
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000 541

TCP/IP Performance with Random Loss
and Bidirectional Congestion

T. V. Lakshman, Senior Member, IEEE, Upamanyu Madhow, Senior Member, IEEE, and
Bernhard Suter, Associate Member, IEEE

Abstract—With the growth in Internet access services over net-
works with asymmetric links such as asymmetric digital subscriber
line (ADSL) and cable-based access networks, it becomes crucial
to evaluate the performance of TCP/IP over systems in which the
bottleneck link speed on the reverse path (i.e., the path followed by
acknowledgment) is considerably slower than that on the forward
path (i.e., the path followed by data packets). In this paper, we pro-
vide guidelines for designing network control mechanisms for sup-
porting TCP/IP, the widely used Internet transport protocol, over
such asymmetric networks. The key results underlying these guide-
lines are as follows.

We determine the throughput as a function of buffering,
round-trip times, and normalized asymmetry[defined as the ratio
of the transmission time of acknowledgment (ACK) in the reverse
path to that of data packets in the forward path]. We identify three
modes of operation which are dependent on the forward buffer
size and the normalized asymmetry, and determine the conditions
under which the forward link is fully utilized. We also show that
drop-from-front discarding of ACKs on the reverse link provides
performance advantages over other drop mechanisms in use.

Asymmetry increases TCP’s already high sensitivity to random
packet losses that occur on a time scale faster than the connec-
tion round-trip time (e.g., caused by transient bursts in real-time
traffic). We generalize the by-now well-known (“TCP-friendly”)
relation relating the square root of the random loss probability
to obtained TCP throughput, originally derived considering only
data path congestion. Specifically, random loss leads to significant
throughput deterioration when the product of the loss probability,
the normalized asymmetryand the squareof the bandwidth delay
product is large.

Congestion in the reverse path adds considerably to TCP’s un-
fairness when multiple connections share the reverse bottleneck
link. We show how such problems can be alleviated by per-con-
nection buffer and bandwidth allocation on the reverse path.

Index Terms—ADSL, buffer management, cable modems, sched-
uling, TCP.

I. INTRODUCTION

I T IS EXPECTED that high-speed Internet access services
to residential subscribers will be provided using asymmetric

access networks, such as networks using asymmetric digital

Manuscript received August 31, 1999; revised January 25, 1999; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor S. Keshav.

T. V. Lakshman is with the High Speed Networks Research Department,
Bell Laboratories, Lucent Technologies, Holmdel, NJ 07733 USA (e-mail:
lakshman@research.bell-labs.com).

U. Madhow is with the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106 USA (e-mail:
madhow@ece.ucsb.edu).

B. Suter was with the High Speed Networks Research Department, Bell Labo-
ratories, Lucent Technologies, Holmdel, NJ 07733 USA. He is now with Xebeo
Communications, South Plainfield, NJ 07080 USA (e-mail: suter@xebeo.com).

Publisher Item Identifier S 1063-6692(00)09118-4.

subscriber line (ADSL) and its variants, cable networks, and
combinations such as a downstream path (network to sub-
scriber) over a cable or satellite link and a telephone upstream
link (subscriber to network or service provider). These systems
have an inherent bandwidth asymmetry which could be as low
as 10 for some of the proposed cable modem and ADSL access
services, or as high as 100 or more when a telephone return
path is used. Even higher asymmetries in the bandwidths seen
by downstream connections will result if the access traffic is
bidirectional, hence causing the slow upstream link from the
subscriber to the network to be shared by both data packets
(where the destination is upstream) and acknowledgment
(ACK) packets (where the destination is downstream). Indeed,
data traffic from other connections can cause congestion in the
acknowledgment path of a given connection even when there is
no raw bandwidth asymmetry.

Many data applications over asymmetric networks (such as
Web browsing or file transfers) are built on TCP/IP [16], the
widely used Internet data transport protocol. Our goal is to ob-
tain a detailed understanding of the performance of TCP over
asymmetric networks, with a view to providing system design
guidelines for supporting TCP over such settings.

We consider TCP connections that use a fastforward path
for data packets, and a slowreverse pathfor ACK packets,
which arise naturally from applications that truly exploit asym-
metric networks (e.g., Web browsing from a home computer).
Since TCP uses the arrival rate of ACKs to control data packet
flow, it is important to determine whether congestion in the
ACK path leads to poor utilization of network resources for
such applications. We will refer to connections of the type just
described asforward connections, and obtain basic analytical
insight (verified using simulations) into the effects of asym-
metry by studying the throughput performance of such con-
nections. We also considerreverse connections, which generate
data traffic on the reverse path and ACK packets on the forward
path, since many applications (e.g., file transfers from home to
work) would require such connections. Note that, in the context
of asymmetric networks, it is not of interest to consider reverse
connections on their own, since earlier studies of TCP/IP that
ignore ACK path congestion would apply in this case [9], [15],
[17], [18]. However, we show via simulations that the interac-
tion between forward and reverse connections has serious per-
formance implications, give qualitative explanations for the ob-
served phenomena, and suggest methods for bandwidth sharing
between forward and reverse connections. Subsequent to the
publication of an earlier version of this paper [12], several other
papers [1], [4] have also studied (mostly by simulations) TCP
performance impairments caused by asymmetry.

1063–6692/00$10.00 © 2000 IEEE

542 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

We study both the Tahoe version of TCP with fast retransmit
and the later Reno version [5], [6], [16] (henceforth referred to
as TCP-Tahoe and TCP-Reno, respectively). While it has been
observed that many Internet connections are of short durations,
the impact of a slow acknowledgment channel on TCP conges-
tion avoidance behavior is best understood by considering per-
sistent sources, which could be thought of as modeling long file
transfers. We therefore restrict attention to the latter throughout
this paper.

In addition to theraw asymmetryin the forward and reverse
link speeds (i.e., the ratio of the forward bottleneck link speed
to the reverse bottleneck link speed, where both are expressed in
bits per second), it is useful to define thenormalized asymmetry
as the ratio of the transmission time of ACKs on the bottleneck
link on the reverse path to that of packets on the bottleneck link
on the forward path (i.e., the normalized asymmetry is the ratio
of the forward bottleneck link speed in packets per second to
the reverse bottleneck link speed in ACKs per second). Note
that the normalized asymmetry is typically much smaller than
the raw asymmetry, since TCP ACKs (typically about 40 bytes)
are much shorter than data packets (typically 500 to 1000 bytes),
and can be shortened further using header compression. It will
turn out that, when there are only forward connections in the
system, the parameter directly affecting TCP performance is the
normalized asymmetry rather than the raw asymmetry, which
alleviates the impact of the asymmetry. However, we will see
that, when the reverse link is shared by both forward and re-
verse connections, the raw asymmetry plays a significant role.
In this case, even the use of schemes such as header compres-
sion that can decrease the normalized asymmetry do not address
the performance problems caused by asymmetry.

The remainder of this section contains a brief account of our
main results and how they fit in with the existing literature on
TCP performance. In order to obtain basic insight into the ef-
fect of asymmetry, we consider an idealized model consisting
of a single forward and reverse link, together with a propa-
gation delay. For our most basic results, we use a combina-
tion of approximate analysis and simulations to characterize the
behavior of a single forward connection as a function of the
normalized asymmetry, the buffering on the forward and re-
verse links, and the bandwidth-delay product. Depending on
the forward buffer size and the normalized asymmetry, there
are three distinct modes of operation. It is shown that the for-
ward buffer size must be at least as large as the normalized
asymmetry in order for the most desirable mode (i.e., the one
in which the forward link is fully utilized) to be in operation. It
is also shown that drop-from-front queueing of ACKs on the re-
verse link provides performance advantages (significant in some
regimes) over first-in-first-out (FIFO) queueing.

