
336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

The Performance of TCP/IP for Networks with
High Bandwidth-Delay Products and Random Loss

T. V. Lakshman,Member, IEEE,and Upamanyu Madhow,Senior Member, IEEE

Abstract—This paper examines the performance of TCP/IP,
the Internet data transport protocol, over wide-area networks
(WANs) in which data traffic could coexist with real-time traffic
such as voice and video. Specifically, we attempt to develop a basic
understanding, using analysis and simulation, of the properties
of TCP/IP in a regime where: 1) the bandwidth-delay product of
the network is high compared to the buffering in the network
and 2) packets may incur random loss (e.g., due to transient
congestion caused by fluctuations in real-time traffic, or wireless
links in the path of the connection). The following key results
are obtained. First, random loss leads to significant throughput
deterioration when the product of the loss probability and the
squareof the bandwidth-delay product is larger than one. Second,
for multiple connections sharing a bottleneck link, TCP is grossly
unfair toward connections with higher round-trip delays. This
means that a simple first in first out (FIFO) queueing discipline
might not suffice for data traffic in WANs. Finally, while the
recent Reno version of TCP produces less bursty traffic than
the original Tahoe version, it is less robust than the latter when
successive losses are closely spaced. We conclude by indicating
modifications that may be required both at the transport and
network layers to provide good end-to-end performance over
high-speed WANs.

Index Terms—Flow control, congestion control, error recovery,
Internet, TCP/IP, transport protocols.

I. INTRODUCTION

M OST existing data transfer protocols have been de-
signed for local-area network (LAN) applications in

which buffer sizes far exceed the bandwidth-delay product.1

This assumption may not hold for the wide-area networks
(WANs) formed by the interconnection of LANs using high-
speed backbone networks. In addition, in the Internet of the
future, data traffic will share the network with voice and video
traffic. In this paper, we examine the impact of these changes
on the performance of the most popular data transfer protocol
in current use, TCP/IP. This is essential not only for network
provisioning in the short term (since the rapid growth of Web
applications has caused TCP traffic to grow correspondingly)

Manuscript received June 20, 1995 revised February 25, 1997; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor D. Mitra. This work was
supported in part by the U.S. Army Research Office under Grant DAAH04-
95-1-0246.

T. V. Lakshman is with the High Speed Networks Research Dept.,
Bell Laboratories, Lucent Technologies, Holmdel, NJ 07733 USA (e-mail:
lakshman@research.bell-labs.com).

U. Madhow is with the ECE Department and the Coordinated Science
Laboratory, University of Illinois, Urbana, IL 61801 USA (e-mail:
madhow@uiuc.edu).

Publisher Item Identifier S 1063-6692(97)04489-0.
1The bandwidth-delay productis loosely defined to be the product of the

round-trip delay for a data connection and the capacity of the bottleneck link
in its path.

but also for determining how TCP needs to be modified in
the longer term.

We study two versions of TCP: one is the popular Tahoe
version developed by Jacobson in 1988 [11] (henceforth called
TCP-tahoe); the other is the Reno version, which includes the
fast retransmit option together with a method for reducing the
incidence of slow start, suggested by Jacobson in 1990 [12]
(we will refer to this asTCP-reno). We attempt to develop a
basic understanding of these schemes by considering one-way
traffic over a single bottleneck link with FIFO transmission.
For LANs, the round-trip delay of the connection is small, so
that the bandwidth-delay product could be much smaller than
the buffering on the bottleneck link. We are more interested,
however, in WANs with large round-trip delays, so that the
buffering on the bottleneck link is typically of the same order
of magnitude as, or smaller than, the bandwidth-delay product
(this is what we mean byhigh bandwidth-delay products
throughout this paper). The bottleneck link may be shared by
several TCP connections. In addition, we also assume that each
packets may be lost randomly even after obtaining service at
the bottleneck link.

Random loss is a simple model for a scenario of particular
interest in the context of networks with multimedia traffic,
where transient fluctuations in real time traffic may cause
irregularly spaced losses for data traffic. This would occur,
for instance, for both the UBR and ABR service classes [1]
in ATM networks. The only difference is that for ATM ABR,
each connection would have a time-varying available rate de-
termined by feedback from the switches, so that most random
losses would occur at the interface of the source to the network,
since that is where the available rate would be enforced. In
addition to serving as a model for transient congestion, we
note that random loss on the Internet has been reported [3],
where it is conjectured to occur due to a variety of reasons,
including intermittent faults in hardware elements such as
Ethernet/FDDI adapters, and incorrect handling of arriving
packets by routers. Finally, with the anticipated emergence
of mobile computing over heterogeneous networks with both
wireless and wireline links, losses and time variations due
to wireless links in the path of the connection can also be
accommodated via a random loss model. Since our purpose
is to obtain a fundamental understanding of TCP, none of the
preceding situations are explicitly considered in this paper.
However, as discussed in Section VI, the results here should
provide a basis for further work on developing network level
design guidelines for supporting TCP.

One of the simplifications of the model used for our analysis
is that two-way traffic (and the accompanyingack compression

1063–6692/97$10.00 1997 IEEE

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 337

[27]) is not considered. Feedback systems are notoriously
difficult to analyze, so that even our simple model is not
amenable to exact analysis. However, not only does our
approximate analysis match simulation results for the idealized
system model, but it also provides a close match to results for a
detailed simulation that includes two-way traffic for multiple
TCP-Reno connections over an ATM network (described in
Section V).

We obtain the following key results. Discussion of the
implications of these results for system design is postponed
to Section VI.

1) While TCP-reno produces less bursty traffic than TCP-
tahoe, it is much less robust toward “phase effects.”
The latter term refers to unpredictability in performance
resulting from very small differences in the relative tim-
ings of packet arrivals for different connections sharing
a link.

2) Both versions of TCP appear to have significant draw-
backs as a means of providing data services over mul-
timedia networks, because random loss resulting from
fluctuations in real-time traffic can lead to significant
throughput deterioration in the high bandwidth-delay
product regime. Roughly speaking, the performance is
degraded when the product of the loss probability and
thesquareof the bandwidth-delay product is large (e.g.,
ten or more).

3) For high bandwidth-delay products, TCP is grossly un-
fair toward connections with higher propagation delays:
for multiple connections sharing a bottleneck link, the
throughput of a connection is inversely proportional to
(a power of) its propagation delay.

It is worth clarifying that random loss causes performance
deterioration in TCP because it does not allow the TCP
window to reach high enough levels to permit good link
utilization. On the other hand, when the TCP window is
already large and is causing congestion, random early drops of
packets when the link buffer gets too full can actually enhance
performance and alleviate phase effects [10].

Early simulation studies of TCP-tahoe include [24], [26],
[27]. Our model is similar to that used in [24], but the key
differences between our paper and previous studies are that:
1) the ratio of bandwidth-delay product to buffer size is much
higher in our study and 2) the effect of random loss due
to transient congestion (or other sources) is included. Thus,
some of the undesirable features of TCP-tahoe which arise
specifically for networks with high bandwidth-delay products
(such as excessive buffering requirements and vulnerability to
random loss) were not noticed in earlier studies. Furthermore,
in contrast to previous studies, we place more emphasis on
detailed analytical insight on the effects of various parameters
on performance.

The bias of TCP-tahoe against connections with large round-
trip delays and against connections traversing a large number
of congested gateways has been noticed in other studies of
TCP-tahoe [8], [9], [26]. A heuristic analysis in [8] shows
that, for multiple connections sharing a bottleneck link, the
throughput of a connection is inversely proportional to its

round-trip time. While we consider a similar system in Section
V, our analysis is more detailed, taking explicit account of
the buffer size and the bandwidth-delay product. Oscillatory
behavior and unfairness toward connections with larger prop-
agation delays have also been noticed in a previous analytical
study of feedback-based congestion control [2]. Other analyses
of flow control schemes include [20], [22], [23], but these
references do not address the specific concerns raised here in
any detail.

