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Abstract—With the growth in Internet access services over net- subscriber line (ADSL) and its variants, cable networks, and
works with asymmetric links such as asymmetric digital subscriber - combinations such as a downstream path (network to sub-
i'giégg;t)tﬁgdpgf‘fg'%gﬁi‘;do?‘%‘?;ﬁg%tv"écr’rg;ét';nﬁiﬁ?}”\jvisic‘;]“t‘ﬁ;a'scriber) over a cable or satellite link and a telephone upstream
bottleneck link speed on the reverse path (i.e., the path followed by link (subscrlber to network or service prowd_er). These systems
acknowledgment) is considerably slower than that on the forward Nave an inherent bandwidth asymmetry which could be as low
path (i.e., the path followed by data packets). In this paper, we pro- as 10 for some of the proposed cable modem and ADSL access
vide guidelines for designing network control mechanisms for sup- services, or as high as 100 or more when a telephone return
porting TCP/IP,_the widely used Internet transport _protocol, OVer  path is used. Even higher asymmetries in the bandwidths seen
suchasymmetric networks. The key results underlying these guide- 1, o\ynstream connections will result if the access traffic is
“ns\?eaﬁe?:”f.ﬁiunogvsthe throughput as a function of buffering, bidirec.tional, hence causing the slow upstream link from the
round-trip times, and normalized asymmetrydefined as the ratio Subscriber to the network to be shared by both data packets
of the transmission time of acknowledgment (ACK) in the reverse (where the destination is upstream) and acknowledgment
path to that of data packets in the forward path]. We identify three  (ACK) packets (where the destination is downstream). Indeed,
modes of operation which are dependent on the forward buffer qata traffic from other connections can cause congestion in the

size and the normalized asymmetry, and determine the conditions . . .
under which the forward link is fully utilized. We also show that acknowledgment path of a given connection even when there is

drop-from-front discarding of ACKS on the reverse link provides N0 raw bandwidth asymmetry.

performance advantages over other drop mechanisms in use. Many data applications over asymmetric networks (such as
Asymmetry increases TCP's already high sensitivity to random Web browsing or file transfers) are built on TCP/IP [16], the

packet losses that occur on a time scale faster than the connec-wjidely used Internet data transport protocol. Our goal is to ob-

tion round-trip time (e.g., caused by transient bursts in real-time tain a detailed understanding of the performance of TCP over

traffic). We generalize the by-now well-known (“TCP-friendly”) i twork ith iew t idi tem desi
relation relating the square root of the random loss probability asymmetric networks, with a view to providing system design

to obtained TCP throughput, originally derived considering only ~ guidelines for supporting TCP over such settings.

data path congestion. Specifically, random loss leads to significant We consider TCP connections that use a fastvard path
throughput deterioration when the product of the loss probability,  for data packets, and a slowverse pathfor ACK packets,
the dnormalllzed asymmetrand the squareof the bandwidth delay  \hjch arise naturally from applications that truly exploit asym-
product Is large. metric networks (e.g., Web browsing from a home computer).

Congestion in the reverse path adds considerably to TCP’s un- _. .
fairmess when multiple connections share the reverse bottleneck Since TCP uses the arrival rate of ACKSs to control data packet

link. We show how such problems can be alleviated by per-con- flow, it is important to determine whether congestion in the

nection buffer and bandwidth allocation on the reverse path. ACK path leads to poor utilization of network resources for
Index Terms—ADSL, buffer management, cable modems, sched- such applications. We will refer to connections of the type just
uling, TCP. described agorward connectionsand obtain basic analytical

insight (verified using simulations) into the effects of asym-
metry by studying the throughput performance of such con-
|. INTRODUCTION nections. We also consideverse connectionsvhich generate

T IS EXPECTED that high-speed Internet access servicéata traffic on the reverse path and ACK packets on the forward
to residential subscribers will be provided using asymmetrth, since many applications (e.g., file transfers from home to

access networks, such as networks using asymmetric digmrk) would require such connections. Note that, in the context
of asymmetric networks, it is not of interest to consider reverse

" , ed A 41 1099: revised J 25 1090 connections on their own, since earlier studies of TCP/IP that
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We study both the Tahoe version of TCP with fast retransmiite. Thus, too large a level of random loss leads to a signif-
and the later Reno version [5], [6], [16] (henceforth referred tiocant reduction in TCP throughput. A setting of particular in-
as TCP-Tahoe and TCP-Reno, respectively). While it has beenest is TCP supported over an available bit rate (ABR) asyn-
observed that many Internet connections are of short duratiodisronous transfer mode (ATM) virtual circuit, where transient
the impact of a slow acknowledgment channel on TCP congesngestion in the ATM network may cause TCP packet loss. Fi-
tion avoidance behavior is best understood by considering peally, random loss may also occur in heterogeneous networks
sistent sources, which could be thought of as modeling long fikghich contain lossy wireless links of time-varying quality.
transfers. We therefore restrict attention to the latter throughoutThe effect of these transient or random losses on TCP
this paper. throughput is well studied, and it has been shown that, as-

In addition to theraw asymmetryn the forward and reverse suming that there is congestion only on the data path, the
link speeds (i.e., the ratio of the forward bottleneck link speaibtained TCP throughput is inversely proportional to the
to the reverse bottleneck link speed, where both are expresseprimduct of the round-trip time and the square root of the loss
bits per second), it is useful to define thermalized asymmetry probability [9], [10], [8], [13]. We show here that bidirectional
as the ratio of the transmission time of ACKs on the bottlenedongestion increases TCP’s sensitivity to loss. In particular,
link on the reverse path to that of packets on the bottleneck lifde asymmetric networks, the obtained TCP throughput is
on the forward path (i.e., the normalized asymmetry is the raiioversely proportional to the product of the round-trip time, the
of the forward bottleneck link speed in packets per second dquare root of the loss probabilitgnd the square root of the
the reverse bottleneck link speed in ACKs per second). Natermalized asymmetry. Note that the original loss-throughput
that the normalized asymmetry is typically much smaller thaormula in [9], [10], [8], and [13] has been used to define
the raw asymmetry, since TCP ACKs (typically about 40 bytetf)e notion of TCP-friendlinessfor identical losses. A flow
are much shorter than data packets (typically 500 to 1000 byteshose throughput does not reduce as much as expected by the
and can be shortened further using header compression. It WitP loss-throughput relation is considered TCP-unfriendly.
turn out that, when there are only forward connections in tiBecause of the possibility that TCP-unfriendly flows will starve
system, the parameter directly affecting TCP performance is thR€EP (and TCP-friendly sources) flows when sharing network
normalized asymmetry rather than the raw asymmetry, whichsources, it has been advocated that all applications should use
alleviates the impact of the asymmetry. However, we will seBCP-friendly flow control. Our result shows that, for networks
that, when the reverse link is shared by both forward and neith significant asymmetry, the notion of TCP-friendliness
verse connections, the raw asymmetry plays a significant rokeould have to be modified.