Next, we consider a situation in which packets may be lost
randomly in the forward path. Random loss for our purposes is
not necessarily due to link errors. Rather, it includes all losses
that occur on a time scale faster than the round-trip delay of the
connection (e.g., transient congestion caused by high-priority
real-time cross traffic). While an ideal congestion control mech-
anism should react only to loss due to sustained congestion (i.e.,
loss due to mechanisms that persist over one or more round-trip
times), TCP reacts to all losses by scaling back its transmission

rate. Thus, too large a level of random loss leads to a signif-
icant reduction in TCP throughput. A setting of particular in-
terest is TCP supported over an available bit rate (ABR) asyn-
chronous transfer mode (ATM) virtual circuit, where transient
congestion in the ATM network may cause TCP packet loss. Fi-
nally, random loss may also occur in heterogeneous networks
which contain lossy wireless links of time-varying quality.

The effect of these transient or random losses on TCP
throughput is well studied, and it has been shown that, as-
suming that there is congestion only on the data path, the
obtained TCP throughput is inversely proportional to the
product of the round-trip time and the square root of the loss
probability [9], [10], [8], [13]. We show here that bidirectional
congestion increases TCP’s sensitivity to loss. In particular,
for asymmetric networks, the obtained TCP throughput is
inversely proportional to the product of the round-trip time, the
square root of the loss probability,and the square root of the
normalized asymmetry. Note that the original loss-throughput
formula in [9], [10], [8], and [13] has been used to define
the notion of TCP-friendlinessfor identical losses. A flow
whose throughput does not reduce as much as expected by the
TCP loss-throughput relation is considered TCP-unfriendly.
Because of the possibility that TCP-unfriendly flows will starve
TCP (and TCP-friendly sources) flows when sharing network
resources, it has been advocated that all applications should use
TCP-friendly flow control. Our result shows that, for networks
with significant asymmetry, the notion of TCP-friendliness
would have to be modified.

For multiple TCP connections sharing a forward bottleck link,
it has been shown in several previous studies [2], [3], [10] that,
assuming no congestion on the ACK path, connections with
larger round-trip times get a smaller share of the bandwidth.
In this paper, we present simulation studies that show that, for
multiple forward connections, ACK path congestion exacerbates
this inherent unfairness of TCP in the absence of network level
control of bandwidth and buffer allocation on the reverse link.
In particular, FIFO sharing of the reverse link by ACKs for
different forward connections can lead tolockout periods of
unpredictable, and long, durations when several connections
have essentially zero throughput. Furthermore, when (ACKs for)
forward connections share the reverse link with (data packets
for) reverse connections, FIFO sharing of the reverse link leads
to a nearly complete lockout of the reverse connections. We
show that the preceding performance problems can be allevi-
ated by using fair queueing (or weighted round-robin with per
connection queueing) on the reverse link. However, even with
carefully implemented fair queueing on the reverse link, large
disparities in size between data packets for reverse connections
and ACKs for forward connections can lead to the phenomenon
of ACK starvationon the reverse link.1 We show that such
ACK starvation can be particularly problematic for asymmetric
networks, and discuss methods for addressing this problem.

Previous simulation studies of TCP-Tahoe include [17], [15],
[18]. Simulations for the simple multihop network considered

1The termACK compressionwas coined in [18] for the phenomenon of mul-
tiple ACKs arriving in quick succession after being queued behind a data packet.
We use the term ACK starvation here because of the large number of ACKs lost
during the time that a data packet is served on the slow reverse link.

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 543

Fig. 1. System model for a single connection.

in [17] show the oscillations in window sizes and the unfairness
of TCP toward connections traversing a larger number of hops.
In [15], the authors considered a number of TCP connections
sharing a bottleneck link. There is no queueing of acknowledg-
ment, and sources are assumed to always have data to send. An
analytical and simulation study of TCP (Tahoe and Reno) with
no reverse path congestion is presented in [9], [10]. The effect
of different buffer sizes relative to the bandwidth-delay product
and the effect of random losses on throughput is derived. The
effects of two-way traffic are considered in [18], where the phe-
nomenon ofACK compressionresulting from the queueing of
acknowledgment is pointed out. However, none of these pre-
vious studies have studied the scenario analyzed in this paper,
viz., TCP performance with a slow ACK channel where the pri-
mary bottleneck is in the reverse path.

The system model and relevant aspects of TCP are described
in Section II. Analytical and simulation results for the evolu-
tion of a single connection (including the effect of random loss)
are given in Section III. Section IV contains simulation results
for multiple connections. Concluding remarks, including a sum-
mary of design guidelines, are in Section V.

II. SYSTEM MODEL

A. Forward and Reverse Path Model

Our model is similar to that considered in [15], [18], [9], with
the following key difference: the path followed by acknowledg-
ment is explicitly modeled. We consider an infinite data source
which always has packets to send, so that the units of data on
the forward path are maximum-sized packets. We consider a
forward link with capacity packets per second and a FIFO
forward buffer of size packets. For each packet that is
received by the destination, a cumulative acknowledgment is
generated which contains the next expected segment number.
The fact that acknowledgments are cumulative implies that
later ACKs contain at least as much information about which
packets have reached the destination as earlier ACKs, so that
ACK loss simply results in bursty traffic on the forward path.
This is the key to our analysis of the impact of asymmetry on
performance. It is assumed that the speed of the reverse link is

ACK packets per second, and the reverse buffer is FIFO of
size ACK packets. The forward and reverse buffer sizes do
not include the packet in service. We assume that ,
with , where is thenormalized asymmetry factor, i.e.,
the effective bandwidth asymmetry normalized by the ratio of
forward to reverse packet sizes.

While the path traversed by the connection may include links
other than the forward and reverse links explicitly modeled here,
it is assumed that the performance is dominated by the bot-
tleneck links in each direction. The remainder of the network
is modeled via a constant “propagation” delay, which includes
queueing delays on other links, propagation delays, and pro-
cessing delays at nodes in the path of the connection. The prop-
agation delay on the forward path is defined as the time between
when a packet is completely transmitted on the forward link and
when it arrives at the destination, and is denoted by. The
delay on the reverse path is analogously defined as the time be-
tween when an ACK packet completes transmission on the re-
verse link and when it arrives at the source, and is denoted by

. While we distinguish these two delays in our notation be-
cause of the asymmetry between the forward and reverse paths,
we will see that only the net propagation delay af-
fects performance. This delay can range from several millisec-
onds to several hundreds of milliseconds. Theround-trip timeis
the time between when a packet is sent by the source and when
the source receives an acknowledgment for that packet, and in-
cludes queueing at the forward and reverse links in addition to
the propagation delay. The average round-trip time will be de-
noted by .

We model random loss as follows: each head-of-the-line
packet in the forward buffer has a probabilityof being lost
after transmission, and different packet losses are independent.
While much of the analysis will be for the case , we
will show that random loss can have a significant impact on
performance. This model is shown in Fig. 1.

The preceding model is for a connection that uses the fast
forward link for data packets and the slow reverse link for ACK
packets. Henceforth, we will call such connectionsforwardcon-
nections. We will only consider forward connections in Sec-
tion III, since the goal there is to determine whether TCP is able
to utilize the fast forward link satisfactorily. In Section IV, we
also introducereverseconnections, which use the slow reverse
link for data packets, and the forward link for ACK packets.
Our objective is to determine under what circumstances both
forward and reverse connections obtain satisfactory link utiliza-
tions.

Throughout the paper, it is convenient to consider the fol-
lowing example.

Running Example:The reverse link is of speed 320 Kb/s, and
the ACK packets are of length 40 bytes. Forward packets are of
length 1000 bytes. The reverse link speedis therefore 1000
ACKs/s, so that a asymmetry factor (i.e., a of 5000

544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

packets/s) corresponds to a raw forward link speed of 40 Mb/s2

The propagation delayfor the simulations shown in Section III
to aid the analytical development is kept fixed at 2 ms, although
it is varied in our numerical results in Section IV in order to
illustrate several points. The forward buffer size data
packets. The reverse buffer size is ACK packets. These
parameters are chosen with ease of exposition (and illustration
for the plots) in mind. As will be seen subsequently from the
analysis, the use of larger round-trip times and larger buffer sizes
does not change any of our fundamental observations about TCP
behavior in asymmetric networks.