The system model is described in Section II. Analytical and
simulation results for the evolution of a single connection in
the absence of random loss are given in Section III. Section IV
considers the effect of random loss. Section V contains results
for multiple connections with and without random loss. We
give our conclusions in Section VI.

II. SYSTEM MODEL

We consider infinite data sources which always have packets
to send, so that the units of data are maximum sized packets
(in general, packet sizes in TCP may be variable). We consider
a single bottleneck link with capacitypackets per second and
a FIFO buffer of size packets. Any packet arriving when
the buffer is full is lost (random loss may cause additional
losses). The number of connections, or sources, sharing the
link is assumed to be constant. For each connection, all delays
except for service time and queueing at the bottleneck link
are lumped into a single “propagation delay,” which includes:
1) the time between the release of a packet from the source
and its arrival into the link buffer; 2) the time between the
transmission of the packet on the bottleneck link and its arrival
at its destination; and 3) the time between the arrival of the
packet at the destination and the arrival of the corresponding
acknowledgment at the source. The propagation delay for a
packet from the th connection is denoted by.

The are taken to be deterministic, which implicitly
assumes that deterministic propagation and processing delays
are more significant than random queueing delays at all nodes
and links other than the bottleneck link. Although such an
assumption is overly simplistic even for a relatively simple
system with two-way traffic [27], it suffices for our present
purpose of arriving at a basic understanding of the interaction
between different connections sharing a link.

Each connection is assumed to use a window flow control
protocol. At time , the window size for connectionis denoted
by , and is equal to the maximum allowed number of
unacknowledged packets (retransmissions are not counted). It
is assumed that each connection uses its allowable window to
the fullest extent, i.e., that at time, there are indeed
unacknowledged packets for connection. The window varies
dynamically in response to acknowledgment and detection
of packet loss. Upon receiving a packet, the destination is
assumed to send an acknowledgment back immediately. These
acknowledgments arecumulativeand indicate the next byte
expected by the receiver.

In the original version of TCP-tahoe, packet loss is detected
by maintaining a timer based on an estimate of the round-
trip time. When a packet is sent, a timeout value is computed
using the current round-trip time estimate and the timer is

338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

started. Expiry of this timer is taken to signal packet loss.
For each retransmission following a timer expiry, the timer
value used is twice the previous timer value. Estimates of the
round-trip time are obtained by measuring the round-trip time
upon receipt of unambiguous acknowledgment (i.e., ignoring
acknowledgment for retransmitted segments) and computing a
weighted average of the old and new estimates. Refer to [15],
[25] for a detailed description of round-trip time estimation.
We will refer to a timer based on this estimate as afine-grained
timer, in order to distinguish it from thecoarse-grained timers
used in practice, which are typically multiples of 500 ms. In
order to prevent a needlessly lengthy stoppage of transmission
upon expiry of a coarse-grained timer, most current versions
of both TCP-tahoe and TCP-reno incorporate afast retransmit
option: if the number ofduplicate acknowledgments(i.e.,
multiple acknowledgment with the same “next expected”
packet number) exceeds a threshold, packetis assumed
to be lost. In this paper, we implement fine-grained timers
in our simulations, in order to study the dynamic evolution
of TCP (and to highlight possible shortcomings) in the most
ideal setting. The original version of TCP-tahoe, without fast
retransmit, is implemented. However, in simulation results not
reported here, we have checked that coarse-grained timers with
fast retransmit give virtually identical performance in most
cases of interest for TCP-tahoe (unless almost all packets in a
window are lost, fast retransmit detects loss very effectively).
For TCP-reno, we implement fast retransmit with a fine-
grained timer in our simulations. Because TCP-reno has a less
robust congestion control mechanism, we have found in later
work that the use of a coarse-grained timer does impact its
performance even with fast retransmit, unlike for TCP-tahoe.
Since either fine-grained timers or the fast retransmit option
provide almost perfect loss detection, it is assumed in our
analysis that packet losses are detected perfectly.

A simplified description of TCP-tahoe [11] and TCP-reno
[12] follows.

A. Description of TCP-tahoe

The algorithm followed by each connection has two param-
eters, current window size and a threshold , which are
updated as follows.

1) After every acknowledgment of a new
packet:
if , set ; Slow Start Phase
else set . Congestion Avoidance
Phase
(denotes the integer part of).
2) After a packet loss is detected:
set ;
set .

The algorithm typically evolves as follows (although, as
described in the next section, the evolution is somewhat
different for relatively small buffer size): when packet loss is
detected, the window is reduced to one. In the slow start phase
that follows, the window grows rapidly for every successfully
acknowledged packet until it reaches half of the window size

at the last packet loss. The algorithm then switches to the
congestion avoidance phase, probing for extra bandwidth by
incrementing the window size by one for every window’s
worth of acknowledged packets. This growth continues until
another packet loss is detected, at which point another cycle
begins. We use the termcycleto mean TCP evolution starting
from the end of one congestion avoidance phase to the end
of the next. In Section III, it turns out that, for our simple
model, TCP evolution is periodic if there is no random loss,
so that successive cycles are identical. In Section IV, on the
other hand, where we consider random loss, the duration of,
and window evolution within, different cycles is random.

B. Description of TCP-reno

After the number of duplicate acknowledgments exceeds a
threshold (typically three), TCP-reno retransmits the packet.
However, instead of cutting the window back to one, it only
reduces it by a factor of two. Further, in order to prevent a burst
of packets from being transmitted when the retransmission is
finally acknowledged, it temporarily permits new packets to be
transmitted with each repeated acknowledgment until the “next
expected” number in the acknowledgment advances. While
these subtleties are essential to the working of the algorithm
(see [12] for details) and are implemented in our simulations,
the following simplified description is adequate for conveying
an understanding of the algorithm’s behavior.

1) After every nonrepeated acknowledgment,
the algorithm works as before:
if , set ; Slow Start Phase
else set . Congestion Avoidance
Phase.
2) When the duplicate acknowledgment
exceeds a threshold,
retransmit “next expected” packet;
set , then set (i.e., halve the
window);
resume congestion avoidance using new window
once retransmission is acknowledged.
3) Upon timer expiry, the algorithm goes into
slow start as before:
set ;
set .

In this case, after an initial slow start transient, the typical
cyclical evolution does not involve slow start, since the win-
dow size is halved upon loss detection. Each cycle begins when
a loss is detected via duplicate acknowledgment. Assuming
that loss occurs at window size , the window size at the
beginning of each cycle is . The algorithm resumes
probing for excess bandwidth in congestion avoidance mode
until the window size reaches again, at which point a
loss occurs and a new cycle with window size begins.
We will show that the throughput attained by this scheme is
higher than that of TCP-tahoe, especially when the buffer size
is small compared to the bandwidth-delay product. However,
this algorithm is almost as vulnerable to random loss.

For the remainder of this paper, we will use as a
generic notation for the window size at which congestion

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 339

avoidance ends. The value of could therefore change
from cycle to cycle if loss occurs randomly, or could be the
same for all cycles if loss occurs periodically. It is worth
relating our notation to that usually used in TCP code (see
[24], for instance): is usually referred to as the congestion
window , and is denoted by . The actual
window for flow control purposes is taken to be the minimum
of and , where the latter is set by the receiver.
For the purpose of this paper, the window size is assumed to
be dictated by the capacity and buffering of the bottleneck link
(i.e.,), so the actual window size equals the
congestion window. Note that some form of window scaling
(i.e., increasing the window size in bytes while using the same
sequence number space, by scaling up the size of the data
segment referred to by a given number) may be required to
achieve this for large bandwidth-delay products [14].