In this case, even the use of schemes such as header comprdssr multiple TCP connections sharing a forward bottleck link,
sion that can decrease the normalized asymmetry do not addiekas been shown in several previous studies [2], [3], [10] that,
the performance problems caused by asymmetry. assuming no congestion on the ACK path, connections with

The remainder of this section contains a brief account of olarger round-trip times get a smaller share of the bandwidth.
main results and how they fit in with the existing literature oin this paper, we present simulation studies that show that, for
TCP performance. In order to obtain basic insight into the efaultiple forward connections, ACK path congestion exacerbates
fect of asymmetry, we consider an idealized model consistitiyjs inherent unfairness of TCP in the absence of network level
of a single forward and reverse link, together with a propa&entrol of bandwidth and buffer allocation on the reverse link.
gation delay. For our most basic results, we use a combira-particular, FIFO sharing of the reverse link by ACKs for
tion of approximate analysis and simulations to characterize ttiéerent forward connections can lead lmckout periods of
behavior of a single forward connection as a function of thenpredictable, and long, durations when several connections
normalized asymmetry, the buffering on the forward and r&ave essentially zero throughput. Furthermore, when (ACKs for)
verse links, and the bandwidth-delay product. Depending érward connections share the reverse link with (data packets
the forward buffer size and the normalized asymmetry, thei@r) reverse connections, FIFO sharing of the reverse link leads
are three distinct modes of operation. It is shown that the fdr a nearly complete lockout of the reverse connections. We
ward buffer size must be at least as large as the normalizgtbw that the preceding performance problems can be allevi-
asymmetry in order for the most desirable mode (i.e., the oated by using fair queueing (or weighted round-robin with per
in which the forward link is fully utilized) to be in operation. It connection queueing) on the reverse link. However, even with
is also shown that drop-from-front queueing of ACKs on the rearefully implemented fair queueing on the reverse link, large
verse link provides performance advantages (significant in sowmtisparities in size between data packets for reverse connections
regimes) over first-in-first-out (FIFO) queueing. and ACKs for forward connections can lead to the phenomenon

Next, we consider a situation in which packets may be lost ACK starvationon the reverse link. We show that such
randomly in the forward path. Random loss for our purposesA€K starvation can be particularly problematic for asymmetric
not necessarily due to link errors. Rather, it includes all lossaetworks, and discuss methods for addressing this problem.
that occur on a time scale faster than the round-trip delay of thePrevious simulation studies of TCP-Tahoe include [17], [15],
connection (e.g., transient congestion caused by high-priorji8]. Simulations for the simple multihop network considered
real-time cross traffic). While an ideal congestion control mech-
anism should react only to loss due to sustained congestion (j.e.1he termACK compressiomas coined in [18] for the phenomenon of mul-
loss due to mechanisms that persist over one or more round- iple ACKs arriving in quick succession after being queued behind a data packet.

use the term ACK starvation here because of the large number of ACKs lost
times), TCP reacts to all losses by scaling back its transmissififing the time that a data packet is served on the slow reverse link.
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Fig. 1. System model for a single connection.

in [17] show the oscillations in window sizes and the unfairness While the path traversed by the connection may include links
of TCP toward connections traversing a larger number of homgher than the forward and reverse links explicitly modeled here,
In [15], the authors considered a number of TCP connectioiids assumed that the performance is dominated by the bot-
sharing a bottleneck link. There is no queueing of acknowledtieneck links in each direction. The remainder of the network
ment, and sources are assumed to always have data to sendsAnodeled via a constant “propagation” delay, which includes
analytical and simulation study of TCP (Tahoe and Reno) witfueueing delays on other links, propagation delays, and pro-
no reverse path congestion is presented in [9], [10]. The effessing delays at nodes in the path of the connection. The prop-
of different buffer sizes relative to the bandwidth-delay produeigation delay on the forward path is defined as the time between
and the effect of random losses on throughput is derived. Tiwben a packet is completely transmitted on the forward link and
effects of two-way traffic are considered in [18], where the phevhen it arrives at the destination, and is denotedrpyThe
nomenon ofACK compressiomesulting from the queueing of delay on the reverse path is analogously defined as the time be-
acknowledgment is pointed out. However, none of these ptereen when an ACK packet completes transmission on the re-
vious studies have studied the scenario analyzed in this paperse link and when it arrives at the source, and is denoted by
viz., TCP performance with a slow ACK channel where the pris.. While we distinguish these two delays in our notation be-
mary bottleneck is in the reverse path. cause of the asymmetry between the forward and reverse paths,
The system model and relevant aspects of TCP are descriletwill see that only the net propagation defay- 7; + 7, af-
in Section Il. Analytical and simulation results for the evolufects performance. This delay can range from several millisec-
tion of a single connection (including the effect of random losgnds to several hundreds of milliseconds. Tdwnd-trip timeis
are given in Section lll. Section IV contains simulation resultihe time between when a packet is sent by the source and when
for multiple connections. Concluding remarks, including a suntlhe source receives an acknowledgment for that packet, and in-

mary of design guidelines, are in Section V. cludes queueing at the forward and reverse links in addition to
the propagation delay. The average round-trip time will be de-
Il. SYSTEM MODEL noted by7'.
We model random loss as follows: each head-of-the-line
A. Forward and Reverse Path Model packet in the forward buffer has a probabiligyof being lost

Our model is similar to that considered in [15], [18], [9], withafter transmission, and different packet losses are independent.
the following key difference: the path followed by acknowledgwhile much of the analysis will be for the cage= 0, we
ment is explicitly modeled. We consider an infinite data souragill show that random loss can have a significant impact on
which always has packets to send, so that the units of datapmrformance. This model is shown in Fig. 1.
the forward path are maximum-sized packets. We consider arhe preceding model is for a connection that uses the fast
forward link with capacityy s packets per second and a FIFGorward link for data packets and the slow reverse link for ACK
forward buffer of sizeB; packets. For each packet that ipackets. Henceforth, we will call such connecti@orsvard con-
received by the destination, a cumulative acknowledgmentrisctions. We will only consider forward connections in Sec-
generated which contains the next expected segment numben lll, since the goal there is to determine whether TCP is able
The fact that acknowledgments are cumulative implies thit utilize the fast forward link satisfactorily. In Section IV, we
later ACKs contain at least as much information about whidkso introduceeverseconnections, which use the slow reverse
packets have reached the destination as earlier ACKs, so ftlivdt for data packets, and the forward link for ACK packets.
ACK loss simply results in bursty traffic on the forward pathOur objective is to determine under what circumstances both
This is the key to our analysis of the impact of asymmetry dorward and reverse connections obtain satisfactory link utiliza-
performance. It is assumed that the speed of the reverse linkioms.

i ACK packets per second, and the reverse buffer is FIFO of Throughout the paper, it is convenient to consider the fol-
size B,. ACK packets. The forward and reverse buffer sizes dowing example.

not include the packet in service. We assume that= k.., Running Example:The reverse link is of speed 320 Kb/s, and
with £ > 1, wherek is thenormalized asymmetry factare., the ACK packets are of length 40 bytes. Forward packets are of
the effective bandwidth asymmetry normalized by the ratio ¢éngth 1000 bytes. The reverse link spegds therefore 1000
forward to reverse packet sizes. ACKs/s, so that a asymmetry factbr= 5 (i.e., auy of 5000



544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

packets/s) corresponds to a raw forward link speed of 40 Mbissing estimates of the mean and variance of the round-trip time
The propagation delayfor the simulations shown in Section 1l [7]. However, the granularity of the timer used in most practical
to aid the analytical development is kept fixed at 2 ms, althouginplementations is usually much coarser than the estimates. In
it is varied in our numerical results in Section IV in order taur results, we consider a coarse-grained timer with a granu-
illustrate several points. The forward buffer siBe = 8 data larity of 500 ms (i.e., the time between the release of a packet
packets. The reverse buffer sizeHs = 5 ACK packets. These and the expiry of the timer associated with it is at least 500 ms).
parameters are chosen with ease of exposition (and illustratiorSee [16] for a detailed description of TCP, [5] for the original
for the plots) in mind. As will be seen subsequently from theersion of TCP-Tahoe, and [6] for a description of TCP-Reno.
analysis, the use of larger round-trip times and larger buffer sizEise following description of the window evolution is sufficient
does not change any of our fundamental observations about TilGPour purpose.

behavior in asymmetric networks. Description of TCP-Tahoe and TCP-Ren®he algorithm
followed by each connection has two parameters, current
B. Background on TCP window sizeW and a threshold¥,, which are updated as