B. Background on TCP

The connection of interest uses a window flow control
protocol. At time , the window size is denoted by , and
is equal to the maximum allowed number of unacknowledged
packets (not counting retransmissions). Since we assume an
infinite data source, the connection uses its allowable window
to the fullest extent, i.e., at time, there are indeed
unacknowledged packets. The window varies dynamically
in response to acknowledgment and to detection of packet
loss. Upon receiving a packet, the destination is assumed to
send a cumulative acknowledgment back immediately. Even
though selective ACKs or NACKs are not available, a single
packet loss can be detected by consecutive acknowledgment
having the same “next expected” number. Both TCP-Tahoe and
TCP-Reno therefore have afast retransmitoption, in which
a packet is retransmitted after the number of suchduplicate
acknowledgmentexceeds a threshold (typically three). If packet
loss is not detected in this manner, it leads to expiry of a timer.
In either case, TCP-Tahoe drops its window to one upon loss
detection. Subsequently, the window grows rapidly, by one
packet for every successfully acknowledged packet, until it
reaches half of the window size at the last packet loss. This
(typically short) stage of rapid window growth is paradoxically
called slow start, since it is slow compared to not having
decreased the window at all after a loss. After slow start, the
algorithm switches tocongestion avoidance, in which the
window grows slowly in order to probe for extra bandwidth,
by incrementing the window size by one for every window’s
worth of acknowledged packets. This growth continues until
the maximum window size is reached, or until another packet
loss is detected.

TCP-Reno is similar to TCP-Tahoe, except that it tries to
avoid the slow-start phase by remaining in congestion avoidance
unless there is a timer expiry. Packet loss detected via duplicate
ACKs results in the window being cut by half. If a timer expiry
does occur, then the window size is dropped to one, and slow
start is used to grow the window back to half its value when the
timer expired.

The operation of the timer is as follows. When a packet is
sent, a timeout value is computed and a timer is started. Expiry
of this timer is taken to signal packet loss. For each retransmis-
sion following a timer expiry, the timer value used is twice the
previous timer value. In principle, the timer value is determined

2In practice, both the forward and reverse link speeds might be scaled down
considerably in order to support multiple connections, but normalized asym-
metry factors of up to 25 could occur.

using estimates of the mean and variance of the round-trip time
[7]. However, the granularity of the timer used in most practical
implementations is usually much coarser than the estimates. In
our results, we consider a coarse-grained timer with a granu-
larity of 500 ms (i.e., the time between the release of a packet
and the expiry of the timer associated with it is at least 500 ms).

See [16] for a detailed description of TCP, [5] for the original
version of TCP-Tahoe, and [6] for a description of TCP-Reno.
The following description of the window evolution is sufficient
for our purpose.

Description of TCP-Tahoe and TCP-Reno:The algorithm
followed by each connection has two parameters, current
window size and a threshold , which are updated as
follows.

(1 Tahoe/Reno)After every nonrepeated ACK:
if , set ; slow-start phase
else set . Congestion Avoidance
Phase
(denotes the integer part of)
(2 Tahoe)After a packet loss is detected (when timer ex-

pires or the number of repeated ACKs exceeds a threshold):
set ;
set .
(2 Reno)When the number of repeated ACKs exceeds a

threshold,
retransmit “next expected” packet;
set , then set (i.e. halve the window);
resume congestion avoidance using new window once re-

transmission is acknowledged.
(3 Reno)Upon timer expiry, the algorithm goes into slow

start as before:
set ;
set .

In addition to the preceding steps, TCP-Reno incorporates
the following refinement: while it cuts its window by half after
detection of each packet loss via duplicate ACKs, in order to
prevent a burst of packets from being transmitted when the re-
transmission is finally acknowledged, it temporarily expands the
window size to permit new packets to be transmitted with dupli-
cate ACKs until the “next expected” number in the acknowledg-
ment advances. The window expansion takes place after
ACKs have been received, in order to ensure that the number of
outstanding packets has been reduced to the new window size.

III. SINGLE FORWARD CONNECTION

We provide approximate analysis that yields insight into TCP
evolution, and explains the dependence of performance on var-
ious system parameters. Section III-A provides basic approxi-
mations for a fixed congestion window which we will use
in our analysis. These include a modification of Little’s law for
an asymmetric system. Sections III-B and III-C provide perfor-
mance analyses for TCP-Tahoe and TCP-Reno, respectively, for
a single connection with no random loss. It is shown that TCP-
Reno, while supposedly an improved version of TCP-Tahoe, ac-
tually performs worse in this setting. Section III-D considers the

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 545

Fig. 2. Analytical and simulation results of the throughput of TCP-Tahoe and
TCP-Reno as a function of the normalized asymmetryk.

performance of TCP-Tahoe and TCP-Reno in the presence of
random loss, and shows that the throughput exhibits a thresh-
olding effect.

In order to motivate the detailed calculations in Sections III-B
and III-C, the results in these sections are summarized in Fig. 2,
which shows the throughput of TCP-Tahoe and TCP-Reno as a
function of the normalized asymmetry. The system considered
is the running example described in Section II, with a propa-
gation delay of 2 ms. The match between analysis and simula-
tion is excellent, which implies that the analytical description
of TCP behavior in Sections III-B and III-C is reasonably ac-
curate within the considered framework. Fig. 2 shows that there
are several different regimes of operation. These are determined
by the relationship between the normalized asymmetry and the
forward buffer size. Further discussion of these results will be
given in the following.

A. Analysis for Fixed Windows

Assume that the connection is using a fixed window size of
, which can be thought of as a snapshot of a TCP window

at a given time. The minimum round-trip time incurred by
a packet is given by . This sub-
section is based on applying Little’s law (and a modification
thereof) as a means of relating window size (or the number of
outstanding packets) to the throughput (or the rate of successful
transmission of forward link packets). The analysis gives opti-
mistic throughput estimates, since it assumes that the minimum
possible average delay is incurred by a packet. This assumption
of traffic that is as smooth as possible is made for analytical
convenience, but is a good approximation for the deterministic
system model in Section II. Refinements to the analysis will be
introduced as necessary when explaining the behavior with dy-
namic windows.

Condition for Fully Utilized Reverse Link:Applying Little’s
law, we get the following condition for the reverse link to be
fully utilized: . This condition is necessary but not
sufficient, since the round-trip delay incurred by a packet can be
larger than the minimum round-trip timedue to bursty arrivals
at the forward or reverse buffer.

Condition for Attaining Throughput : If the rate of
packet transmissions on the forward link is, ACKs arrive at the
reverse link at the same rate. If , on average only one out
of every ACKs get through on the reverse link. The others
have to be dropped as the reverse link buffer is overflowing.
Thus, on average, each ACK in the reverse buffer and each ACK
in flight in the reverse link actually represents acknowledgment
information for forward packets.3 Since the reverse pipe
is completely full, any ACK that does make it into the reverse
buffer sees ACKs ahead of it, so that the net delay it incurs
in the reverse buffer (including its service time) is .

The modified Little’s law that results from the preceding ar-
guments reads as follows:

(1)

The first term corresponds to the number of packets in the for-
ward pipe, while the second is the number of surviving ACKs
in the reverse pipe, multiplied by , the number of forward
packets represented by each surviving ACK on average. This
yields the following estimate of the throughputas a function
of the window size:

(2)

The preceding argument assumes that the forward buffer is large
enough to withstand the bursty traffic resulting from ACK loss.
A necessary condition for this is that the forward buffer is larger
than the average burst size, i.e., that . This condi-
tion is not sufficient: loss on the forward path can occur even
when this condition is satisfied, since not all bursts contain an
equal number of packets.