III. EVOLUTION WITHOUT RANDOM LOSS

We consider the evolution of a single connection and derive
expressions for its long-term throughput. Define the normal-
ized buffer size , where denotes
the propagation delay for each packet of the connection and

denotes the propagation delay plus the service
time. Since we are concerned with large bandwidth-delay
products, we restrict attention to in this section. In
contrast, simulations in earlier work [24] consider , for
which the average throughput is close to the capacity of the
bottleneck link. For brevity, expressions for the latter case are
omitted.

The maximum window size that can be accommodated in
steady state in the bit pipe is

(1)

In this case, the buffer is always fully occupied and there
are packets in flight. The cyclical evolution of TCP-tahoe
consists of a slow start phase starting with and
continuing until the window size reaches ,
followed by congestion avoidance until . The
next increase in window size leads to buffer overflow, at
which point the window is reset to one and a new cycle
starts. We show that if the relative buffer size is not
large enough, buffer overflow may occur even in the slow
start phase, and the cyclical evolution is somewhat different
from the preceding description. For TCP-reno, if the scheme
functions as designed, slow start is eliminated from the cyclical
evolution. In each cycle, the algorithm starts from

, does congestion avoidance until , and
drops back to after a packet loss due to
buffer overflow is detected via duplicate acknowledgment.

In each case, if the number of packets successfully trans-
mitted during a cycle is and the duration of a cycle is ,
then the periodic evolution implies that the average throughput
is given by . In the following, we describe this
evolution more carefully, and compute these quantities in
sufficient detail to produce an excellent match with simulations
(see Table II).

TABLE I
EVOLUTION DURING SLOW START PHASE

A. Slow Start Phase

The slow start phase must be considered in some detail
to understand the advantage of TCP-reno over TCP-tahoe.
Starting from with slow start threshold , the window
size is increased by one for every acknowledgment in this
phase, so that two packets are released into the buffer for
every acknowledgment. Table I shows the evolution of the
window size and the queue length in this phase. For every
acknowledgment, we indicate the number of the packet which
was acknowledged (for convenience, we number the packets
in increments of one rather than in increments equal to the
number of bytes per packet).

The evolution in Table I is best described by considering
mini-cyclesof duration equal to the round-trip time, where
the th mini-cycle refers to the time interval
(the mini-cycles are separated by lines in the table). The
acknowledgment for a packet released in mini-cyclearrives
in mini-cycle , and increases the window size by one.
This leads to a doubling of the window in each mini-cycle.
Further, acknowledgment for consecutive packets served in
mini-cycle arrive spaced by the service time during mini-
cycle , and two packets are released for each arriving
acknowledgment, leading to a buildup of queue size. The
preceding evolution assumes implicitly that the normalized
buffer size , so that the window size during the slow
start phase is smaller than and the queue empties out by
the end of each mini-cycle. Denoting the window size at time

by , we obtain that, during the th mini-cycle,

(2)

where we have assumed that . Similarly, letting
denote the queue length at time, the queue build-up

during the th mini-cycle is given by

(3)

The maximum queue length during the th mini-cycle
is therefore , which is approximately half the maximum
window size during that mini-
cycle. For a buffer size , we can use (2) and (3) to determine
the window size at which, the queue length exceeds the buffer

340 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

Fig. 1. Window and buffer evolution for a single connection: Two slow
starts. Prop. delay= 1 ms; b =0.1.

size as follows. Define the integer , so
that . From (3), buffer overflow will
occur in the th mini-cycle (the largest queue length in the
previous cycle is , which is smaller than), with

. From (2), the window size at which this
happens is , so that that

(4)

Buffer overflow during a slow start phase with threshold
thus occurs only if

(5)

A more explicit condition for buffer overflow can be derived
as follows. Assuming that the packet loss causing the slow
start phase occurred when the window size exceeds the value

, the slow start threshold equals
. Since , the

condition for buffer overflow (5) is approximately equivalent
to .

Fig. 1 shows the simulated congestion window and buffer
occupancy evolution for a single connection using TCP-tahoe
with , , and (i.e.,). The
congestion window size is shown by the solid line and the
buffer occupancy by the dotted line. As expected, the window
grows to and the next increase in
the window causes a packet to be dropped. Detection of this
loss (upon expiry of the associated timer) causes the window
to be reduced to one and initiation of the slow start phase. The

Fig. 2. Window and buffer evolution for a single connection: one slow start.
tau1 = 1; tau2 = 3; b = 0:8.

figure clearly shows the rapid growth in window size during
the slow start phase. However, since , buffer overflow
occurs when , and is detected by the time the
window size reaches (see the discussion
later in this section). A second slow start phase is initiated
at this point with threshold 25. This window size is reached
without further loss, at which point slower window growth
due to congestion avoidance commences. This lasts until the
window exceeds , after which a new cycle begins.

When is greater than 1/3 the window evolution for TCP-
tahoe is different. This is illustrated in Fig. 2, which shows the
evolution of window sizes and buffer occupancy for .
Here, packet loss is seen to occur when the window is of
size . As before, detection of this loss causes
the window size to be reduced to one and initiates slow start.
However, there is no packet loss in the slow start phase, which
terminates when the window reaches 91. In the congestion
avoidance phase that follows, the window grows linearly and
then more slowly (as explained in the next subsection) until the
window exceeds . This results in a packet loss causing
the cycle to repeat. The absence of the double slow start results
in much higher throughput, since the initial window size for
the congestion avoidance phase (which accounts for most of
the packets transmitted) is higher.

We now compute the duration and number of packets
transmitted during the slow start phase(s) in a given cycle
for TCP-tahoe. Even though many subtleties in timing are
glossed over, the computations are accurate enough to re-

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 341

sult in excellent agreement with the throughput obtained by
simulations.

Case 1 : There is only one slow start phase per
cycle, which ends when the window size reaches

. We use a simplified version of (2),
to approximate the duration of this phase as
The number of packets transmitted in this phase is approxi-
mated by (Since the window size grows by one
for every acknowledgment during slow start, starting from
an initial value of one, the number of packets transmitted
successfully during slow start is well approximated by the
window size at the end of the slow start period.)

Case 2 : There are two slow start phases in a
cycle in this case. Let denote the duration of the first
slow start phase and let denote the number of packets
successfully transmitted during that phase. Let ,
denote the analogous quantities for the second slow start phase.
Computation of average throughput requires the computation
of these quantities.

In the first slow start phase (with threshold),
a buffer overflow occurs when the window size reaches.
The duration of this phase is the time taken to reach,
approximated by , together with the time taken to
detect the loss, which is taken to be one round-trip time, so
that The number of packets transmitted
in this phase is, reasoning as before, taken to be

Since the buffer overflow in the first slow start phase is
not detected till the mini-cycle after which it happens, the
window size at which the overflow is detected can be shown,
by means of a more careful analysis, to be approximately

. This implies that the threshold
for the second slow start phase is

(6)

The duration and number of packets transmitted during the
second slow start phase is now obtained as in Case 1 to be

and , respectively.
The total time spent in slow start and the number of packets

transmitted during slow start are then given by
and , respectively.

B. Congestion Avoidance Phase

We can unify the analysis of this phase for TCP-tahoe and
TCP-reno by assuming that the congestion avoidance phase
starts from an arbitrary window size and terminates when
the window size reaches . In all cases considered in this
section, . For TCP-tahoe, equals the slow
start threshold for the slow start phase immediately preceding
the congestion avoidance phase, and is given by

(7)

Remark: For , there are two slow start
phases, so that the window size at the beginning of congestion
avoidance is the slow start threshold for the second slow start
phase, which is given in (6).