The connection of interest uses a window flow contrdpllows.
protocol. At timet, the window size is denoted By (¢), and
is equal to the maximum allowed number of unacknowledged (1 Tahoe/Reno)After every nonrepeated ACK:
packets (not counting retransmissions). Since we assume an if W < W,, setW = W + 1; slow-start phase
infinite data source, the connection uses its allowable window else setV = W + 1/[W]. Congestion Avoidance
to the fullest extent, i.e., at time there are indeedV (¢) Phase
unacknowledged packets. The window varies dynamically ([x] denotes the integer part o
in response to acknowledgment and to detection of packet (2 Tahoe)After a packet loss is detected (when timer ex-
loss. Upon receiving a packet, the destination is assumed tgires or the number of repeated ACKs exceeds a threshold):
send a cumulative acknowledgment back immediately. Even setWw, = W/2;
though selective ACKs or NACKs are not available, a single setWw = 1.
packet loss can be detected by consecutive acknowledgment (2 Reno)When the number of repeated ACKs exceeds a
having the same “next expected” number. Both TCP-Tahoe andhreshold,
TCP-Reno therefore have fast retransmitoption, in which retransmit “next expected” packet;
a packet is retransmitted after the number of sdaplicate setW, = W/2, then seW = W, (i.e. halve the window);
acknowledgmerexceeds a threshold (typically three). If packet  resume congestion avoidance using new window once re-
loss is not detected in this manner, it leads to expiry of a timer.transmission is acknowledged.
In either case, TCP-Tahoe drops its window to one upon loss (3 Reno)Upon timer expiry, the algorithm goes into slow
detection. Subsequently, the window grows rapidly, by one start as before:
packet for every successfully acknowledged packet, until it setW, = W/2;
reaches half of the window size at the last packet loss. This setWw = 1.
(typically short) stage of rapid window growth is paradoxically

called slow start since it is slow compared to not having o . .
decreased the window at all after a loss. After slow start, t eIn addition to the preceding steps, TCP-Reno incorporates

: ) . s . : the following refinement: while it cuts its window by half after
algorithm switches tocongestion avoidangein which the . . . .
) . ... detection of each packet loss via duplicate ACKs, in order to
window grows slowly in order to probe for extra bandwidth

) ; . . . ,prevent a burst of packets from being transmitted when the re-
by incrementing the window size by one for every window

worth of acknowledged packets. This growth continues un ransmission is finally acknowledged, it temporarily expands the

the maximum window size is reached, or until another packvé/{ndow size to permit new packets to be transmitted with dupli-

) cate ACKs until the “next expected” number in the acknowledg-
loss is detected. ment advances. The window expansion takes place Bff&
TCP-Reno is similar to TCP-Tahoe, except that it tries tRCKS have been received, in order to ensure that the number of

avoid the slow-start phase by remaining in congestion avoidancet : : .
. X : . i standing packets has been reduced to the new window size.
unless there is a timer expiry. Packet loss detected via duplicate

ACKs results in the window being cut by half. If a timer expiry
does occur, then the window size is dropped to one, and slow
start is used to grow the window back to half its value when the We provide approximate analysis that yields insight into TCP
timer expired. evolution, and explains the dependence of performance on var-
The operation of the timer is as follows. When a packet isus system parameters. Section IlI-A provides basic approxi-
sent, a timeout value is computed and a timer is started. Expinations for a fixed congestion windoW which we will use
of this timer is taken to signal packet loss. For each retransmiis-our analysis. These include a modification of Little’s law for
sion following a timer expiry, the timer value used is twice than asymmetric system. Sections IlI-B and III-C provide perfor-
previous timer value. In principle, the timer value is determinedance analyses for TCP-Tahoe and TCP-Reno, respectively, for

) ) ) a single connection with no random loss. It is shown that TCP-
2In practice, both the forward and reverse link speeds might be scaled do

n . . .
considerably in order to support multiple connections, but normalized asy%—eno’ while supposed.ly an |mpr9ved ver§|on of TCP'Tahoe’ ac-
metry factors of up to 25 could occur. tually performs worse in this setting. Section IlI-D considers the

I1l. SINGLE FORWARD CONNECTION
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8000 - reoanaysis --- | reyverse link at the same rate > 41,., on average only one out

of every\/u,- ACKs get through on the reverse link. The others
have to be dropped as the reverse link buffer is overflowing.
Bf <k {4 Thus, on average, each ACK in the reverse buffer and each ACK
in flight in the reverse link actually represents acknowledgment
information for A/, forward packets. Since the reverse pipe
1 is completely full, any ACK that does make it into the reverse
buffer seesB,. ACKs ahead of it, so that the net delay it incurs
in the reverse buffer (including its service time)As/ ..

The modified Little’s law that results from the preceding ar-
guments reads as follows:
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Fig. 2. Analytical and simulation results of the throughput of TCP-Tahoe arndh€ first term corresponds to the number of packets in the for-
TCP-Reno as a function of the normalized asymmétry ward pipe, while the second is the number of surviving ACKs

in the reverse pipe, multiplied by/ .., the number of forward

performance of TCP-Tahoe and TCP-Reno in the presenceP@ckets represented by each surviving ACK on average. This
random loss, and shows that the throughput exhibits a thre¥ff!ds the following estimate of the throughpuas a function

olding effect. of the window size:

In order to motivate the detailed calculations in Sections I1I-B N = w )
and I1I-C, the results in these sections are summarized in Fig. 2, Ty B,
which shows the throughput of TCP-Tahoe and TCP-Reno as a Lo

function of the normalized asymmetry. The system considergfle preceding argument assumes that the forward buffer is large
is the running example described in Section II, with a prop@nough to withstand the bursty traffic resulting from ACK loss.
gation delay of 2 ms. The match between analysis and simulanecessary condition for this is that the forward buffer is larger
tion is excellent, which implies that the analytical descriptiofhan the average burst size, i.e., tijt > (\/p,.). This condi-

of TCP behavior in Sections III-B and I1I-C is reasonably agjon is not sufficient: loss on the forward path can occur even
curate within the considered framework. Fig. 2 shows that thefgen this condition is satisfied, since not all bursts contain an
are several different regimes of operation. These are determigg@ial number of packets.

by the relationship between the normalized asymmetry and therhe window sizeWp,;; for which the forward link can be
forward buffer size. Further discussion of these results will Bglly utilized is obtained by setting = ps in (1), which yields

given in the following. Wian = pip(T + By./p) = pusT + kB,.. For the running ex-
_ _ _ ample,W;1 = 41 for an asymmetry factok = 5.
A. Analysis for Fixed Windows Window Size for a Full PipeThe pipe is completely

Assume that the connection is using a fixed window size &Il when both the forward and reverse links are always
W, which can be thought of as a snapshot of a TCP winddwsy, the forward and reverse buffers are full, and there
at a given time. The minimum round-trip tini€ incurred by are as many packets as possible in flight. The window size
a packet is given byf" = 7 + (1/p,) + (1/5). This sub- corresponding to this is denoted BY:..x, and is given by
section is based on applying Little’s law (and a modificatioWmax = Wrn + By = psT + kB, + By. When analyzing
thereof) as a means of relating window size (or the number BEP evolution, we will assume that increasing the window
outstanding packets) to the throughput (or the rate of succesdt@yond Wi will cause packet loss. Note that packet loss
transmission of forward link packets). The analysis gives opfRight occur at a smaller window size because the traffic is
mistic throughput estimates, since it assumes that the minim@#rstier than that assumed in our application of Little’s law. For
possible average delay is incurred by a packet. This assumpfia@ running exampleéy,,,.x = 49 for k = 5.
of traffic that is as smooth as possible is made for analytical Forward Buffer Size Requirementor a fully utilized for-
convenience, but is a good approximation for the determinisi@rd link, one out ofc ACKs is lost, so that the average burst
system model in Section Il. Refinements to the analysis will Iséze into the forward buffer i& packets. ThusB; > k should
introduced as necessary when explaining the behavior with d§ad to good forward link utilization.
namic windows. ) ]