The window size for which the forward link can be
fully utilized is obtained by setting in (1), which yields

. For the running ex-
ample, for an asymmetry factor .

Window Size for a Full Pipe:The pipe is completely
full when both the forward and reverse links are always
busy, the forward and reverse buffers are full, and there
are as many packets as possible in flight. The window size
corresponding to this is denoted by , and is given by

. When analyzing
TCP evolution, we will assume that increasing the window
beyond will cause packet loss. Note that packet loss
might occur at a smaller window size because the traffic is
burstier than that assumed in our application of Little’s law. For
the running example, for .

Forward Buffer Size Requirement:For a fully utilized for-
ward link, one out of ACKs is lost, so that the average burst
size into the forward buffer is packets. Thus, should
lead to good forward link utilization.

B. TCP-Tahoe Evolution Without Random Loss

The typical evolution is cyclical: the window size grows
slowly during congestion avoidance to a maximum value of

3In turn, for each ACK arriving back at the source, an average of�=� packets
are released and arrive at the forward buffer. However, we will ignore the re-
sulting burstiness in our calculations to obtain a simpler formula.

546 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

, at which point there is a packet loss. This loss may
or may not result in a timeout, depending on the system
parameters. Subsequently, the window drops down to one,
followed by rapid growth in slow start until it reaches .
At this point, the window dynamics switch to congestion
avoidance until the window size reaches again, at which
point there is another loss, resulting in a new cycle. The long
run throughput can therefore be computed as the number of
packets successfully transmitted in a cycle, divided by the cycle
duration. If a cycle ends in a timeout, the length of the timeout
must be included in the cycle duration, even though no packets
are transmitted during most of the timeout period.

Since the slow-start phase is much shorter than the congestion
avoidance phase, we will ignore it for our throughput estimates.
For a detailed analysis of slow start without a reverse link con-
straint, see [9]. The window growth in congestion avoidance is
relatively slow, and is well modeled by a continuous time ap-
proximation described by a differential equation, as in [9] and
[15]. In contrast to the latter references, which ignore the reverse
link, here the window growth is slowed down due to the loss of
ACKs on the reverse path. We will need to consider three dif-
ferent cases, depending on the relative size of the forward buffer
and the normalized asymmetry factor.

Case 1: .
Case 2: .
Case 3: .

Case 1 can be thought of as a regime in which TCP operates
normally. Case 2 corresponds to a situation in which the forward
buffer is too small to handle bursts resulting from asymmetry
and ACK loss, which leads to poor performance even though
the forward link is very fast. Case 3 is an anomaly, in that the
performance gets worse as forward buffer size becomes large.
We will see that the problem that causes this can be resolved
by implementing a drop-from-front policy at the reverse buffer.
Each case is considered in detail in the following.

Case 1:
We ignore the short slow-start phase in our throughput esti-

mates. In congestion avoidance, the rate () of window
growth with arriving acknowledgment is given by

(3)

Assuming that the window size during congestion avoidance is
large enough to keep the reverse link busy (i.e.,

), the rate () at which the acknowledgments arrive
back at the source is given by

(4)

Combining (3) and (4), we obtain the rate () of window
growth with time, given by

(5)

which is easily solved to get

(6)

Denoting the window size at which packet loss occurs by
, the window size at the beginning of con-

gestion avoidance is . For Case 1,
. The congestion avoidance period can be di-

vided into two phases as follows.
Phase 1: , so that the forward link is under-

utilized. The instantaneous throughput is given by (2) and
(6). From (6), the duration of this phase is

(7)

(if .)
Phase 2: , so that the forward link

is fully utilized. The throughput , and the duration of
this phase is

(8)

(if).
The net duration of the congestion avoidance phase is

(9)

The average throughput is the average throughput over a cycle,
and is given by

(10)

Using (2), (6), and (7)–(9), we obtain upon simplification that

(11)

Ideally, should be close to , the forward link capacity. As
Fig. 2 shows, for fixed , grows almost linearly with (and
therefore with) in the regime of Case 1.

A typical window evolution for Case 1 is shown in Fig. 3.
For our running example, with , our analysis
predicts that the largest window size attained for our running
example is . This matches the simulated
window evolution shown in Fig. 3.

Case 2:
For large , TCP performance is dominated by the ability

of the forward buffer to accomodate bursts, so that the perfor-
mance is relatively insensitive to in this regime. It is there-
fore convenient to consider the case . We begin with
a qualitative explanation of TCP behavior in this regime, and
then give a quantitative estimate of throughput based on mod-
eling the deterministic evolution of TCP as random. Given the
drastic nature of this approximation, the match with simulations
in terms of window evolution is not perfect. However, the re-
sulting throughput predictions are quite accurate (see Fig. 2).
Further study of this case is necessary to fully understand the
window evolution.

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 547

Fig. 3. Simulation of the window evolution for the running example with TCP-
Tahoe whenk = 5. Similar evolutions are seen for allk satisfying the condition
in Case 1.

Once the reverse link is fully utilized, ACKs arrive back at
the source with a spacing of . If the throughput is larger
than , each ACK represents a number of successful forward
packets, so that, when it is received, a burst of packets is released
into the forward buffer. The maximum number of such bursts
that are outstanding is simply the number of outstanding packets
whose ACKs will successfully reach the source, and is equal to
the maximum capacity of the reverse pipe, ,
which is assumed to an integer for simplicity. Since ,
the ACKs corresponding to all packets in the burst appear at
the same instant at the reverse buffer, and at most one of these
ACKs can be served. This surviving ACK leads to another burst
being released, with bursts having been released be-
tween this burst and the earlier burst being ACKed. These two
bursts (and every th burst before and after them) can there-
fore be thought of as the same burst circulating in the path of
the connection. With such an identification, there are dif-
ferent bursts, and we denote by the current size of theth
burst, . The current window size is therefore

. Suppose now that the window size gets incre-
mented from to when an ACK from burst arrives.
Then is incremented to (i.e., one more packet is added
to the burst). In congestion avoidance, the next increment occurs
after more ACKs have been received by the source, i.e.,
once the ACKs for further bursts have arrived. Thus, in
terms of our modulo indexing scheme, the next burst that
gets incremented has index

(12)

The preceding can be used to deduce the deterministic evolu-
tion of the window and burst sizes. Clearly, some bursts could be
incremented more often than others during this evolution. When
the burst with the largest size has more than packets,
there is a buffer overflow and the cycle ends. We would now
like to predict the window size at which this happens,
after which the analysis of Case 1 applies for estimating the
throughput. The successive choices of indices dictated by (12)
appears chaotic, but more study of this map (which in itself is

an approximation to actual TCP behavior) is necessary. For our
purpose here, we approximate the evolution due to (12) by the
following random evolution: for each increment of the window
size, the burst whose size is to be increased by one is chosen
uniformly at random among the bursts. Let denote
the size of the th burst after the th window increment, where

, and where we assume that when
the reverse link first gets fully utilized (i.e., when).
Let denote the index of the burst that is incremented for the

th window increment. We will assume that the are inde-
pendent and identically distributed random variables which are
uniformly distributed on . Then the evolution of
the burst sizes is given by

else

The size of the largest burst after theth increment is denoted
by . In order to estimate the window size
reached before the largest burst exceeds , we consider
the following criterion: Let denote the smallest such that

(13)

This is the median number of increments before a buffer over-
flow due to the maximum sized burst. The window size corre-
sponding to this is , and this is taken to be
in our throughput estimates.