For TCP-reno, we have

(8)

since the window size is halved after losing a packet.
In contrast to the slow start phase, the congestion avoidance

phase, by virtue of its slower window growth, is well-modeled
by a continuous-time approximation for window evolution.
Such approximations have been used previously in [24] to
explain simulation results. Let denote the rate of
window growth with time, the rate of window growth
with arriving acknowledgments, and the rate at which
the acknowledgments are arriving. Then, during the congestion
avoidance phase,

(9)

The acknowledgments arrive back at a rate equal to the
instantaneous throughput, so that

(10)

Combining (9) and (10), we obtain that

(11)

Thus, for , the window grows as . The
duration of this period of growth is therefore given by

(12)

since the initial window size was (for ,
is always less than). The number of packets

transmitted during this time is given by

(13)

When , we obtain from (11) that
. This growth period, and the

cycle, terminates with buffer overflow when the window size
exceeds , and its duration is given by

(14)

(if , although this does not occur for
). Since the bottleneck link is

being fully utilized during this period, the number of packets
transmitted is given by

(15)

342 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

TABLE II
LINK UTILIZATION AS A FUNCTION OF

NORMALIZED BUFFER SIZE (� = 100; � = 1)

C. Throughput Computation and Numerical Results

Due to the periodic evolution, the long-run average through-
puts for both TCP-tahoe and TCP-reno are equal to the average
throughputs in a cycle, and are given by

TCP-tahoe (16)

TCP-reno (17)

where the preceding quantities are as computed in Sections
III-A and III-B.

Table II gives the link utilizations as a function of the
normalized buffer size for both TCP-tahoe and TCP-reno.
The results obtained using (16) and (17) are compared with
those obtained using simulation for an example with high
bandwidth-delay product. The match is within 2%. For TCP-
tahoe, a clear thresholding effect is seen at (recall
that the analysis predicted a thresholding effect around

). The utilization for TCP-reno is uniformly higher for all
values of , and there is no thresholding effect for small.
The difference in utilization is small for large, since the
congestion avoidance phase for the two schemes is identical,
and the duration of the slow start phase is small compared to
the duration of the cycle.

IV. EVOLUTION WITH RANDOM LOSS

We assume here that any given packet may be lost with
probability , and that these random losses are independent. As
in the previous section, we consider a single connection, and
show that, for both TCP-tahoe and TCP-reno, the throughput
is strongly dependent on , and deteriorates sharply
compared to the lossless throughput when this quantity be-
comes large. Roughly speaking, the throughput degradation
occurs because packet losses relatively early in a cycle result
in small initial values for the congestion avoidance phase, in
which the bulk of the packets are transmitted. This results
in small window sizes (determined by random losses rather
than congestion), and therefore low link utilizations, during
the cycle.

In principle, it is possible to exactly compute the throughput
based on a Markov chain analysis, and we sketch this method
in the following. However, insight into when random loss
causes throughput deterioration is better obtained by means
of an approximate analysis, which we pursue in more detail.

In the absence of random loss, the evolution of a cycle
in TCP-tahoe is completely determined by the slow start
threshold (which is half the window size at the end of the
previous cycle). Similarly, the evolution of a cycle in TCP-

reno is determined by the window size at the beginning
of the cycle (again, this is half the window size at the end of
the previous cycle). Since a single parameter(for
TCP-tahoe and for TCP-reno) determines the cyclical
evolution, the following functions are well-defined for either
scheme (although they may be hard to compute explicitly):

window size after packets are successfully
transmitted;
time taken for packets to be successfully
transmitted;
number of packets successfully transmitted be-
fore the cycle ends with buffer overflow.

If we now introduce random loss, the cycle may terminate
due to a random loss after packets have been
successfully transmitted. According to our model of random
loss, the probability distribution of is specified by

(18)

The window size when the cycle terminates is and
the duration of the cycle is . The cyclical evolution
can now be completely specified as follows. For theth cycle,
let , , and denote, respectively, the window size at
the beginning of the congestion avoidance phase, the number
of successful transmissions, and the duration. The threshold

for the zeroth cycle is assumed to be given. According
to our model for random loss, the random variables are
independent and identically distributed according to (18). The
evolution of and is then specified as follows:

(19)

(20)

Equations (18) and (19) specify the transition probabilities for
the time-homogeneous Markov chain formed by the .
This can be solved to obtain the stationary distribution for
the . The long-run throughput is then given by

.
Specifying the deterministic functions and

in detail and solving for the stationary distribution
is probably more time-consuming than simulation, and is not
likely to yield any additional insight. In order to develop an
intuitive understanding of how the random loss probability
affects the throughput, therefore, we use an approximation for
throughput based on the assumption that every cycle begins
with a single “average” value . This yields

(21)

The parameter is taken to be the minimum of its value
without random loss, (this value is
the same for TCP-tahoe and TCP-reno), and a valuebased
only on random loss, and computed in a simple-minded fashion
as follows. For a loss probability, roughly packets are
successful in a cycle before a loss occurs. The parameter
is chosen to satisfy the following “fixed point” relationship:
given that the parameter for the current cycle is, and that
exactly packets are successful, choose such that the

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 343

window size at the time of loss is , so that the parameter
for the next cycle is also . Thus, satisfies

(22)

Since the preceding approximation is fairly drastic, there is
no point in solving (22) exactly, so that we feel free to resort
to further approximations. Consider TCP-reno first. Starting
from , suppose that the packet loss occurs at time

after the cycle begins. Assuming that the window size does
not reach (i.e., that random loss has a significant effect
in limiting window size), the linear growth in the congestion
avoidance phase [see (18)] implies that , so that

(23)

The number of packets transmitted in timein the congestion
avoidance phase is [see (20)] , so that

(24)

Combining (23) and (24), we obtain upon simplification that

(25)

Starting with a slow start threshold , the evolution
for TCP-tahoe is the same as for TCP-reno with if
one ignores the slow start phase, which is of relatively short
duration. The value for obtained by solving (22) for TCP-
tahoe is therefore also taken to be given by (25). The way
this value is used in subsequent computations is somewhat
different, however.

For both TCP-tahoe and TCP-reno, the window size at
the beginning of the congestion avoidance phase strongly
influences the throughput in the cycle, since the congestion
avoidance phase accounts for the bulk of the packets transmit-
ted in the cycle (the slow start phase is relatively short). Thus,
in order for the throughput with random loss to be comparable
with that without loss, the threshold

(26)

must be comparable (of the same order as) , the
threshold in the absence of random loss. From (25), this holds
if is comparable to or smaller
than 8/3. We therefore expect a significant deterioration of
throughput for both TCP-tahoe and TCP-reno when is
large (say 10 or more). This is the case in Fig. 3 which shows
the evolution of window sizes and buffer occupancies with

for the single connection whose lossless evolution
was shown in Fig. 2. As expected, the slow start thresholds are
much smaller than the thresholds for the lossless case (which
is 91) and this results in severe throughput deterioration. In the
time period shown in the figure, the buffer never overflows and
all the packet losses are due to random losses.

