the
following typical values: fc = 60 GHz, bandwidth of 6 GHz,
i.e. Ts = (6 × 109)−1 secs, an offset ∆f = 100ppm · fc,
which leads to η = 2πTs∆f = 2π ·10−3 radians; a linearly
varying phase rate of 0.36◦ per symbol. We can therefore



accurately approximate the phase as roughly constant over a
few tens of symbols, while obtaining an accurate estimate of
the frequency offset η would require averaging over hundreds
of symbols. This motivates a hierarchical tracking algorithm.
Bayesian estimates of the phase are computed over relatively
small windows, modeling it as constant but unknown. The
posterior computations are as in the previous section, with
two key differences: the derotation phase value is our current
best estimate of the phase, and we do not need to average over
the possible symbols, since we operate in decision-directed
mode. These relatively coarse phase estimates are then fed to
an extended Kalman filter (EKF) for tracking both frequency
and phase.

Denote by φ̂MAP;W (k) the MAP phase estimate over
a sliding window of W symbols. This is fed as a noisy
measurement of the true time varying phase φc(k) to an
EKF constructed as follows:

Process Model

xk = Axk−1 + wk[
φ(k)
η(k)

]
=

[
1 1
0 1

] [
φ(k − 1)
η(k − 1)

]
+ w(k)

where w(k) ∼ N (0, Qk) is the process noise, the state
vector comprises the phase and the normalized frequency
offset xk = [φ(k) η(k)]T and the state evolution matrix
A = [1 1; 0 1]. Note that Qk is of the form σ2

p · [1 1; 1 1]
since the same noise term influences both the phase
and frequency offset i.e. η(k) = η(k − 1) + wk(2), and
φ(k) = φ(k − 1) + η(k) = φ(k − 1) + η(k − 1) + wk(2),
hence wk(1) = wk(2).

Measurement Model

yk = h(xk) + vk

y(k) =

[
cos(4 · φ̂MAP;W (k))

sin(4 · φ̂MAP;W (k))

]
=

[
cos(4 · φ(k))
sin(4 · φ(k))

]
+ v(k)

where h(·) is a non linear measurement function. The par-
ticular form is chosen to resolve the issue of unwrapping the
phase periodically as it grows linearly: the factor of 4 inside
the sine and cosine arguments chosen to obtain a period of
90◦, since we are only interested in phase estimates over the
range [0, π/2]. The measurement noise is v(k) ∼ N (0, Rk).
For the EKF, computation of the Jacobin of the nonlinear
function h(·) is required, which in this case evaluates to

Hk =

[
−4sin(4φ(k)) 0

4cos(4φ(k)) 0

]
The EKF update equations are given as follows (we refer the
readers to Chapter 10 of [11] for a discussion on EKF, and
to [12] for a somewhat similar application of EKF for phase

tracking).

Time Update:

x̂k|k−1 = Ax̂k−1

P̂k|k−1 = AP̂k−1A
T +Qk

K = P̂k|k−1H
T
k

(
HkP̂k|k−1H

T
k +Rk

)−1

Measurement Update:

x̂k = x̂k|k−1 +K
(
yk − h(x̂k|k−1)

)
P̂k = (I −KHk) P̂k|k−1

P̂k is the estimate of the state error covariance and Hk is
evaluated at x̂k|k−1 .The cleaned state estimate, x̂k, provides
the latest estimate of the frequency offset η̂(k) = x̂k(2) and a
delayed estimate of the net phase, delayed due to the effect of
sliding window. The measurement at time k, yk, reflects the
phase estimated over the time window [k−W,k], hence the
feedback (for undoing the phase at time k) is set according
to θk = x̂k(1) + W

2 · η̂(k).
Tuning the filter: Although the measurement noise covariance
Rk can be calculated from the variance of the posterior of
the phase, constructed over the sliding window, the filter
performance was observed to be quite robust to the choice of
Rk over a range of SNR. For the simulations presented in this
paper, we assumed a constant Rk = [0.1 0, 0 0.1]T , which
worked well for SNRs 0-15dB and sliding window length
of W = 50 symbols. The scaling of the process noise (Qk)
trades off steady state versus tracking performance: small
Qk results in accurate estimates but slow reaction to abrupt
changes in frequency, while large Qk improves the response
to abrupt changes at the expense of increased estimation error.
Since the ultimate measure of performance is the bit error rate
(BER) rather than the phase estimation error itself, a sensible
approach to design is to set Qk to the largest value (and hence
the fastest response to abrupt changes) compatible with phase
estimation errors causing a desired level of degradation in
BER relative to ideal coherent demodulation.