We estimate by using a union bound for the left-hand side
of (13):

(14)

using the fact that the are identically distributed (though
not independent). Clearly, is binomi-
ally distributed with parametersand , so that the extreme
right-hand side of (14) can be computed by summing over the
tail of the distribution. Actually, the first term in the tail is a good
approximation to the entire tail, and the computation is further
simplified by using the Poisson approximation to the binomial
distribution. We finally obtain that

(15)

For , the predicted by the preceding computa-
tions for our running example is 54.5. As shown in the Fig. 4,
the actual maximum window size reached in the cycle is 45 for

(recall that).
It is natural to ask why burstiness does not determine the per-

formance for Case 1 (), for which ,
corresponding to a full pipe. In this case, the buffer can acco-
modate bursts of size up to (since the buffer capacity is

, including the packet in service). When first goes
from to , at least two ACKs from this burst are served
(since at least one ACK packet is transmitted for everypackets
transmitted on the forward link). This results in the large burst

548 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

Fig. 4. Simulation of the window evolution for the running example with TCP-
Tahoe whenk > B = 8. The evolution shown is fork = 10, but similar
evolutions are seen for allk > B .

getting broken up into smaller bursts. This is probably what en-
ables all bursts to maintain roughly equal sizes, so that buffer
overflow occurs due to a full pipe rather than due to large burst
sizes.

Case 3:
The evolution here is exactly as in Case 1, except that a

timeout occurs at the end of congestion avoidance because of
a failure of the fast retransmit option. Consider a packet loss
that occurs when

If packet is lost, once all packets up to are ACKed, the
outstanding packets are . For all
packets among these that are successful, the destination gener-
ates cumulative ACKs saying “next expected .” After three
duplicate ACKs arrive at the source, packetis retransmitted
and the window is dropped to one, so that no new transmissions
are attempted. However, by the time three duplicate ACKs are
received (spaced by), the forward buffer is reduced by .
If this does not drain the forward buffer (which will happen if

), the reverse link will remain fully utilized, and the
reverse buffer will be full by the time the ACK for the retrans-
mission arrives at the reverse buffer, so that the latter gets lost.
When this happens, the source keeps waiting for the ACK to
arrive until there is a timeout. This can be thought of as Phase
3, and is of duration , the length of the timeout period. Prior
to this, Phase 1 and Phase 2 of the evolution are exactly as in
Case 1.

With the durations and as in (7) and (8), the net
duration of congestion avoidance becomes

and the average throughput is obtained by plugging into (10),
noting that in Phase 3, since the window size is one
and there is an unacknowledged packet.

A simple change that prevents the timeout from happening
is to implement a drop-from-front policy at the receive buffer,
which makes sure that the latest ACK information gets through

Fig. 5. Simulation of the window evolution for the running example with TCP-
Tahoe whenk = 2 with a FIFO reverse buffer. The window size is constant at
one for the duration of the timeout at the end of the cycle.

Fig. 6. Simulation of the window evolution for the running example with TCP-
Tahoe whenk = 2 and drop-from-front is implemented at the reverse buffer.
Note that the timeout is eliminated.

to the source. This works because, with cumulative ACKs, the
amount of information carried by later ACKs is always more
than that contained by earlier ACKs. Simulations show that im-
plementation of this policy eliminates all timeouts in Case 3, so
that the throughput formula becomes similar to that in Case 1.
Note that drop-from-front has been previously proposed for the
forward path for TCP over ATM for an entirely different reason
[11].

Typical window evolutions without and with drop-from-front
are shown in Figs. 5 and 6, respectively. The time over which the
window is constant at one in Fig. 5 corresponds to the timeout
period.

C. TCP-Reno Evolution Without Random Loss

Cases 1 and 3:
The evolution of TCP-Reno is similar to that for TCP-Tahoe,

except that recovering from a packet loss is more problematic
for TCP-Reno because of the slow reverse link. Suppose packet

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 549

Fig. 7. Simulation of the window evolution for the running example with TCP-
Reno whenk = 5. Note that there is a timeout at the end of the cycle, unlike
Case 1 for TCP-Tahoe.

is lost at , and suppose that all packets sent be-
fore and after packet get through. Thus, ACKs for packets

will be generated by the destination,
each saying “next expected .” After three such duplicate
ACKs are received by the source, packetis retransmitted, and
the window is cut back to . Further, in order to avoid a
burst when the ACK for the retransmitted packet gets through,
after duplicate ACKs arrive, TCP-Reno starts transmit-
ting a packet for each further duplicate ACK that arrives, even
though that is not allowed according to the window-based pro-
tocol. If the reverse link were not a bottleneck, this would enable
transmission of roughly new packets (which is equal
to the new window size) by the time the ACK for the retrans-
mission gets back, which means that there would be no burst of
packets at that point. However, due to the slow reverse link, by
the time the retransmitted ACK gets back, the number of du-
plicate ACKs received is roughly only (since ACKs
can arrive back at a rate no faster than), even though actu-
ally packets have been served. Since this is typically
smaller than , no new packets are released, so that when
the ACK for the retransmitted packet is finally received, a burst
of packets is released into the forward buffer by the
source. This is larger than the forward buffer size for most
situations of interest, so that multiple packet losses occur. This
causes a window cutback to . Further, fast retransmit
using cumulative ACKs is only able to recover from very small
bursts of multiple packet loss, so that a timeout eventually oc-
curs.

Since the timeout at the end of congestion avoidance occurs
at , the slow-start phase in the next cycle ends at

. Thus, congestion avoidance starts at
and continues till , being terminated by a timeout. The
timeout occurs for both Case 1 and Case 3 (i.e., for all),
and the average throughput is computed as in Case 3 for
TCP-Tahoe. Since congestion avoidance begins at a smaller
window value for TCP-Reno, which causes it to have a smaller
throughput than TCP-Tahoe. An illustrative window evolution
is shown in Fig. 7 for . As for TCP-Tahoe, the analysis

Fig. 8. Simulation of the window evolution for the running example with TCP-
Reno whenk > B = 8. The evolution shown is fork = 10, but similar
evolutions are seen for allk > B .

predicts . Note that there are two consecutive
window cutbacks, as well as a timeout, at the end of the cycle.

Case 2:
The behavior here is similar to Case 2 for TCP-Tahoe, except

for the following caveat. If is the window size when loss
occurs due to a burst, slow start ends at . Since
the bursts are formed at the slow-start phase, if ,
then there are only bursts circulating and getting in-
cremented (pseudo) randomly during congestion avoidance. Let

denote the number of bursts. Then, if the cycle terminates
after increments during congestion avoidance, then

, and , which gives
. Replacing by in Case 2 of TCP-Tahoe

as before, we obtain and thus . We then apply Case 1
of TCP-Reno to compute the throughput. For our running ex-
ample, the analysis predicts , which, while dif-
ferent from the window evolution simulated in Fig. 8, is good
enough to yield a reasonable throughput prediction (see Fig. 2).

D. Evolution With Random Loss

According to our loss model, any packet served at the for-
ward link may be lost with probability , and such losses are
independent. To focus on the effect of random loss, we con-
sider the normal operating condition for TCP-Tahoe, which cor-
responds to Case 1 () in Section III-B. The effect
of random loss on TCP performance has been considered pre-
viously in [9], [10], for a model in which the reverse path is
ignored (i.e., assumed to be fast and lossless). The result de-
rived in [9], [10], was that TCP throughput deteriorates signifi-
cantly due to random loss if is large (say 10 or more).
An alternative interpretation is that a throughputcan be at-
tained if is of the order of 1 or less. That is, the at-
tained throughput is proportional to . Here, we use
similar arguments to show that the performance is further af-
fected by the slow reverse link: the throughput deteriorates if

is large (or, in other words, the attained throughput
is proportional to). Thus, with identical forward path
loss, the throughput degradation is significantly worse for TCP

550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

flows with slow reverse paths than for TCP flows which do not
have a reverse path bottleneck (or for TCP-friendly flows with
rate reduction determined by the loss-throughput relation ob-
tained by considering only forward path bottlenecks).

The intuition behind the preceding threshold rule is as fol-
lows. If the loss probability is low enough, the likelihood of a
random loss rather than a buffer overflow terminating a cycle is
small, so that the evolution is similar to that without loss. On the
other hand, if the loss probability is high, packet losses occur rel-
atively early in a cycle, and result in small initial values for the
congestion avoidance phase that follows. This results in small
window sizes (determined by random losses rather than conges-
tion) throughout the congestion avoidance phase, and therefore
causes low link utilization. Since window growth is timed by
ACKs arriving at the source, a slow reverse link results in slower
window growth after a loss, causing even worse utilization.