Having specified , it remains to compute the approxi-
mation (21). Since computation of the deterministic function

and summation over is quite tedious, we resort

Fig. 3. Window and buffer evolution for single connection with high random
losses. Prop. delay= 1 ms; b = 0.8; q = 0.001.

to further simplifications. Let be the number of
successful packets at time, given that the cycle starts at
time zero with slow start threshold. Given , the function

is the inverse of the function of , i.e.,
. However, this function is easier to compute,

and indeed, has been computed in the previous section, since
. Starting with (21), we

change the summation to an integral and then change variables
from to to obtain

(27)

The analysis of the previous section can now be directly
applied to evaluate this expression. The details are relegated
to the Appendix. For either TCP-tahoe or TCP-reno, the
preceding integral is simple, and we use the general-purpose
tool Mathematica to compute it. The result is compared
with simulations in Table III. We consider two values of
normalized buffer size for a fixed value of bandwidth-delay
product. Although the match in numerical results obtained
from approximate analysis and simulation is not as good as in
the previous section, thequalitativeobservations are identical.
When the loss probability is relatively high [an order of
magnitude or more larger than], the window size at
the beginning of the congestion avoidance phase, and hence

344 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

TABLE III
LINK UTILIZATION AS A FUNCTION OF LOSS PROBABILITY q FOR

� = 100, � = 1, AND TWO VALUES OF � (� = 0:8 AND � = 0:2)

TABLE IV
LINK UTILIZATION AS A FUNCTION OF q(��)2 FOR THREE

DIFFERENT VALUES OF BANDWIDTH-DELAY PRODUCT (� = 0:8)

the throughput, is dominated by the effect of random losses.
This throughput is much smaller than the lossless throughput
and is insensitive to the value of. As the loss probability
decreases to , the throughput gets closer to its lossless
value, and the effect of the buffer size on throughput becomes
apparent.

The strong dependence of link utilization on is made
explicit in Table IV, where we show, for selected values of

(note that for large bandwidth-delay
products), the link utilization for several different bandwidth-
delay products. The normalized buffer sizeis fixed at 0.8.
The dependence on the bandwidth-delay product itself [for
fixed and fixed] is weaker, but there is a slight
improvement in link utilization as increases. For brevity,
we show only the simulation results, but the analytical results
exhibit the same qualitative features.

V. MULTIPLE TCP CONNECTIONS

In this section, we focus on the bias of the TCP window
adjustment mechanism against connections with larger round-
trip delays, and show that it is a fundamental property of
the TCP window dynamics. Our simulations also reveal the
disturbing impact of phase effects on TCP-reno. When simu-
lating TCP-reno, therefore, we will consider a more detailed
model of TCP connections going through an ATM switch with
randomization in the cell discards when the buffer is full.
These simulations serve a two-fold purpose: they enable us
to focus on the window dynamics by eliminating the phase
effects, and they verify that the analytical results, which are
derived for a much simpler model, predict performance well
for much more complicated system models.

An intuitive explanation of the bias against connections with
longer round-trip times is provided in Section V-A. Section V-
B contains a description of the ATM simulation model used
for TCP-reno. Section V-C contains an approximate analysis
of TCP-tahoe and TCP-reno for the simple system model we

Fig. 4. Window evolution for connections with propagation delays 1 and 3.
Prop. delay= 1 ms; b = 0.8.

have considered so far. Numerical results comparing the results
of this analysis with simulations are given in Section V-D.

Throughout this section, we consider TCP connections.
Let denote the round-trip delay for a packet
of the th connection if it arrives to an empty queue, where

is the propagation delay for the connection. Fig. 4 shows
the evolution of window sizes for two connections with
propagation delays (solid line) and (dashed
line). Note that the connection with larger propagation delay
operates with a much smaller window size and consequently
has a much lower relative throughput. The relative throughputs
for the two connections are 0.817 and 0.114. For and

, the corresponding relative throughputs are 0.628 and
0.301. We observe empirically that the throughput is inversely
proportional to , where .

Another observation from our simulations is that the win-
dow evolution for the two connections become synchronized
even when the two connections start at different times and
despite the fact that the connections have different propagation
delays. Synchronized window evolution has been previously
reported in [24] for connections with equal propagation delays.
The implication of this synchronized evolution is (as pointed
out in [24]) that after a period of congestion the sum of
connection window sizes may be too small to fill up the
available network bandwidth, which results in throughput loss.
For tractability, our approximate analysis is based on the
assumption of synchronization. It appears difficult to deduce

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 345

analytically whether such synchronization would always occur,
but the basic observation on which our analysis is based, which
is that the window size grows more slowly for connections
with higher round trip delays, should apply even if there were
instances of evolution without synchronization.

A. Intuitive Explanation for the Bias

An approximate expression for the instantaneous throughput
for connection can be obtained using Little’s law:

(28)

where is the typical waiting time in the queue for a packet
from connection . Note that although is defined as a time-
varying quantity, calling it “typical” implicitly assumes that the
time variations are slow, as does the application of Little’s law,
which holds for averaged quantities. Clearly, if all connections
had the same window size, and if were small compared to

, then the throughput would be inversely proportional to
. Moreover, from (19), (20) in Section III-B, the growth in

window size in the congestion avoidance phase is given by

(29)

Assume now that the connections evolve in synchrony, i.e.,
that for all connections, the window sizes reach their maxi-
mum, and then drop down on detecting packet loss, at roughly
the same time. Equation (29) shows that both the throughput
and the growth in window size are inversely proportional to
(if the waiting times are small). The maximum window size
is therefore smaller for connections with larger propagation
delays, so that in the next cycle, the initial window size during
congestion avoidance is smaller for such connections. Thus,
not only are the window sizes smaller throughout the cycle
for such connections, but (28) implies that the throughput
for such connections would be reduced by a further factor
of roughly . Thus, if there were no queueing delays, the
average throughput for connectioncould be expected to be
inversely proportional to . This unfairness is alleviated
somewhat due to all connections suffering roughly equal
queueing delays, which accounts for the empirical observation
that the throughput is actually inversely proportional to ,
where . Thus, the bias against connections with
larger propagation delays is a fundamental consequence of
TCP dynamics. As we will see from the numerical results,
this is alleviated somewhat when the buffer size is much larger
than the bandwidth-delay product, since in that case the round-
trip time is dominated by the queueing delay, which at high
utilizations is roughly the same for all connections.

B. Simulation Model for TCP-reno

TCP-reno differs from TCP-tahoe mainly in its attempt
to eliminate the relatively short slow start from the cyclical
evolution by means of fast retransmit. Since its window
dynamics are otherwise the same as that of TCP-tahoe, we
would expect to see the same bias against connections with
larger propagation delays in both versions of TCP. However,

our simulations for the simple model described in Section II
reveal the following disturbing feature about TCP-reno: since
the number of times the window is halved at the onset of
congestion equals the number of lost packets, and since phase
effects [9] can cause one connection to systematically lose
a larger number of packets, it is possible that a connection
gets almost completely shut out. We have observed this effect
for two connections with and , in which the
first connection gets very small throughput even though it has
smaller round-trip delay. This effect does not occur in TCP-
tahoe because initiation of the slow start phase and the choice
of the slow start threshold depends only on at least one packet
getting lost, and not on thenumberof packets lost, at the
onset of congestion.

In order to eliminate the possibility that phase effects are
strictly an artifact of our simple model, we use a detailed
simulation of multiple TCP-reno connections over an ATM
system. Here, TCP sources are connected to routers with ATM
interfaces. We use 576–byte packets which convert to 12 ATM
cells at the router output. ACK packets convert to 2 ATM cells.
The routers connect to the input ports of an ATM switch over
links operating at DS-3 rates. The routers on the sending side
assign the right virtual circuit (VCs) for transport through the
ATM switch. The VCs in simulated system are configured
such that the only bottlenecks are at the ATM switch output
ports. The routers at the sending and receiving sides only act
as nonbottlenecking hops.