Condition for Fully Utilized Reverse LinkApplying Little's  B- TCP-Tahoe Evolution Without Random Loss
law, we get the following condition for the reverse link to be The typical evolution is cyclical: the window size grows
fully utilized: W > p..7°. This condition is necessary but notslowly during congestion avoidance to a maximum value of
sufficient, since the round-trip delay incurred by a packet can b%l wrn. f h ACK arriving back at th ‘
larger than the minimum round-trip tin¥édue to bursty arrivals are rr]eltggée%r 2?13 arriveagtr I;/;\r;gfo?vxc/aradt tbfffsé?.u Ir-fg\/’vi?/:r\,/?/\rggv?/’iﬁ%g%%ieettﬁe re-
at the forward or reverse buffer. sulting burstiness in our calculations to obtain a simpler formula.
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Winal, @t which point there is a packet loss. This loss mayestion avoidance 8%,,.1/2. For Case 1Wsna = Winax =

or may not result in a timeout, depending on the systepy1’ + kB, 4+ B;. The congestion avoidance period can be di-

parameters. Subsequently, the window drops down to ow@ed into two phases as follows.

followed by rapid growth in slow start until it reachB8&;,,.1/2. Phase 1: W (t) < Wy, so that the forward link is under-

At this point, the window dynamics switch to congestiomtilized. The instantaneous throughpt) is given by (2) and

avoidance until the window size reach&%,,,; again, at which (6). From (6), the duration of this phase is

point there is another loss, resulting in a new cycle. The long W2 _ w2

run throughput can therefore be computed as the number of foar = —ull 0 (7

packets successfully transmitted in a cycle, divided by the cycle 2 pir

duration. If a cycle ends in a timeout, the length of the timeo(t..; = 0 if Wy < W)

must be included in the cycle duration, even though no packets Phase 2: Wi, < W(t) < Whpal, SO that the forward link

are transmitted during most of the timeout period. is fully utilized. The throughpuk(¢) = 7, and the duration of
Since the slow-start phase is much shorter than the congestinis phase is

avoidance phase, we will ignore it for our throughput estimates. w2 w2

For a detailed analysis of slow start without a reverse link con- teny = —fimal 77 full

straint, see [9]. The window growth in congestion avoidance is 2 pr

relatively slow, and is well modeled by a continuous time agz_, = 0 if Wxn. < Wian).

proximation described by a differential equation, as in [9] and The net duration of the congestion avoidance phase is
[15]. In contrastto the latter references, which ignore the reverse

(8)

link, here the window growth is slowed down due to the loss of b = teat + teny = Wihal — WOQ' 9)
ACKs on the reverse path. We will need to consider three dif- 2 iy
fel’ent cases, depending on the relative Size Of the fOI’WaI’d buﬁq{e average throughput iS the average throughput over a Cyc|e’
and the normalized asymmetry factor. and is given by
Case 1:k < By < 3k. Lo
Case 2:By < k. A=— | A@adt (10)
Case 3:B; > 3k. tea Jo

Case 1 can be thought of as a regime_ in yvhich TCP opera@§ng (2), (6), and (7)—(9), we obtain upon simplification that
normally. Case 2 corresponds to a situation in which the forward

buffer is too small to handle bursts resulting from asymmetry 5 5
and ACK loss, which leads to poor performance even though 7y _ 2(Wem — Wo)
the forward link is very fast. Case 3 is an anomaly, in that the 3 <T+ &)
performance gets worse as forward buffer size becomes large. o
We will see that the problem that causes this can be resolved
by implementing a drop-from-front policy at the reverse buffer.
Each case is considered in detail in the following. iy (Wf?nal - Wfill) /(Wf?nal - W02) - (11)
Case 1: k < By < 3k
We ignore the short slow-start phase in our throughput esti- B
mates. In congestion avoidance, the ratd/{da) of window Ideally, A should be close tp, the forward link capacity. As

growth with arriving acknowledgment is given by Fig. 2 shows, for fixed.,., A grows almost linearly with: (and
AW therefore withy:f) in the regime of Case 1.
e 1/W. 3) A typical window evolution for Case 1 is shown in Fig. 3.

) . ) ) ) ) For our running example, with = 5 < By = 8, our analysis
Assuming that the window size during congestion avoidancedfagicts that the largest window size attained for our running

large enough to keep the reverse link busy (K€..> W, = gxample isiana = Wi = 49. This matches the simulated
1 T), the rate da/dt) at which the acknowledgments arrive,inqow evolution shown in Fig. 3.

back at the source is given by Case 2: By < k
da 4 For largek, TCP performance is dominated by the ability
a ) of the forward buffer to accomodate bursts, so that the perfor-

Combining (3) and (4), we obtain the rat(/dt) of window Mmance is relatively insensitive to in this regime. It is there-
growth with time, given by fore convenient to consider the cake= oc. We begin with

a qualitative explanation of TCP behavior in this regime, and

ﬂ _ b (5) then give a quantitative estimate of throughput based on mod-

o _ dt w eling the deterministic evolution of TCP as random. Given the
which is easily solved to get drastic nature of this approximation, the match with simulations
W () = VIW20) + 2. ©) in terms of window evolution is not perfect. However, the re-

sulting throughput predictions are quite accurate (see Fig. 2).
Denoting the window size at which packet loss occurs Hyurther study of this case is necessary to fully understand the
W = Wi, the window sizelW, at the beginning of con- window evolution.
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50

window — an approximation to actual TCP behavior) is necessary. For our
st Reverse it - | purpose here, we approximate the evolution due to (12) by the
’ following random evolution: for each increment of the window
size, the burst whose size is to be increased by one is chosen
uniformly at random among th#@/,. bursts. LetX,E") denote
a0t 1 the size of théth burst after theith window increment, where
k =1,---, W,., and where we assume thXIéO) = 1 when
the reverse link first gets fully utilized (i.e., whéil = W,.).
o 1 LetZ, denote the index of the burst that is incremented for the
sl 1 mth window increment. We will assume that tlig are inde-
pendent and identically distributed random variables which are
uniformly distributed on{1, ..., W,.}. Then the evolution of
the burst sizes is given by

40+ 1

35 1

25 4

window / buffer occupancy [packets]

T VR TR T - {X,E"—UH k=1,
X = .

7iime [s}
. — , : , , Xy else
Fig. 3. Simulation of the window evolution for the running example with TCP-
Tahoe wherk = 5. Similar evolutions are seen for dflsatisfying the condition The size of the laraest burst after thih increment is denoted
in Case 1. (n) n) . . .
by Xnax = maxg X; 7. In order to estimate the window size
reached before the largest burst exceBgs+ 1, we consider

Once the reverse link is fully utilized, ACKs arrive back afne following criterion: Let:* denote the smallest such that
the source with a spacing af ... If the throughput is larger

thany,., each ACK represents a number of successful forward PIX(™) > By +1]>0.5. (13)
packets, so that, when itis received, a burst of packets is rele ﬁ
into the forward buffer. The maximum number of such burs
that are outstanding is simply the number of outstanding pack
whose ACKSs will successfully reach the source, and is equal
the maximum capacity of the reverse pipg, = 1,7 + B,.,
which is assumed to an integer for simplicity. Sirice= o, i
the ACKs corresponding to all packets in the burst appearoa{t(m)'
the same instant at the reverse buffer, and at most one of these
ACKs can be served. This surviving ACK leads to another burst P [XISIQX > By + 1} < P [X,E") > By + 1}

being released, withV,. — 1 bursts having been released be- 1

tween this burst and the earlier burst being ACKed. These two —W.P [Xf‘) > By + 1} (14)
bursts (and everyV,.th burst before and after them) can there-

fore be thought of as the same burst circulating in the path @fing the fact that th{aX,i")} are identically distributed (though
the connection. With such an identification, there #re dif- . independent). Clearly{(") ~x® — x™ _{is binomi-
ferent bursts, and we denote B the current size of théth ! L !
burst,z = 1, ..., W,. The current window size is therefore
W = Z;L*l X;. Suppose now that the window size gets incr