Our objective is to determine when random loss causes the
congestion avoidance phase to have a significantly smaller av-
erage window size than that for a lossless evolution. We ignore
the slow-start phase for the purpose of arriving at the threshold
rule: since the slow-start phase is short, the probability of a
random loss occurring within this phase is small unless the loss
probability is already very high. Note that the evolution of a
TCP-Tahoe cycle (defined now as the window evolution be-
tween successive window cutbacks), is no longer periodic: the
window size at which a loss occurs for a given cycle, and there-
fore the window size at which congestion avoidance begins in
the next cycle, is random. Since characterizing the Markovian
evolution that results is complicated, and offers little insight, we
resort to a “fixed point” approximation in an attempt to char-
acterize the “average” behavior of a TCP cycle due to random
loss. Let be the average window size at the beginning of con-
gestion avoidance. In order for the congestion avoidance phase
in the next cycle to also begin with , the present conges-
tion avoidance cycle should end with a loss at a window size of

. We would like to choose such that exactly packets
(which is the average number of packets transmitted between
losses for a loss probability of) are transmitted on the for-
ward path by the time the window evolves from to . If
the resulting value of is found to be much smaller than the
window size for lossless evolution,
then random loss is expected to significantly reduce throughput.

To find , we use the differential equations in Section III-B
to model TCP evolution in congestion avoidance as before. As-
suming that the reverse link is fully utilized throughout conges-
tion avoidance, we obtain as before that

where for our fixed point approximation. If is the
duration of the congestion avoidance phase, we have

. The number of packets transmitted during this time is es-
timated by

(a)

(b)

Fig. 9. Throughput as a function of loss probabilityq for the modified running
example usingB = 10when (a)k = 5 and (b)k = 7. The mark on the curves
representskq(� T) = 1.

Setting , we obtain

(16)

In order for random loss not to affect performance significantly,
we should have equal or exceed the maximum window size
for lossless evolution, . This results
in the following criterion:

The left-hand side is lower bounded by .
If and scale with the forward bandwidth-delay product

, we arrive at a threshold rule in as promised.
When this quantity is large, throughput is expected to deteriorate
as compared to lossless performance.

Fig. 9 shows the throughput as a function of random loss for
different values of and (note that the round-trip time is
larger than). Note the drastic decrease in throughput when
the loss probability is an order of magnitude higher than the
analytically derived threshold values marked on the curves.

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 551

Fig. 10. Asymmetric system model with per connection queues at the reverse link.

IV. M ULTIPLE TCP CONNECTIONS

We consider multiple TCP connections which share the
forward link and buffer using a FIFO service discipline. Even
without a slow reverse link, FIFO sharing of the forward link
leads to unfairness among forward connections with different
round-trip times [10]. We will find that these effects are exacer-
bated by asymmetry. For bidirectional traffic (both forward and
reverse connections), the situation is even worse. In this case,
the slow reverse link serves both as a data path (for reverse
connections) and an ACK path (for forward connections).
We find that, if the reverse link buffer is FIFO, then reverse
connections are almost completely shut out. This problem can
be alleviated by using per-connection weighted round-robin
queueing (or fair queueing) at the reverse link (Fig. 10), but
the weights must be carefully chosen so as not to compromise
the performance of the forward connections. Intermediate
options for sharing the reverse link include using several
FIFO buffers, each shared by several connections, served in
round-robin fashion. Such a scheme could work quite well if
forward and reverse connections are served in different buffers.
In our simulations, we consider only the two extreme service
options for the reverse link: FIFO and per-connection weighted
round-robin service.

A. FIFO Reverse Link Service

FIFO service would be the natural option when several hosts
are connected to the same network interface (such as a cable
modem). We have seen in Section III that ACK losses are very
high (as high as out of) when . This leads to
adverse interactions when multiple TCP connections fully share
the reverse buffer.

1) Forward and Reverse Connections:Fig. 11 shows
throughputs (as percentages of their maximum data path
bandwidths) obtained by one forward and one reverse TCP
connection. The buffer sizes indicated in Fig. 11 give the
total buffering available for ACK and data packets (one buffer
location is consumed irrespective of whether the packet is an
ACK or a data packet).

Initially, the forward connection is the only connection. It
achieves a throughput of 84% and the upstream link buffer is
full with ACKs being sent by this connection. When the reverse

Fig. 11. A forward and a reverse connection with a fully shared upstream
buffer (� = 1000 packet/s,k = 5, � = � = 1 ms,B = 10,B = 5).

connection starts, it experiences a high packet loss in the up-
stream link buffer. This forces this connection to operate using
small windows and high timer backoff values, leading to poor
throughput. The forward connection cuts down its rate only if
there is packet loss in the forward path, or if it loses a whole
window’s worth of ACKs in the reverse path. Since neither
of these events happens often enough, the reverse connection
gets high throughput only after the forward connection ends at

s. Thus, FIFO reverse link service leads to poor perfor-
mance for the reverse connection, so that some means of guar-
anteeing a portion of the link capacity to the latter appears to
be necessary. One possibility is to “thin” the ACKs for the for-
ward connectionsbeforethey reach the reverse link: this could
be done at the TCP layer by the destination, or at the network
layer by aTCP-awareagent. The drawback of ACK thinning
is that it violates protocol layering: either the transport layer
must be aware of (possibly time-varying) asymmetry at the net-
work layer, or the network layer must be specifically engineered
for the TCP application. Another possibility, which has the ad-
vantage of requiring less interaction between protocol layers at
the expense of additional complexity, is to use per-connection
queueing at the reverse link. This option is explored in Sec-
tion IV-B.

552 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

(a)

(b)

Fig. 12. Temporary lockouts between four connections with equal propagation
delays for a fully shared upstream buffer. (a) TCP-Tahoe. (b) TCP-Reno. (� =

1000 packet/s,k = 5, � = � = 1 ms,B = 10,B = 5.)

2) Forward Connections Only:Fig. 12 shows how four
TCP-Tahoe connections with equal round-trip times share
bandwidth for a system with . The plot shows the fraction
of the forward connection utilized by the different connections
as a function of connection time. Over short intervals (tens
of seconds), increasing cumulative throughput for a given
connection indicates larger instantaneous throughput, while de-
creasing cumulative throughput indicates smaller instantaneous
throughput. It is seen from Fig. 12 that, while the cumulative
throughputs for all connections converge slowly to equal
values, the link sharing is grossly unfair (i.e., there are large
variations in the instantaneous throughputs) over time scales
of the order of tens of seconds. This short-term unfairness is
in contrast with earlier results on TCP performance without
ACK path congestion [10], for which connections with equal
round-trip times typically see a synchronized evolution which
is roughly fair in both the short and long term.

An explanation for the short-term unfairness is as follows.
Assume connections start at slightly different times. The first
active connection saturates the reverse path and because of the
high ACK loss rate, a newly started connection will al-

Fig. 13. Four forward connections with different propagation delays and a
fully shared upstream buffer (� = 1000 packet/s,k = 5,B = 10,B = 5).

most always lose the ACK corresponding to its first packet. This
causes a time-out and a backoff of the timer. The retransmit faces
the same situation resulting in very large timer values and large
periods of idleness (of the order of tens of seconds because of
the large timer backoffs) for all connections other than the one
currently saturating the reverse link. This continues till a loss
in the forward path for the currently active connection reduces
that connection’s window to one (with a timeout occurring in
some cases, as seen in Section III). One of the idle connections
now becomes the dominant connection. Over the very long term
connections tend to share the forward link fairly but over inter-
vals of tens of seconds (500 ms timer granularity multiplied by
backoff values of 32 or 64), one of the connections gets most of
the bandwidth. If connections are used for long file transfers, a
connection will see virtually no progress for tens and possibly
hundreds of seconds (depending on the number of competing
connections) and then get a period of high bandwidth (corre-
sponding to a few TCP cycles for the single connnection case
analyzed in Section III). If the file transfer does not complete in
one of these periods, another pause of 10 to 100 s will follow.