The DS-3 links (using the Physical Layer Convergence
Procedure over DS-3) typically operate in a slotted manner
with slot duration equal to 10.4s. However, on the input
side to the switch, we do not use slotting on the DS-3 links,
so that cell transmissions from the router do not have to
wait for a slot boundary. The links connected to the switch
output port operate in a slotted manner. The architecture
and internal timing of a popular ATM switch are accurately
simulated. The switch input ports (where the DS-3 links
from the router terminate) are sampled every 2.8s. A more
detailed discussion of internal architecture is not relevant for
the performance aspects studied in this paper. It is sufficient to
point out that that there is no queueing or blocking internal to
the switch, and that contention occurs only at the switch output
ports. Congestion is caused by routing many connections to the
same output port. The output links from the switch terminate
at routers which convert incoming cells to packets and pass
the packet to appropriate receivers. Packets with lost cells are
dropped at this point.

Mixing slotted and unslotted links is found not to eliminate
phase effects. We therefore resort to randomization in buffer
discards to eliminate phase effects. With randomization, when
a cell arrives to a full buffer, instead of dropping the incoming
cell, we choose the cell to be dropped randomly from a pool
of cells, including the incoming cell and cells in the tail of
the buffer (is chosen equal to the number of active TCP
connections in our simulations).

C. Analysis and Numerical Results

We now attempt to develop analytical approximations for
the throughput by refining the qualitative explanations given

346 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

earlier. The analysis is approximate for several reasons: i) an
exact analysis of multiple connections with different propa-
gation delays is not available even for fixed windows, which
makes it necessary to approximate the queueing delaysin
(28) and (29); ii) it is necessary to further approximate the
result of step i) in order to solve analytically the differential
equations arising from a continuous-time approximation to
the window evolution; iii) our assumption of synchronized
evolution for all connections does not hold exactly; and iv)
our analysis is based on a “fixed point” argument, which
assumes periodic behavior that may not hold exactly in the
actual system.

In the case of TCP-reno, there is an additional approxi-
mation. The number of packets lost by a connection in a
congestion episode determines what factor the window size
is reduced by. This number varies over different congestion
episodes for each connection, and it is difficult to take this
variation into account in the analysis. Simulation results show
that each connection typically loses about two packets on the
average in each congestion episode. Losses occur when the
buffer is full and one of the connections increases its window
by one. When cells from this new packet arrive at the buffer,
they typically cause losses to cells belonging to two packets
(the tail of the packet arriving from the other connection and
the head of the next). So on the average one would expect
3 packets to be lost per collision. In our example of two
connections with 40- and 80-ms round trip times, once the
buffer is full and a collision happens, the congestion episode
lasts for 40 ms. During this period the 80 ms connection
increases its window roughly 50% of the time, so that the
average number of lost packets due to this increase in 1.5.
Therefore 4.5 packets in total, or 2.25 packets per connection,
are lost on the average per congestion episode. We will assume
in our analysis that each connection losesexactlytwo packets
in each congestion episode, so that the new window size is
one-fourth of the window size at the onset of congestion.2

Note that the connections evolve in approximate synchrony.
This is because whenever a collision happens due to a con-
nection’s window increasing when the buffer is full, all cells
arriving during the period over which the collision-causing
packet arrives are dropped. With the assumption of infinite
sources and cell jitters not more than a packet transmission
time on an input link, all connections will transmit cells during
the time over which the collision-causing packet arrives.
Hence, all connections lose packets and halve their windows
within the maximum round-trip time.

Assume now that the TCP-tahoe connections evolve
periodically and in synchrony as follows. In the congestion
avoidance phase of each cycle, connectiongoes from an
initial window value of to a value of , at which point
packets are lost by each connection. Here, for TCP-tahoe
(assuming that each connection loses at least one packet), and

for TCP-reno (assuming that each connection loses
exactly two packets). We therefore obtain that the window

2The preceding assumption is not necessary for TCP-tahoe. As long as each
connection loses at least one packet in a congestion episode, all the window
sizes drop to one, and the slow start threshold for each connection is set at
half of its current window size.

size at the beginning of the congestion avoidance phase is
again (ignoring the slow start phase for the next cycle in
the case of TCP-tahoe). We would like to find the value of the

such that the preceding “fixed point” behavior holds, and
use the resulting window evolution to estimate the throughput
obtained by each connection.

In order to solve (29), we must estimate the queueing delays
. At any instant of time, the can be taken to be the

average delays for an analogous system withfixed windows
. If the link utilization is known to be 100%, and if it

is assumed that for all (this has been validated by
simulations for fixed windows), then, from (28), the delay
must satisfy the following equation:

for 100% utilization. (30)

At present, we do not know how to compute the delay when
the utilization isless than100%. In fact, we do not even have
a criterion for when the utilization is 100% (we have derived
necessary and sufficient conditions, but these do not coincide).
Finally, solving (29) analytically when the are given by the
implicit expression (30) appears difficult. We therefore use the
following simple approximations. We divide the evolution in
the cycle into two phases:

Phase A:

Phase B:

The condition for Phase B can be shown to be a necessary
(but not sufficient) condition for 100% utilization. If the buffer
size is large compared to the bandwidth-delay product, Phase
A may not occur at all, since the link may be fully utilized even
when the window sizes are reduced following a congestion
episode. We must therefore consider two different cases in the
analysis.

Case 1—Small Buffers:Assume that the link is not always
fully utilized during congestion avoidance, and that the queue-
ing delays for all connections are the same, , where

is given by

in Phase A

in Phase B.
(31)

The motivation for the preceding approximation is as follows.
Since the utilization is known to be less than 100% in Phase A,
we assume that there is no waiting in queue in this phase. Phase
B, on the other hand, starts from a delay of zero, and ends with
a delay of , assuming that the typical queue length is
approximately the same as the maximum queue length toward
the end of Phase B (recall that Phase B ends when the latter
exceeds). We therefore use , the “average” delay
value during Phase B, as the value of the queueing delay used
in (29) for this phase.

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 347

Substituting (31) in (29), we obtain

in Phase A

in Phase B.
(32)

Starting from an initial value of , we obtain that

(33)

(34)

where , denote the durations of Phase A and B, respec-
tively. These quantities are obtained as (linear) functions of
the as follows. We have

which yields, using (33), that

(35)

We now compute the duration of the second phase. This
phase lasts until the delay grows to , at which point the
current cycle terminates. Since the link is fully utilized at this
time, using (28), we obtain that the duration of this phase
is given by the equation

(36)

Substituting from (33) to (35), we obtain as a linear function
of the . Since the window size at the end of the second
phase is times the starting window size for the next cycle,
invoking the fixed point condition gives that

(37)

These are linear equations in the unknowns,
. While we ignored the slow start phase in

computing the slow start thresholds, we can now estimate
the the duration and number of packets for this period as

and , respectively. This yields
the following estimate for the average throughput for the
th connection:

reno

tahoe

(While the preceding expressions are similar, note that the
value of used in (37) to compute the times and is

for TCP-tahoe and for TCP-reno.)
Case 2—Large Buffers:The analysis of Case 1 does not

apply when the buffer size is large enough that the link is fully
utilized throughout congestion avoidance, despite the window
size reduction following the onset of congestion. In fact, the
analysis in Case 1 yields that is negative, which therefore
provides a simple criterion as to when to apply the analysis in
Case 2 which is described in the following.