(IjS is the median number of increments before a buffer over-
due to the maximum sized burst. The window size corre-
$ onding to this i$V* = n* +W,., and this is taken to b&/ ;..
in our throughput estimates.
We estimaten* by using a union bound for the left-hand side

=

T

?.
Il

ally distributed with parametersand1/W,., so that the extreme

right-hand side of (14) can be computed by summing over the

) &ail of the distribution. Actually, the first term in the tail is a good

meme?' frqu oW +1 Yvhen an ACK from burst arrves. pproximation to the entire tail, and the computation is further

Then.; is incremented .td”Jrl.("e" onemaore p_acket is adde implified by using the Poisson approximation to the binomial

to the burst). In congestion avoidance, the next increment OCCY[Stribution. We finally obtain that

afterW 4 1 more ACKs have been received by the source, i.e.,

once the ACKs foW + 1 further bursts have arrived. Thus, in )W, (n/W,)Br+l
(Bf + 1)!

terms of our moduld¥,. indexing scheme, the next burst that
Fork > By, theWs,. predicted by the preceding computa-

gets incremented has index

j = (i+ W + 1) modulo W,. (12) tions for our ru_nning e>_<amp|e _is 54.5. As s_hown in the_ Fig. 4,

the actual maximum window size reached in the cycle is 45 for
The preceding can be used to deduce the deterministic evdtu= 10 (recall thatB; = 8).

tion of the window and burst sizes. Clearly, some bursts could belt is natural to ask why burstiness does not determine the per-
incremented more often than others during this evolution. Wh&rmance for Case 1Ky > k), for which Wgna = Wiax,
the burst with the largest size has more thi3p+ 1 packets, corresponding to a full pipe. In this case, the buffer can acco-
there is a buffer overflow and the cycle ends. We would nomodate bursts of size up fo+ 1 (since the buffer capacity is
like to predict the window sizéVy,,1 at which this happens, k + 1, including the packet in service). Wher(r, first goes
after which the analysis of Case 1 applies for estimating tfim k to k£ + 1, at least two ACKs from this burst are served
throughput. The successive choices of indices dictated by (18)nce at least one ACK packet is transmitted for evegpackets
appears chaotic, but more study of this map (which in itself iansmitted on the forward link). This results in the large burst

PPW>&+4zm6

max

(15)
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Fig.4. Simulation of the window evolution for the running example with TCPFig. 5.  Simulation of the window evolution for the running example with TCP-
Tahoe wherk: > B; = 8. The evolution shown is fok = 10, but similar  Tahoe wherk = 2 with a FIFO reverse buffer. The window size is constant at
evolutions are seen for @l > B;,. one for the duration of the timeout at the end of the cycle.

getting broken up into smaller bursts. This is probably what er 25 — . . : . . .

window ——

ables all bursts to maintain roughly equal sizes, so that buf Forward Buffer ——
overflow occurs due to a full pipe rather than due to large bur packetfoss -
sizes. or 1

ckets]

Case 3: By > 3k

The evolution here is exactly as in Case 1, except thatd
timeout occurs at the end of congestion avoidance becauses
a failure of the fast retransmit option. Consider a packet lo:§
that occurs when

p:

15 b

ncy

up

Wﬁnal = Wmax = NfT + kB1 + Bf

window / buffer

If packetn is lost, once all packets up to— 1 are ACKed, the
outstanding packets are n + 1, -- -, n + Wxpa — 1. For all
packets among these that are successful, the destination ge
ates cumulative ACKs saying “next expectech.” After three
duplicate ACKs arrive at the source, packeis retransmitted
and the window is dropped to one, so that no new transmissidtigs 6. Simulation of the window evolution for the running example with TCP-
are attempted. However, by the time three duplicate ACKs q@gih";[‘fhﬂg o2 Oi??sdéﬁr%}fggt”;grom is implemented at the reverse buffer.
received (spaced bly/.,.), the forward buffer is reduced 3.

If this does not drain the forward buffer (which will happen if

By > 3k), the reverse link will remain fully utilized, and thet0 the source. This works because, with cumulative ACKs, the
reverse buffer will be full by the time the ACK for the retransamount of information carried by later ACKs is always more
mission arrives at the reverse buffer, so that the latter gets |dggn that contained by earlier ACKs. Simulations show that im-
When this happens, the source keeps waiting for the ACK péementation of this policy eliminates all timeouts in Case 3, so
arrive until there is a timeout. This can be thought of as Phak@t the throughput formula becomes similar to that in Case 1.
3, and is of duratior,, the length of the timeout period. PriorNote that drop-from-front has been previously proposed for the
to this, Phase 1 and Phase 2 of the evolution are exactly agapvard path for TCP over ATM for an entirely different reason

7.2
time [s}

Case 1. [11].
With the durationstc,; andt..» as in (7) and (8), the net  Typical window evolutions without and with drop-from-front
duration of congestion avoidance becomes are shown in Figs. 5 and 6, respectively. The time over which the
window is constant at one in Fig. 5 corresponds to the timeout
tca = tcal + tca? + to period.

and the average throughput is obtained by plugging into (10), ) _
noting that\(#) = 0 in Phase 3, since the window size is on&- 1 CP-Reno Evolution Without Random Loss
and there is an unacknowledged packet. Casesland 3:B; > k

A simple change that prevents the timeout from happeningThe evolution of TCP-Reno is similar to that for TCP-Tahoe,
is to implement a drop-from-front policy at the receive buffeexcept that recovering from a packet loss is more problematic
which makes sure that the latest ACK information gets throudbr TCP-Reno because of the slow reverse link. Suppose packet
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Fig. 7. Simulation of the window evolution for the running example with TCP'-:'g' 8. Simulation of the window evolution for the running example with TCP-

Reno wherk = 5. Note that there is a timeout at the end of the cycle, unlikgReno _vvhenk > By = 8. The evolution shown is fok = 10, but similar
R volutions are seen for al > B;,.
Case 1 for TCP-Tahoe.

Ep_redictsWﬁml = 49. Note that there are two consecutive

is lost atiW = Whaa1, and suppose that all packets sent b ;
- tnal PP P window cutbacks, as well as a timeout, at the end of the cycle.