Unequal round-trip times exacerbates the problem of unfair-
ness. Simulations show that some connections get shut out for
long periods. Also, the system evolution is highly sensitive to
slight changes in packet arrival times, burst lengths and system
parameters. Fig. 13 illustrates this for a system carrying four for-
ward connections with different round-trip times. Connection 1
with 4 ms round-trip time gets most of the link bandwidth for a
very long time while other connections are almost shut out. This
apparently stable situation changes suddenly with connection 4
now getting increasing bandwidth share. Connections 2 and 3
still remain almost shut out.

We conclude that FIFO sharing of the reverse link leads to
unfair and unpredictable behavior, and is not suitable for sup-
porting TCP over an asymmetric network.

B. Round-Robin Reverse Link Service

Round-robin service should not be cumbersome to imple-
ment in systems where connections access the network using
different network access devices, but share the same reverse link

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 553

(e.g. a cable upstream channel). We assume throughout that a
drop-from-front queueing discipline is adopted for ACKs on the
reverse link (as shown in [11], a drop-from-front strategy is ben-
eficial even for data packets), in order to feed back the most re-
cent ACK information to the TCP source. Such a strategy, cou-
pled with the ACK loss on the slow reverse link, automatically
results in the appropriate amount of ACK thinning, so that ex-
plicit ACK thinning at the TCP destination is not required.

1) Forward and Reverse Connections:The purpose of
weighted round-robin service on the reverse link is to prevent
the lockout of reverse connections due to the high volume
of ACKs generated by the forward connections. However,
providing a bandwidth guarantee for reverse connections leads
to two new issues that must be addressed in order to guarantee
good performance for forward connections.

Issue 1—Effective Increase in Normalized Asymmetry:If
a forward connection is allocated a fractionof the reverse link
bandwidth (where), its effectivenormalized asymmetry
increases by a factor of . Thus, for full utilization of the
forward link, the analysis in Section III implies that we need
a larger forward buffer size, satisfying , or equiv-
alently, that we must allocate at least a fraction
(assuming) of the reverse link bandwidth to the for-
ward connection.

Issue 2—ACK Starvation on the Reverse Link:The rea-
soning in the preceding paragraph assumes that the forward con-
nection sees a steady service of ACKs per second on the
reverse link. In practice, data packets for the reverse connec-
tions can be much larger in size than ACK packets for forward
connections, which may result in bursty service for the ACKs.
Consider, for example, the case of one forward and one reverse
connection. Suppose that the data packets of the forward con-
nection are times larger than the ACK packets for the forward
connection, and that the data packets for the reverse connection
are times larger than the ACK packets for the forward con-
nection. If a complete data packet for the reverse connection is
served without preemption on the reverse link, there is anACK
starvation periodof duration during which no ACKs
reach the TCP source for the forward connection. In order to
keep the forward link busy through this starvation period, there
should be data packets for the forward connection
queued up in the forward buffer at the beginning of the starva-
tion period. But this can only be possible if .
Thus, if , then the forward buffer must be larger
than therawasymmetry (rather than the normalized asymmetry)
for full link utilization, which is too stringent a requirement for
most practical applications. The only solution to this problem is
to make small. This can be done by breaking up a large TCP
data packets for the reverse connection into smaller segments
(ideally, of a size equal to the ACK packets for the forward con-
nection, so that) in some manner prior to allowing it
access to the round-robin server. Such segmentation could ei-
ther be done explicitly at the network or data link layer, or it
could be emulated by allowing some form of preemptive trans-
mission of ACK packets (e.g., interrupt transmission of a long
data packet if there is an ACK packet to be served).

Fig. 14 shows the performance impact of the ACK starvation
phenomenon mentioned above. One forward and one reverse
connection is considered, and each connection is allocated half

Fig. 14. Effect of MTU size on throughput as a function of asymmetry (� =

320 kbps,� = � = 2 ms,B = 15,B = 5).

the bandwidth on the reverse link. Thus, the effective asymmetry
for the forward connection increases by a factor of two. Thus,
if we double the size of the forward buffer, we expect to see the
same throughput characteristic as in Fig. 2, where there was no
reverse connection (i.e., we should now expect the throughput
to drop to the plateau at). As shown in
Fig. 14, this is indeed the case when the data packets for the re-
verse connection are segmented into chunks of 20 bytes (smaller
than the size of the ACK packets for the forward connection) be-
fore being allowed access to the round-robin server.4 However,
when we allow data packets of size 1000 bytes to be served non-
premptively, the ACK starvation seen by the forward connection
causes the throughput to plateau at 1000 packets per second as
we increase the forward link speed. We are unable to offer any
explanation for this particular value of the plateau, and leave
performance analysis in the presence of ACK starvation as an
open problem. However, comparing the two plots in Fig. 14, it is
clear that ACK starvation causes a severe performance penalty.

2) Forward Connections Only:Fig. 15 shows that, for four
forward connections with equal round-trip times, per connec-
tion reverse link queueing and round-robin service eliminates
the lockout phenomenon with FIFO reverse link queueing seen
in Fig. 12, and restores throughput fairness both in the short and
long terms. For connections with unequal round-trip times, it
can be seen from Fig. 16 that per-connection queueing elimi-
nates the lockout of some connections shown for FIFO queueing
shown in Fig. 13. Of course, the inherent unfairness of TCP
toward connections with longer round-trip times still persists.
This could be remedied by using per-connection queueing and
round-robin service on the forward path [10] as well.

V. CONCLUSION

Our study of the consequences of a slow reverse link yields
the following conclusions and recommendations.

1) For a single forward connection, the performance of TCP-
Tahoe is superior to that of TCP-Reno. This is because

4In fact, we get somewhat better performance than predicted, because the
reverse connection does not always fully utilize its share of the reverse link
bandwidth, so that the effective normalized asymmetry does not quite double.

554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

Fig. 15. Four forward connections with equal propagation delays and per-
connection upstream buffer (� = 1000 packet/s,k = 5, � = � = 1

ms,B = 10; B = 5).

Fig. 16. Four forward connections with different propagation delays and per-
connection upstream buffer (� = 1000 packet/s,k = 5, B = 10,B = 5).

the slow reverse link prevents TCP-Reno’s loss recovery
mechanism from functioning as designed, resulting in a
coarse-grained timeout after every loss.

2) In order to obtain good utilization of the forward link,
it is essential that the forward link buffer size is at
least equal to the normalized asymmetry. Indeed, if

is fixed and the forward link speed is increased, the
throughput is ultimately limited by , so that the link
utilization goes to zero.

3) For large forward buffers (), TCP-Tahoe
may also incur a timeout after every cycle, resulting in
throughput loss (in general, replace 3 by the threshold for
duplicate ACKs used in the TCP fast retransmit mecha-
nism). This problem can be eliminated by implementing
drop-from-front at the reverse buffer. Doing this restores
a monotonic improvement of throughput with forward
buffer size.

4) Asymmetry increases TCP’s already high sensitivity to
random loss anywhere in the forward path of the TCP

connection. Specifically, we show that random loss leads
to significant throughput deterioration when the product
of the loss probability, the normalized asymmetry, and
the square of the bandwidth-delay product exceeds a
threshold.

5) For multiple connections using FIFO queueing on the
reverse link, poor performance results both for undirec-
tional (forward connections only) and bidirectional (for-
ward and reverse connections) traffic. For multiple for-
ward connections, small changes in timing can cause a
connection to be locked out for tens or even hundreds of
seconds. Reverse connections whose data packets share
the slow reverse link with ACKs from forward TCP con-
nections can get shut out, since data packet loss due to
congestion on the reverse link is much more damaging
than loss of cumulative ACKs. Round-robin service on
the reverse link provides a solution to these problems.