Assuming that the link is always fully utilized during
congestion avoidance, let be the (unknown) minimum
value of the queueing delay seen at the beginning of congestion
avoidance. Using the average of this and the maximum queue-
ing delay to linearly approximate the window evolution
described by (29), we obtain that

(38)

where is the window size of the th connection at the
beginning of congestion avoidance. Using the fixed point
argument,

(39)

It follows from (45) and (46) that

(40)

Since the link is fully utilized, the following equations must
hold:

(41)

(42)

Using (40)–(42), we can eliminate the and solve for .
We can substitute back to solve for the and the duration

of the congestion avoidance phase. The throughputs are
given by

TCP-reno

TCP-tahoe

348 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

TABLE V
RELATIVE THROUGHPUTS FORTWO TCP-TAHOE CONNECTIONS WITH

DIFFERENT PROPAGATION DELAYS FOR � = 100 AND BUFFER SIZE B = 80

TABLE VI
RELATIVE THROUGHPUTS FORTWO CONNECTIONS WITH �1 = 80

MS, �2 = 40 MS, � = 96000 CELLS/S (DS-3 LINK RATE)

D. Numerical Results

For TCP-tahoe, analysis and simulation results are compared
for the simple model described in Section II. Table V gives
the relative throughputs for two connections with
different propagation delays. The agreement between analysis
and simulation is seen to be quite good.

For TCP-reno, simulation results obtained for the ATM
system described in Section V-C are compared with analytical
results for the simple model of Section II. Table VI gives
the relative throughputs for two connections
with different propagation delays. As described earlier, the
analytical results are obtained assuming that exactly 2 losses
occur per congestion episode, so that in (37) and (39).
Despite this coarse characterization of the loss behavior at
the onset of congestion, and despite all the other simplifying
approximations we have made, the agreement between analysis
and simulation is quite good for all values of the buffer size.

VI. CONCLUSIONS

The results stated in the introduction and developed in the
rest of the paper imply the following observations (some of
which are speculations regarding suitable directions for future
research) regarding TCP in high-bandwidth delay product
networks.

1) The use of cumulative acknowledgment in TCP moti-
vates the TCP-tahoe feature of reducing the window
size to one after a loss in order to avoid a burst of
packets when the retransmission gets through. This in
turn makes an exponential increase of window size in
slow start necessary, especially for high bandwidth-delay
networks, in order obtain nontrivial link utilizations. On
the other hand, this exponential increase causes bursty
traffic, which, if the buffer size is smaller than 1/3 of the
bandwidth-delay product, causes buffer overflow and a
second slow start phase, leading to a lower throughput.
TCP-reno tries to avoid this phenomenon by cutting
the window to half when it detects a loss. While this
does provide better throughput under ideal conditions,

TCP-reno in its present form is too vulnerable to phase
effects and multiple packet losses to be a replacement
for TCP-tahoe. The basic problem with TCP-reno is
that there can be multiple window cutbacks due to
a single congestion episode, and that multiple losses
can lead to a timeout (which in practice can lead to
significant throughput loss if coarse timeouts are used).
A recently proposed version of TCP (TCP-Vegas) [4]
attempts to address this problem, in addition to other
proposed changes such as more sophisticated processing
of round-trip time estimates. A detailed discussion of
TCP-Vegas is beyond the scope of this paper. However,
in our opinion, in order to significantly improve upon
the present versions of TCP, it is necessary to avoid the
drastic window reductions in both TCP-tahoe and TCP-
reno except when there is sustained congestion (which
would cause multiple losses). One possible means of
handling isolated losses without changing the window
size is by using some form of selective acknowledgment
(in which case TCP dynamics should be reworked to
take advantage of such an added feature). Pending devel-
opment of a satisfactory replacement, we recommend the
use of TCP-tahoe (together with network level controls
to optimize its performance), since it is far more robust
than TCP-reno.

2) TCPs vulnerability to random loss makes it difficult
to multiplex data traffic with real-time traffic with a
rapidly time-varying rate, especially if both kinds of
traffic share the same buffer, as is the case with most
current networks. In emerging ATM networks, however,
TCP connections might be supported over the UBR or
ABR traffic classes, which would typically be buffered
separately from higher priority variable bit rate (VBR) or
constant bit rate (CBR) traffic. If the latter traffic classes
have higher priority, TCP connections would see a time-
varying link capacity left over after VBR and CBR traffic
has been served. These variations could lead to “ran-
dom loss,” which we have shown can seriously impact
performance. However, if there is sufficient buffering
to absorb these variations and to keep the end-to-end
packet loss probability below the inverse square of the
bandwidth-delay product, then our results also imply
that TCP performance would not be seriously affected.
The results of this paper could therefore form a basis
for further investigation as to the buffer sizes required
to support TCP over ABR or UBR service classes in
ATM. Indeed, we have applied the results here to the
design of wireless-wireline interfaces to “hide” the time
variations in a wireless channel from TCP/IP [5], so
that the random loss seen by TCP is small enough to
maintain a high throughput.

3) The unfairness of TCP toward connections with higher
propagation delays could cause performance problems
when multiplexing short and long-haul traffic on WANs.
For guaranteed performance in highly utilized networks,
each TCP connection should be given reserved buffer
and bandwidth resources throughout the network. Typ-
ically, the resource allocation would be determined at

LAKSHMAN AND MADHOW: THE PERFORMANCE OF TCP/IP FOR NETWORKS WITH HIGH BANDWIDTH-DELAY PRODUCTS AND RANDOM LOSS 349

connection set-up and enforced at switches and routers
using per connection queueing [6], [21]. Since admin-
istering the resources allocated toevery best effort
connection may be excessively expensive, a more fea-
sible alternative might be to allocate and administer
resources for an entire traffic class. In such a situation,
the unfairness we have pointed out would persist if
TCP were supported over the ATM UBR traffic class.
However, if TCP is supported over the ABR traffic class,
the time-varying rate available to each connection is
determined at the network level and is administered at
the source, so that different TCP connections should be
isolated from each other to a large extent even if they
share the same network buffers.

4) In addition to causing vulnerability to random loss,
the fact that loss is the sole means of feedback used
by TCP leads to excessive delays. This is because,
in networks with high utilizations, the window size
for a TCP connection would keep increasing after the
bottleneck link is fully utilized, until in fact there is a
buffer overflow leading to a loss. The delay and loss
performance would improve significantly if we instead
used a scheme that tries to maintain a window size which
is just large enough to achieve a high link utilization.
A scheme such as DECbit [22] attempts to do this
using explicit feedback from the switches, and similar
schemes are worth pursuing, especially because Explicit
Congestion Notification is incorporated as an option for
ATM networks. Note, however, that the DECbit scheme
in particular shares with TCP the problem of unfair-
ness toward connections with longer propagation delays.
Another possibility is a more sophisticated processing
of round-trip time estimates similar to the approach
taken in [18], [19]. This is certainly attractive, since
it avoids the need for explicit feedback. However, if
the round-trip delays can change substantially without
changes in the load on the path of the connection
(e.g., because processing delays at nodes depend on
the load on the operating system, or because of delays
due to handoffs for mobile computing applications),
then adaptation based on delay processing might be less
robust than adaptation based on loss or explicit feedback.
In addition, if different connections are not isolated
from each other in terms of their use of bandwidth and
buffering in the network, then a connection that is more
aggressive about obtaining bandwidth by increasing its
rate until there is a loss would be at an advantage
over connections that process round-trip delays to avoid
congestion. Thus, changes at the transport layer must
either be adopted universally, or must go hand in hand
with network layer controls that guard against greedy
connections.