fore and after packet get through. Thus, ACKs for packets -
n+1, -, n+ Wana — 1 will be generated by the destination, Case 2: Bf <k .
each saying “next expected n.” After three such duplicate The behav_lor here is similar tq Case_2forTC_P-Tahoe, except
ACKs are received by the source, packes retransmitted, and for the following caveat. iV .1 is the window size when loss
the window is cut back t&Vg,1/2. Further, in order to avoid a 9CU"™s due to a burst, slow start endstat= W‘fi“al/8' Since
burst when the ACK for the retransmitted packet gets throu%ﬁ,e bursts are formed at the SIOW'St"."rt phaSWﬂI‘al/ 8< .W” |
afterWgna1 /2 duplicate ACKs arrive, TCP-Reno starts transmit- en there are onlyVs..1/8 bursts _C|rculat|ng gnd getting in-
ting a packet for each further duplicate ACK that arrives, evé:rqemented (pseudo) randomly during coqgestlon av0|dan_ce. Let
though that is not allowed according to the window-based pr denpte the number of bursts. Then, 'f the cycle terminates
tocol. If the reverse link were not a bottleneck, this would enab?éter” Increments dur.|ng congestion avmdgnce,}hﬁnwl -
transmission of roughlfWs..1/2 new packets (which is equal™ * " andny = min(Wspa/8, W), which givesn, =
to the new window size) by the time the ACK for the retrans-" /7, Wr). ReplacmgW,, by ny in Case 2 of TCP-Tahoe
mission gets back, which means that there would be no burs before, we obtain™ and thusiVg,.... We then apply Ca_se 1
packets at that point. However, due to the slow reverse link, B TCP-Reno to cc_)mpute_ the throughput. qu our running ex-
the time the retransmitted ACK gets back, the number of dfi- ple, the analysis predicl¥ya = 39.4, which, while dif-
plicate ACKs received is roughly only,. 7" + 3 (since ACKs erent from _the window evolution simulated g F.'g' 8,is gpod
can arrive back at a rate no faster tha), even though actu- enough to yield a reasonable throughput prediction (see Fig. 2).
ally Wsna1 — 1 packets have been served. Since this is typicall . )
smaller thariWs,..1/2, No new packets are released, so that Wh(ﬁl Evolution With Random Loss
the ACK for the retransmitted packet is finally received, a burst According to our loss model, any packet served at the for-
of Wana1/2 packets is released into the forward buffer by thevard link may be lost with probability, and such losses are
source. This is larger than the forward buffer sizge for most independent. To focus on the effect of random loss, we con-
situations of interest, so that multiple packet losses occur. Thisler the normal operating condition for TCP-Tahoe, which cor-
causes a window cutback W5,.1/4. Further, fast retransmit responds to Case k K B; < 3k) in Section |lI-B. The effect
using cumulative ACKs is only able to recover from very smatif random loss on TCP performance has been considered pre-
bursts of multiple packet loss, so that a timeout eventually ogously in [9], [10], for a model in which the reverse path is
curs. ignored (i.e., assumed to be fast and lossless). The result de-
Since the timeout at the end of congestion avoidance occuk&d in [9], [10], was that TCP throughput deteriorates signifi-
atW = Waaa1/4, the slow-start phase in the next cycle ends agntly due to random loss ¢ 1./ 7°)? is large (say 10 or more).
Winal/8. Thus, congestion avoidance startdiaf = Wsna1/8  An alternative interpretation is that a throughpytcan be at-
and continues tillW;,.;, being terminated by a timeout. Thetained ifq()\fT)2 is of the order of 1 or less. That is, the at-
timeout occurs for both Case 1 and Case 3 (i.e., foBall> k), tained throughpud is proportional tol /7", /q}. Here, we use
and the average throughput is computed as in Case 3 émilar arguments to show that the performance is further af-
TCP-Tahoe. Since congestion avoidance begins at a smalémted by the slow reverse link: the throughput deteriorates if
window value for TCP-Reno, which causes it to have a smalleg(..£7)? is large (or, in other words, the attained throughput
throughput than TCP-Tahoe. An illustrative window evolutiois proportional tal /Tv/kq}). Thus, with identical forward path
is shown in Fig. 7 fork = 5. As for TCP-Tahoe, the analysisloss, the throughput degradation is significantly worse for TCP
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flows with slow reverse paths than for TCP flows which do no 08 ' ' ' ' '

T=2ms —
have a reverse path bottleneck (or for TCP-friendly flows witt legmg e
rate reduction determined by the loss-throughput relation ol 1=20ms -

tained by considering only forward path bottlenecks).

The intuition behind the preceding threshold rule is as folg  os
lows. If the loss probability is low enough, the likelihood of ag
random loss rather than a buffer overflow terminating a cycle @
small, so that the evolution is similar to that without loss. Onthg o4 |
other hand, if the loss probability is high, packet losses occur reg
atively early in a cycle, and result in small initial values for the=
congestion avoidance phase that follows. This results in smi 02t
window sizes (determined by random losses rather than congs
tion) throughout the congestion avoidance phase, and theref

| analytical threshold
0.5 4

03 r

0.1

causes low link utilization. Since window growth is timed by 0 : : : : =

- : - 1e-06 1605 00001 0.001 0.01 0.1 1
ACKs arriving at the source, a slow reverse link results in slowe Packet loss rate q
window growth after a loss, causing even worse utilization. @)

Our objective is to determine when random loss causes tha ;4 _ . , , , ,
congestion avoidance phase to have a significantly smaller ¢ T-2ms —
erage window size than that for a lossless evolution. We igno : T=10ms 7

L T=20ms
the slow-start phase for the purpose of arriving at the thresha T=50ms - |

rule: since the slow-start phase is short, the probability of _
random loss occurring within this phase is small unless the lo3
probability is already very high. Note that the evolution of €& 45|
TCP-Tahoe cycle (defined now as the window evolution beg

tween successive window cutbacks), is no longer periodic: tig %4
window size at which a loss occurs for a given cycle, and then§ 03 L
fore the window size at which congestion avoidance begins ~

the next cycle, is random. Since characterizing the Markovie 02 r

| analytical threshold

ke

evolution that results is complicated, and offers little insight, wi o1 | i
resort to a “fixed point” approximation in an attempt to char- .

acterize the “average” behavior of a TCP cycle due to rando Oe0s 1005 00001 0001 ool o1 1
loss. Letw, be the average window size at the beginning of cor. Packet loss rate q

gestion avoidance. In order for the congestion avoidance phase (b)

in the next cycle to also begin withy,, the present conges-rig.9. Throughput as a function of loss probabititior the modified running

tion avoidance cycle should end with a loss at a window size @fample using3, = 10 when (a): = 5 and (b)k = 7. The mark on the curves

2w,. We would like to choosey, such that exactly/q packets "ePresentda(u 1) = 1.

(which is the average number of packets transmitted between

losses for a loss probability af) are transmitted on the for- Settingn, = (1/q), we obtain

ward path by the time the window evolves framy to 2w,. If s 3T+ B,)

the resulting value 02w, is found to be much smaller than the Wy =T (16)

window sizeWnax = ps1 + By + kB, for lossless evolution, 1

then random loss is expected to significantly reduce throughplitorder for random loss not to affect performance significantly,
To find w,, we use the differential equations in Section I1I-Bve should hav@w, equal or exceed the maximum window size

to model TCP evolution in congestion avoidance as before. Agr lossless evolution¥ . = ;T + By + kB, This results

suming that the reverse link is fully utilized throughout conged? the following criterion:

tion avoidance, we obtain as before that (1T + By + kB,)?

pr T + B,

< 24/7.
W(t) = Vv W2(0)+ 2 p,t o
The left-hand side is lower bounded by(p.s T+ B + kB,.)>.
If B; andkB, scale with the forward bandwidth-delay product
nsT, we arrive at a threshold rule ibg(1;7)? as promised.
eWhenthis quantity is large, throughputis expected to deteriorate
as compared to lossless performance.

whereW (0) = w, for our fixed point approximation. i, is the
duration of the congestion avoidance phase, we fye,) =
2w,. The number of packets transmitted during this time is

timated b
y Fig. 9 shows the throughput as a function of random loss for
5 different values ofc andr (note that the round-trip tim&’ is
_ fa \/ Wq T2t gt — 7wf;’ larger thanr). Note the drastic decrease in throughput when
Ng = o T B, T 3(uw T+ B’ the loss probability is an order of magnitude higher than the

L analytically derived threshold values marked on the curves.
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Fig. 10. Asymmetric system model with per connection queues at the reverse link.
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IV. MULTIPLE TCP GONNECTIONS

We consider multiple TCP connections which share tt
forward link and buffer using a FIFO service discipline. Eve
without a slow reverse link, FIFO sharing of the forward lin}
leads to unfairness among forward connections with differe
round-trip times [10]. We will find that these effects are exaceg
bated by asymmetry. For bidirectional traffic (both forward ang
reverse connections), the situation is even worse. In this ca;
the slow reverse link serves both as a data path (for reve
connections) and an ACK path (for forward connections fiwd only p o wdare rev only find & rev
We find that, if the reverse link buffer is FIFO, then revers  ,,1 '
connections are almost completely shut out. This problem ¢
be alleviated by using per-connection weighted round-rob
queueing (or fair queueing) at the reverse link (Fig. 10), b o p i p p o po o
the weights must be carefully chosen so as not to comprom... time [s]
the_ performance. of the forward .conr.1ect|ons. mtermedlalérig. 11. A forward and a reverse connection with a fully shared upstream
options for sharing the reverse link include using severgiffer (u. = 1000 packetsk = 5, 7; = . = 1 ms, B, = 10, B, = 5).