A. Simulation Results
Fig. 6 shows the tracking algorithm in action. Subplot

6(a) shows several superimposed snapshots of the windowed
posterior of the phase, whose peaks (the MAP estimates) are
used as measurements for the EKF. In subplot 6(c) η was
changed from 2π · 10−3 to π · 10−3 after 4000 symbols.
The plot shows η̂, the estimate, for choosing Qk = 5 ×
10−11[1 1; 1 1]T which enables the filter to lock onto the new
value in about 1000 symbols. The last subplot 6(d) shows
BER curves for ideal differentially decoded QPSK and that
of the proposed algorithm, which is almost indistinguishable
from the former. The slight loss of performance at high SNR
is due to the assumption of finite resolution (dθ = π/64) of
the analog phase shifter in the front-end.

V. CONCLUSIONS AND FUTURE WORK

The framework for ADC-constrained receiver design illus-
trated in this paper has two core components:
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Fig. 6. Performance plots of EKF based Tracking Algorithm

(a) digitally controlled analog preprocessing: this provides
the dither required for estimation with coarsely quantized
observations in the acquisition step, and the correction re-
quired for coherent demodulation in the tracking step;
(b) Bayesian algorithms for estimation and feedback gen-
eration: this involves propagation of posterior probabilities
in a manner that accounts for the quantization nonlinearity
while probabilistically modeling unknown data and channel
parameters. These posteriors are used to compute both the
feedback for the analog preprocessor and the ultimate esti-
mates of interest.
Our numerical results indicate that such architectures provide
a promising approach for DSP-centric designs that exploit
Moore’s law despite the ADC bottleneck encountered at high
communication bandwidths.

The success of a Bayesian approach for the simplified
model considered here motivates future research on a com-
prehensive framework for receiver design subject to severe
quantization constraints, addressing timing synchronization
and dispersion compensation as well as carrier synchroniza-
tion, and extending to larger amplitude/phase constellations.
It is also of interest to develop a deeper theoretical under-
standing of fundamental performance limits under quantiza-
tion constraints.

APPENDIX
DERIVATION OF THE PHASE DISTRIBUTION

The expression for the unquantized phase is given by Eq.
(2) as follows

u = arg
(
ejp

π
4 ejβ + w

)
= arg(v)

p is uniformly distributed over {1, 3, 5, 7} and w is complex
WGN with variance σ2 per dimension. Let us denote coordi-
nates of the random complex variable v by X = Re(v) and
Y = Im(v). Conditioned on p, X ∼ N

(
cos(pπ4 + β), σ2

)
and Y ∼ N

(
sin(pπ4 + β), σ2

)
. To evaluate the distribution

of the argument of v, we transform from cartesian to polar
coordinates (x = rcos(α), y = rsin(α)) which gives the
following joint distribution

f(r, α) = r2f(x, y)

f(r, α) =
r2

2πσ2
e−

1
2σ2

(x−cos(pπ4 +β))
2

e−
1

2σ2
(y−sin(pπ4 +β))

2

(8)

f(r, α) =
r

2πσ2
e−

1
2σ2

(r2+1−2rcos(pπ4 +β−α))

where (8) follows from the independence of X and Y . We
can now marginalize out r to get the distribution of u

fu(a) =

∫ ∞
0

r

2πσ2
e−

1
2σ2

(r2+1−2ra)dr (9)



a = cos(p
π

4
+ β − α)

where dependence on α has being expressed through a.
Integral (9) can be computed by observing that f(a) (drop-
ping subscript u) is the derivative of another integral g(a)
defined below, which in turn can be easily evaluated by
completing squares in the exponent and expressing in terms
of the standard Q function.

g(a) =
1

2π

∫ ∞
0

e−
1

2σ2
(r2+1−2ra)dr

=
σ√
2π
e−

(1−a)2

2σ2 (1−Q (a/σ))

f(a) = g′(a) =
a(1−Q(a/σ))e

a2−1

2σ2

σ
√

2π
+
e−

1
2σ2

2π
(10)

Averaging out p we get Eq. (3).
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