In summary, while we have identified several shortcomings
of TCP, we have also mentioned possible means of obtain-
ing good performance via network level solutions, such as
isolating connections from each other and providing enough
buffering to hide excessively fast time variations in available
link capacity from TCP. An important topic for future research

is, for each context of interest, to translate these into specific
recommendations, and to provide systematic design techniques
for arriving at these recommendations. Especially interesting
is the question of how best to support TCP over the ATM ABR
and UBR service classes, since that involves adaptation at both
the network and transport layers. Another important area for
future research is the development of an alternative dynamic
window mechanism which addresses some of the shortcomings
of TCP while preserving its decentralized nature. Possible
improvements might be better congestion avoidance via more
sophisticated processing of round-trip delay estimates, and the
use of selective acknowledgments to improve the performance
in the presence of random loss.

APPENDIX

We give the details of the approximation for the throughput
with loss, taking as our starting point (27) in Section IV.

We consider only the case . Considering TCP-reno
first, with the threshold at the beginning of the cycle given by

given by (26) instead of . Referring to the
analysis in Section III of the congestion avoidance phase, the
instantaneous throughput is given by

(43)

and the number of successful packets by timeis there is no
random loss is given by

(44)

Given the simple form of (43), it is easy to compute
explicitly using (44). Substituting into (27), and using (18),
we obtain

TCP-reno (45)

This is the expression that is plugged into Mathematica to
generate the desired results.

For TCP-tahoe, according to our approximation, the thresh-
old for the slow start phase is now given by . The
case-wise analysis of Section III-A for this value of yields

, , and . We assume for simplicity that there is no
random loss in the slow start phase(s), since relatively few
packets are transmitted in this phase. As for TCP-reno, the
instantaneous throughput in the congestion avoidance phase is
given by (43) (it is convenient to take to correspond
to the beginning of congestion avoidance rather than to the
beginning of the cycle), and the number of successful packets
by time is given by A simple
modification of (52) which includes the duration of the
slow start phase yields the following approximation for the

350 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 3, JUNE 1997

average throughput:

TCP-tahoe (46)

ACKNOWLEDGMENT

The authors would like to thank T. Ott for getting them
started on this problem.

REFERENCES

[1] ATM Forum Traffic Management Specification Version 4.0, Draft Speci-
fication ATM Forum/95-0013R11,ATM Forum, Mar. 1996.

[2] J. Bolot and A. U. Shankar, “Dynamical behavior of rate-based flow
control mechanisms,”Comp. Comm. Rev.,pp. 35–49, Apr. 1990.

[3] J. Bolot, “End-to-end packet delay and loss behavior in the Internet,”
in Proc. ACM SIGCOMM’93.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance,” inProc. ACM
Sigcomm,Aug. 1994.

[5] H. Chaskar, T. V. Lakshman, and U. Madhow, “On the design of
interfaces for TCP/IP over wireless,” inProc. IEEE Milcom’96.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” inProc. ACM SIGCOMM’89.

[7] K. W. Fendick, D. Mitra, I. Mitrani, M. A. Rodrigues, J. B. Seery, and A.
Weiss, “An approach to high performance, high speed data networks,”
IEEE Comm. Mag.,pp. 74–82, Oct. 1991.

[8] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks, Part 1: One-way traffic,”Comp. Comm. Rev.,vol.
21, no. 5, pp. 30–47, Oct. 1991.

[9] S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched
gateways,”Internetworking: Research and Experience,vol. 3, no. 3,
pp. 115–156, Sept. 1992. (An earlier version of this paper appeared in
Comp. Comm. Review,vol. 21, no. 2, Apr. 1991.)

[10] ——, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Trans. Networking,vol. 1, no. 4, pp. 397–413, Aug. 1993.

[11] V. Jacobson, “Congestion avoidance and control,” inProc. ACM SIG-
COMM’88, pp. 314–329.

[12] ——, “Modified TCP congestion avoidance algorithm,” message to
end2end-interest mailing list, Apr. 1990, URL ftp://ftp.ee.lbl.gov/email/
vanj.90apr30.txt.

[13] ——, “Berkeley TCP evolution from 4.3-tahoe to 4.3-reno,” inProc.
18th Internet Engineering Task Force,Vancouver, Aug. 1990.

[14] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC (request for comment) 1323, May 1992.

[15] P. Karn and C. Partridge, “Improving round-trip time estimates in
reliable transport protocols,”ACM Trans. Comp. Sys.,vol. 9, no. 4,
pp. 364–373, Nov. 1991.

[16] T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error
recovery and flow control with a slow acknowledgment channel: A study
of TCP/IP performance,” inProc. IEEE Infocom 1997.

[17] B. Makrucki, “On the performance of submitting excess traffic to ATM
networks,” inProc. Globecom 1991,Dec. 1991, pp. 281–288.

[18] D. Mitra, “Asymptotically optimal design of congestion control for
high speed data networks,”IEEE Trans. Commun.,vol. 40, no. 2, pp.
301–311, Feb. 1992.

[19] D. Mitra and J. B. Seery, “Dynamic adaptive windows for high speed
data networks with multiple paths and propagation delays,”Computer
Networks and ISDN Systems,vol. 25, pp. 663–679, 1993.

[20] A. Mukherjee and J. C. Strikwerda, “Analysis of dynamic congestion
control protocols—A Fokker–Planck approximation,” inProc. ACM
SIGCOMM’91,pp. 159–169.

[21] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks—The multiple
node case,” inProc. IEEE Infocom’93.

[22] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks with a connectionless
network layer,” inProc. ACM SIGCOMM’88,pp. 303–313.

[23] S. Shenker, “A theoretical analysis of feedback flow control,” inProc.
ACM SIGCOMM’90,pp. 156–165.

[24] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on the
dynamics of a congestion control algorithm,”Comp. Comm. Review,
pp. 30–39, Oct. 1990.

[25] G. R. Wright and W. R. Stevens,TCP/IP Illustrated, Volume 2, The
Implementation. Reading, MA: Addison Wesley, 1995.

[26] L. Zhang, “A new architecture for packet switching network protocols,”
Ph.D. dissertation, MIT Lab. Comput. Sci., Cambridge, MA, 1989.

[27] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic,” in
Proc. ACM SIGCOMM’91,pp. 133–147.

T. V. Lakshman (M’86) received the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Maryland, College Park, in 1984 and 1986.
Prior to that he received a Master’s degree from the
Department of Physics, Indian Institute of Science,
Bangalore, India.

From 1986 to 1995, he was at Bellcore where
he was most recently a Senior Research Scientist
and Technical Project Manager in the Information
Networking Research Laboratory. He is currently
with the High Speed Networks Research Depart-

ment at Bell Labs. His recent research has been in issues related to traffic
characterization and provision of quality of service for video services, end-
to-end flow control in high-speed networks, traffic shaping and policing,
ATM switching, and parallel architectures for fast signaling and connection-
management in high-speed networks. His current research interests are in
the areas of high-speed networking, distributed computing, and multimedia
systems.

Dr. Lakshman is a co-recipient of the 1995 ACM Sigmetrics/Performance
Conference Outstanding Paper Award. He is an Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING.

Upamanyu Madhow (SM’96) received the bache-
lor’s degree in electrical engineering from the Indian
Institute of Technology, Kanpur, India, in 1985. He
received the M.S. and Ph.D. degrees in electrical
engineering from the University of Illinois, Urbana-
Champaign, in 1987 and 1990, respectively.

From August 1990 to July 1991, he was a Visiting
Assistant Professor at the University of Illinois.
From August 1991 to July 1994, he was a re-
search scientist at Bell Communications Research,
Morristown, NJ. Since August 1994, he has been

an Assistant Professor with the Department of Electrical and Computer
Engineering at the University of Illinois, Urbana-Champaign. His current
research interests are in communication systems and networking, with current
emphasis in wireless communications and high speed wide area networks.

Dr. Madhow is a recipient of the NSF CAREER award. He was awarded the
President of India Gold Medal for graduating at the top of his undergraduate
class.