6) We recommend weighted round-robin service with
drop-from-front queueing for each connection (or con-
nection class) on the reverse link, for both unidirectional
and bidirectional traffic. There is no need for explicit
ACK thinning by the TCP destination, since ACKs are
thinned implicitly by the slow reverse link, and the latest
ACK information is preserved using drop-from-front
queueing. For unidirectional traffic (forward connec-
tions only), round-robin service eliminates the extended
lockout periods seen with FIFO queueing. For bidi-
rectional traffic, round-robin service provides good
performance for both forward and reverse connections,
provided that the weights are chosen appropriately, and
provided that the data packets for the reverse connections
are segmented into smaller chunks before being allowed
access to the round-robin server.

7) If delayed ACKs are used, the TCP destination thins the
ACKs. If this thinning is less than that caused by the
slow reverse link, there is no impact on performance since
the forward path burstiness is still determined by the re-
verse link. If the thinning due to delayed ACKs is much
greater then the burstiness caused by delayed ACKs dom-
inates. This is an independent performance issue, and is
not within the scope of this paper.

8) Serving large data packets from reverse connections non-
premptively leads to the phenomenon of ACK starvation,
and severely limits the utilization of the forward link by
forward connections. We strongly recommend either im-
plicit or explicit segmentation of data packets (for reverse
connections) on the reverse link, ideally to a size equal to
that of the ACK packets (for forward connections).

Problems that merit further investigation include analysis of
the behavior of multiple connections and design of MAC pro-
tocols and study of their effect on TCP performance. Another
problem which merits investigation is the use of congestion con-
trol in the reverse path. This entails considerable changes to
existing TCP implementations and a network-based solution is
more appealing particularly since it is now viable to implement
weighted-round-robin scheduling in routers.

LAKSHMAN et al.: TCP/IP PERFORMANCE WITH RANDOM LOSS AND BIDIRECTIONAL CONGESTION 555

REFERENCES

[1] H. Balakrishanan, V. Padmanabhan, and R. Katz, “The effects of asym-
metry on TCP performance,” inProc. 3rd ACM/IEEE Mobicom Conf.,
Sept. 1997.

[2] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks—Part 1: One-way traffic,”Comput. Commun. Rev.,
vol. 21, no. 5, pp. 30–47, Oct. 1991.

[3] S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched
gateways,”Internetworking: Res. and Experience, vol. 3, no. 3, pp.
115–156, Sept. 1992.

[4] T. Henderson and R. Katz, “Transport protocols for Internet compatible
satellite networks,”IEEE J. Select. Areas Commun., pp. 345–359, Feb.
1999.

[5] V. Jacobson, “Congestion avoidance and control,” inProc. ACM SIG-
COMM’88, pp. 314–329.

[6] , “Berkeley TCP evolution from 4.3-Tahoe to 4.3-Reno,” inProc.
18th Internet Engineering Task Force, Vancouver, Canada, Aug. 1990.

[7] P. Karn and C. Partridge, “Improving round-trip time estimates in reli-
able transport protocols,”ACM Trans. Comput. Syst., vol. 9, no. 4, pp.
364–373, Nov. 1991.

[8] A. Kumar, “Comparative performance analysis of versions of TCP in a
local network with a lossy link,”IEEE/ACM Trans. Networking, vol. 6,
pp. 485–498, Aug. 1998.

[9] T. V. Lakshman and U. Madhow, “Performance analysis of window-
based flow control using TCP/IP: The effect of high bandwidth-delay
products and random loss,” inIFIP Transactions C-26, High Perfor-
mance Networking V: North-Holland, 1994, pp. 135–150.

[10] , “The performance of TCP/IP for networks with high bandwidth-
delay products and random loss,”IEEE/ACM Trans. Networking, vol. 5,
pp. 336–350, June 1997.

[11] T. V. Lakshman, A. Neidhardt, and T. J. Ott, “The drop-from-front
strategy in TCP over ATM and its interworking with other control
features,” inProc. Infocom’96, pp. 1242–1250.

[12] T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error re-
covery and flow control with a slow acknowledgment channel: A study
of TCP/IP performance,” inProc. IEEE Infocom’97, pp. 1199–1209.

[13] T. J. Ott, M. Mathis, and J. H. B. Kemperman. The stationary behavior
of ideal TCP congestion avoidance. [Online]. Available: ftp://ftp.bell-
core.com/pub/tjo/TCPWindows.ps

[14] Pittsburgh Supercomputing Center. (1999) The TCP-Friendly Website.
[Online]. Available: http://www.psc.edu/networking/tcp_friendly.html

[15] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on the dy-
namics of a congestion-control algorithm,”Comput. Commun. Rev., pp.
30–39, Oct. 1990.

[16] G. R. Wright and W. R. Stevens,TCP/IP Illustrated, Vol. 2, The Imple-
mentation. Boston, MA: Addison Wesley, 1995.

[17] L. Zhang, “A new architecture for packet switching network protocols,”
Ph.D. dissertation, M.I.T. Comput. Sci. Lab., Cambridge, MA, 1989.

[18] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic,” in
Proc. ACM SIGCOMM’91, pp. 133–147.

T. V. Lakshman (S’84–M’85–SM’98) received the
M.S. degree in physics from the Indian Institute of
Science, Bangalore, India, and the Ph.D. degree in
computer science from the University of Maryland,
College Park.

He is currently a Director in Bell Labs Research,
Holmdel, NJ. Previously, he was with Bellcore,
where he was most recently a Senior Research
Scientist and Technical Project Manager in the
Information Networking Research Laboratory.
His recent research has been in issues related to

traffic characterization and provision of quality of service, architectures
and algorithms for gigabit IP routers, end-to-end flow control in high-speed
networks, traffic shaping and policing, switch scheduling, routing in MPLS,
and optical networks.

Dr. Lakshman is a co-recipient of the 1995 ACM Sigmetrics/Performance
Conference Outstanding Paper Award, and the IEEE Communications Society
1999 Fred W. Ellersick Prize Paper Award. He is an Editor of the IEEE/ACM
TRANSACTIONS ONNETWORKING.

Upamanyu Madhow (S’86–M’90–SM’96) received the B.S. degree in elec-
trical engineering from the Indian Institute of Technology, Kanpur, India, in
1985, and the M.S. and Ph.D. degrees in electrical engineering from the Uni-
versity of Illinois, Urbana-Champaign, in 1987 and 1990, respectively.

From 1990 to 1991, he was a Visiting Assistant Professor at the University
of Illinois. From 1991 to 1994, he was a Research Scientist at Bell Commu-
nications Research, Morristown, NJ. From 1994 to 1999, he was with the De-
partment of Electrical and Computer Engineering, University of Illinois, first
as an Assistant Professor and then as an Associate Professor. Since 1999, he
has been an Associate Professor in the Department of Electrical and Computer
Engineering, University of California, Santa Barbara. His research interests are
in communication systems and networking, with current emphasis on wireless
communications and high-speed networks.

Dr. Madhow is a recipient of the National Science Foundation CAREER
Award. He has served as Associate Editor for Spread Spectrum for the IEEE
TRANSACTIONS ONCOMMUNICATIONS, and is currently serving as Associate Ed-
itor for Detection and Estimation for the IEEE TRANSACTIONS ONINFORMATION

THEORY.

Bernhard Suter (S’95–A’96) received the degree in communications systems
engineering from the Swiss Federal Institute of Technology, Lausanne, Switzer-
land, and the Institut Eurecom, Sophia Antipolis, France, in 1996.

From 1996 to 2000, he was a Member of the High Speed Networks Research
Department, Bell Labs, Holmdel, NJ. He is currently with Xebeo Communi-
cations, South Plainfield, NJ. His recent research interests have included pro-
tocol performance, traffic control for IP networks, and system architecture for
high-speed routers.