FIFO buffers, each shared by several connections, served in

round-robin fashion. Such a scheme could work quite well #onnection starts, it experiences a high packet loss in the up-
forward and reverse connections are served in different buffeggeam link buffer. This forces this connection to operate using
In our simulations, we consider only the two extreme serviegnall windows and high timer backoff values, leading to poor
options for the reverse link: FIFO and per-connection weightegroughput. The forward connection cuts down its rate only if
round-robin service. there is packet loss in the forward path, or if it loses a whole
. . window’s worth of ACKs in the reverse path. Since neither

A. FIFO Reverse Link Service of these events happens often enough, the reverse connection

FIFO service would be the natural option when several hogsts high throughput only after the forward connection ends at
are connected to the same network interface (such as a cdb#e200 s. Thus, FIFO reverse link service leads to poor perfor-
modem). We have seen in Section Ill that ACK losses are vemyance for the reverse connection, so that some means of guar-
high (as high ag — 1 out of k) when% > 1. This leads to anteeing a portion of the link capacity to the latter appears to
adverse interactions when multiple TCP connections fully shase necessary. One possibility is to “thin” the ACKs for the for-
the reverse buffer. ward connectionbeforethey reach the reverse link: this could

1) Forward and Reverse Connectionkig. 11 shows be done at the TCP layer by the destination, or at the network
throughputs (as percentages of their maximum data péalyer by aTCP-awareagent. The drawback of ACK thinning
bandwidths) obtained by one forward and one reverse T@Pthat it violates protocol layering: either the transport layer
connection. The buffer sizes indicated in Fig. 11 give thmust be aware of (possibly time-varying) asymmetry at the net-
total buffering available for ACK and data packets (one buffavork layer, or the network layer must be specifically engineered
location is consumed irrespective of whether the packet is for the TCP application. Another possibility, which has the ad-
ACK or a data packet). vantage of requiring less interaction between protocol layers at

Initially, the forward connection is the only connection. Ithe expense of additional complexity, is to use per-connection
achieves a throughput of 84% and the upstream link buffergsieueing at the reverse link. This option is explored in Sec-
full with ACKs being sent by this connection. When the reversion IV-B.

fwd —
rev -
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@) Fig. 13. Four forward connections with different propagation delays and a
0.5 : T T . T T T T T fully shared upstream buffep(. = 1000 packet/sk = 5, B, = 10, B, = 5).
cl —
0.45 - ez
os c4 most always lose the ACK corresponding to its first packet. This

causes atime-out and a backoff of the timer. The retransmit faces
the same situation resulting in very large timer values and large
periods of idleness (of the order of tens of seconds because of
the large timer backoffs) for all connections other than the one
currently saturating the reverse link. This continues till a loss
in the forward path for the currently active connection reduces
that connection’s window to one (with a timeout occurring in
some cases, as seen in Section Ill). One of the idle connections
now becomes the dominant connection. Over the very long term
connections tend to share the forward link fairly but over inter-

0.35

0.3

0.25

Fraction of cummulative throughput

0.05 L : : : : : : ' : vals of tens of seconds (500 ms timer granularity multiplied by
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 hackoff values of 32 or 64), one of the connections gets most of
(b) the bandwidth. If connections are used for long file transfers, a

i ) ) connection will see virtually no progress for tens and possibly
Fig.12. Temporary lockouts between four connections with equal propagatlﬁn dreds of ds (d di h b f .
delays for a fully shared upstream buffer. (a) TCP-Tahoe. (b) TCP-Rene=( NUNAreds or seconas (depending on the number of competing

1000 packet'sk = 5,7, = 7, = 1ms,B; = 10, B, = 5.) connections) and then get a period of high bandwidth (corre-
sponding to a few TCP cycles for the single connnection case

2) Forward Connections OnlyFig. 12 shows how four analyzed in Section Ill). If the file transfer does not complete in

TCP-Tahoe connections with equal round-trip times shaP&'® of these periods, another pause of 10 to 100 s will follow.
bandwidth for a system with = 5. The plot shows the fraction Unequal round-trip times exacerbates the problem of unfair-

ess. Simulations show that some connections get shut out for

of the forward connection utilized by the different connectio ) A "
as a function of connection time. Over short intervals (te ng periods. Also, the system evolution is highly sensitive to

of seconds), increasing cumulative throughput for a giv ight changes in packet arrival times, burst lengths and system

connection indicates larger instantaneous throughput, while farameters. Fig. 13illustrates this for a system carrying four for-

creasing cumulative throughput indicates smaller instantane d connectlodns ,W't,h different rouncic-talp ;[_ml](ebs' C;n%eﬁt]:on 1
throughput. It is seen from Fig. 12 that, while the cumulativy/'th 4 ms round-trip time gets most of the link bandwidth for a

throughputs for all connections converge slowly to equgprylong time while_ othgr connections are aImo;tshut out. This
values, the link sharing is grossly unfair (i.e., there are lar parent.ly s?able S|t'uat|on chqnges suddenly with ponnechon 4
variations in the instantaneous throughputs) over time sca getting increasing bandwidth share. Connections 2 and 3

of the order of tens of seconds. This short-term unfairness™ \INremalnIaI(;nosht ShlfltF%Jt‘h . f th link lead
in contrast with earlier results on TCP performance without e conclude that sharing of the reverse link leads to

ACK path congestion [10], for which connections with equél'nfe?ir and unpredictable behayior, and is not suitable for sup-
round-trip times typically see a synchronized evolution whicRerting TCP over an asymmetric network.
is roughly fair in both the short and long term.

An explanation for the short-term unfairness is as follow
Assume connections start at slightly different times. The first Round-robin service should not be cumbersome to imple-
active connection saturates the reverse path and because ofrtkat in systems where connections access the network using
highl — 1/k ACK loss rate, a newly started connection will aldifferent network access devices, but share the same reverse link

g. Round-Robin Reverse Link Service
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7000 T T

(e.g. a cable upstream channel). We assume throughout th. " wru-0

drop-from-front queueing discipline is adopted for ACKsonth | \ Hro=tene =

reverse link (as shown in [11], a drop-from-front strategy is bel \

eficial even for data packets), in order to feed back the most1 | \ /_/

cent ACK information to the TCP source. Such a strategy, cog \

pled with the ACK loss on the slow reverse link, automaticall§ ano0 L

results in the appropriate amount of ACK thinning, so that e:2 /

plicit ACK thinning at the TCP destination is not required.
1) Forward and Reverse Connection$he purpose of

weighted round-robin service on the reverse link is to preve™ .

3000

™~

hroughput

™~

the lockout of reverse connections due to the high volun /

of ACKs generated by the forward connections. Howeve 50} / T
providing a bandwidth guarantee for reverse connections le: [

to two new issues that must be addressed in order to guarar 0 s s s -

good performance for forward connections. ’ ° © aymo “ ®

Issue 1—Effective Increase in Normalized Asymmeltry: _ , ,

a forward connection is allocated a fractiomf the reverse link 519 13- Effectof MTU size on throughput as a function of asymmetry
320 kbps,7, = 7. = 2ms,B,; = 15, B,. = 5).

bandwidth (wherex < 1), its effectivenormalized asymmetry
increases by a factor df/«. Thus, for full utilization of the
forward link, the analysis in Section Ill implies that we nee¢ghe bandwidth onthe reverse link. Thus, the effective asymmetry
a larger forward buffer size, satisfying; > (k/a), or equiv- for the forward connection increases by a factor of two. Thus,
alently, that we must allocate at least a fractien= (k/Bj) if we double the size of the foryvard_buffer, we expect to see the
(assumingB; > k) of the reverse link bandwidth to the for-same throughput characteristic as in Fig. 2, where there was no
ward connection. reverse connection (i.e., we should now expect the throughput

Issue 2—ACK Starvation on the Reverse Lifilhe rea- todrop to thek = oc plateau ak ~ B, /2 = 7.5). As shown in
soning in the preceding paragraph assumes that the forward doig- 14, this is indeed the case when the data packets for the re-
nection sees a steady servicesgf,, ACKs per second on the Verse connection are segmented into chunks of 20 bytes (smaller
reverse link. In practice, data packets for the reverse connéan the size of the ACK packets for the forward connection) be-
tions can be much larger in size than ACK packets for forwaf@re being allowed access to the round-robin setugawever,
connections, which may result in bursty service for the ACK¥/hen we allow data packets of size 1000 bytes to be served non-
Consider, for example, the case of one forward and one revepsemptively, the ACK starvation seen by the forward connection
connection. Suppose that the data packets of the forward c6auses the throughput to plateau at 1000 packets per second as
nection ares times larger than the ACK packets for the forwardve increase the forward link speed. We are unable to offer any
connection, and that the data packets for the reverse connec@¥Blanation for this particular value of the plateau, and leave
area, times larger than the ACK packets for the forward corerformance analysis in the presence of ACK starvation as an
nection. If a complete data packet for the reverse connectiorPgen problem. However, comparing the two plots in Fig. 14, itis
served without preemption on the reverse link, there id@x  clear that ACK starvation causes a severe performance penalty.
starvation periodof durationa,./u, during which no ACKs  2) Forward Connections OnlyFig. 15 shows that, for four
reach the TCP source for the forward connection. In order f@rward connections with equal round-trip times, per connec-
keep the forward link busy through this starvation period, thef®n reverse link queueing and round-robin service eliminates
should beyi¢(a,./11,.) data packets for the forward connectiorthe lockout phenomenon with FIFO reverse link queueing seen
queued up in the forward buffer at the beginning of the starvii-Fig. 12, and restores throughput fairness both in the short and
tion period. But this can only be possiblef; > i ;(a, /). long terms. For connectlons with unequal round—trlp .tlmes., |§
Thus, ifa; = a, > 1, then the forward buffer must be largercan be seen from Fig. 16 that per-connection queueing elimi-
than theawasymmetry (rather than the normalized asymmetryaptes the lockout of some connections shown for FIFO queueing
for full link utilization, which is too stringent a requirement forshown in Fig. 13. Of course, the inherent unfairness of TCP
most practical applications. The only solution to this problem fward connections with longer round-trip times still persists.
to makea, small. This can be done by breaking up a large TCPhis could be remedied by using per-connection queueing and
data packets for the reverse connection into smaller segme@énd-robin service on the forward path [10] as well.
(ideally, of a size equal to the ACK packets for the forward con-
nection, so that,, = 1) in some manner prior to allowing it V. CONCLUSION
access to the round-robin server. Such segmentation could eif)ur study of the conseguences of a slow reverse link yields
ther be done explicitly at the network or data link layer, or i . . .
could be emulated by allowing some form of preemptive tranﬁle following conclusions and recommendations.
mission of ACK packets (e.g., interrupt transmission of a long 1) Forasingle forward connection, the performance of TCP-
data packet if there is an ACK packet to be served). Tahoe is superior to that of TCP-Reno. This is because

Fig. 14 shows the performance impact of the ACK starvation, .
. In fact, we get somewhat better performance than predicted, because the

phenomenon mentioned above. One forward and one reVek3€rse connection does not always fully utilize its share of the reverse link
connection is considered, and each connection is allocated akdwidth, so that the effective normalized asymmetry does not quite double.
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o — connection. Specifically, we show that random loss leads
63 e to significant throughput deterioration when the product
08 b | of the loss probability, the normalized asymmetry, and
the square of the bandwidth-delay product exceeds a
threshold.
06 - ] 5) For multiple connections using FIFO queueing on the
reverse link, poor performance results both for undirec-
tional (forward connections only) and bidirectional (for-
ward and reverse connections) traffic. For multiple for-
. ward connections, small changes in timing can cause a
oo | ] connection to be locked out for tens or even hundreds of
seconds. Reverse connections whose data packets share
the slow reverse link with ACKs from forward TCP con-
T T e T e e a me  me ae w nections can get shut out, since data packet loss due to
time ] congestion on the reverse link is much more damaging
Fig. 15. Four forward connections with equal propagation delays and per- than loss of cumulative ACKs. Round-robin service on

Fraction of cummulative throughput

connection upstream bufferf = 1000 packet/sk = 5,7, = 7. = 1 the reverse link provides a solution to these problems.
ms,B; =10, B, =5). 6) We recommend weighted round-robin service with
1 . ‘ . ‘ . . ' drop-from-front queueing for each connection (or con-
G Tetme — nection class) on the reverse link, for both unidirectional
o3T=zzms - and bidirectional traffic. There is no need for explicit
08 F 1 ACK thinning by the TCP destination, since ACKs are

thinned implicitly by the slow reverse link, and the latest
ACK information is preserved using drop-from-front
08 1 1 queueing. For unidirectional traffic (forward connec-
tions only), round-robin service eliminates the extended
lockout periods seen with FIFO queueing. For bidi-
rectional traffic, round-robin service provides good
performance for both forward and reverse connections,
provided that the weights are chosen appropriately, and
provided that the data packets for the reverse connections
are segmented into smaller chunks before being allowed

04}

Fraction of cummulative throughput

% 0 100 150 200 ] zéo[] w0 w0 a0 450 500 access to the round-robin server.
e 7) If delayed ACKs are used, the TCP destination thins the
Fig. 16. Four forward connections with different propagation delays and per- ~ ACKSs. If this thinning is less than that caused by the
connection upstream buffen { = 1000 packet/sk = 5, B, = 10, B, = 5). slow reverse link, there is no impact on performance since

the forward path burstiness is still determined by the re-

the slow reverse link prevents TCP-Reno’s loss recovery ~ Verse link. If the thinning due to delayed ACKs is much
mechanism from functioning as designed, resulting in a  greater then the burstiness caused by delayed ACKs dom-

coarse-grained timeout after every loss. inates. This is an independent performance issue, and is
2) In order to obtain good utilization of the forward link, not within the scope of this paper.

it is essential that the forward link buffer siZg; is at 8) Serving large data packets from reverse connections non-

least equal to the normalized asymmeiryIndeed, if premptively leads to the phenomenon of ACK starvation,

By is fixed and the forward link speed is increased, the ~ and severely limits the utilization of the forward link by

throughput is ultimately limited by, so that the link forward connections. We strongly recommend either im-

utilization goes to zero. plicit or explicit segmentation of data packets (for reverse
3) For large forward buffersX; > 3k), TCP-Tahoe connections) on the reverse link, ideally to a size equal to

may also incur a timeout after every cycle, resulting in that of the ACK packets (for forward connections).
throughput loss (in general, replace 3 by the threshold for Problems that merit further investigation include analysis of
duplicate ACKs used in the TCP fast retransmit mech#he behavior of multiple connections and design of MAC pro-
nism). This problem can be eliminated by implementintpcols and study of their effect on TCP performance. Another
drop-from-front at the reverse buffer. Doing this restorggroblem which merits investigation is the use of congestion con-
a monotonic improvement of throughput with forwardrol in the reverse path. This entails considerable changes to
buffer size. existing TCP implementations and a network-based solution is

4) Asymmetry increases TCP'’s already high sensitivity tmore appealing particularly since it is now viable to implement
random loss anywhere in the forward path of the TCReighted-round-robin scheduling in routers.
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