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Abstract

Communication Transceiver Design with Low-Precision

Analog-to-Digital Conversion

by

Jaspreet Singh

As communication systems scale up in speed and bandwidth, the cost and

power consumption of high-precision (e.g., 10–12 bits) analog-to-digital converter

(ADC) becomes the limiting factor in modern receiver architectures based on dig-

ital signal processing. One possible approach to relieve this ADC bottleneck is to

employ a low-precision (e.g., 1–4 bits) ADC. This may be suitable for applications

requiring limited dynamic range, such as line-of-sight communication using small

constellations. However, the drastic reduction of ADC precision raises funda-

mental questions, at both information-theoretic and algorithmic levels, regarding

whether it is even possible to engineer a communication link with such a signif-

icant nonlinearity so early in the receiver processing. In this thesis, we present

results from our efforts towards answering some of these questions.

We first investigate the Shannon-theoretic limits of communication imposed

by the choice of low-precision ADC, for transmission over the ideal real additive

white Gaussian noise channel. For an ADC employing K quantization bins (i.e.,

a precision of log2 K bits), we prove that the channel capacity can be achieved
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using a discrete input distribution with at most K+1 support points. A joint

optimization over the choice of the input and the quantizer is performed, and the

obtained numerical results reveal that at SNR up to 20 dB, the use of 2-3 bit ADC

incurs a loss of only about 10-15 % in capacity compared to unquantized observa-

tions. Furthermore, we observe that a sensible choice of uniform pulse amplitude

modulated input, with quantizer thresholds set to perform maximum likelihood

hard decisions, achieves performance close to that attained by an optimal input

and quantizer pair.

We then turn our attention to the problem of carrier synchronization using

low-precision ADC. We focus on a block noncoherent channel model, wherein the

phase rotation caused by a small frequency offset, although a priori unknown, can

be approximated as constant over a block of symbols. For M-ary phase shift keyed

(M-PSK) inputs, the performance of phase-only quantization, which is attractive

due to its ease of implementation, is investigated. The symmetry inherent in the

resulting phase-quantized channel model is exploited to obtain low-complexity al-

gorithms for channel capacity computation and block noncoherent demodulation.

Numerical results, quantifying the channel capacity, and the uncoded error rates,

are obtained for QPSK input with different number of phase quantization sectors

and different block lengths. Dithering the constellation is shown to improve the

performance in the face of drastic quantization.
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Chapter 1

Introduction

The last decade has witnessed rapid mass market deployment of cellular and

wireless local area network communication systems. This has been propelled by

the economies of scale provided by the low-cost integrated circuit implementation

of sophisticated digital signal processing (DSP) algorithms that perform the bulk

of the receiver functionalities, such as synchronization, channel estimation and

equalization, demodulation and decoding. An integral component of such DSP-

centric receiver architectures is the analog-to-digital converter (ADC), which con-

verts the received analog waveform into the digital domain with a sufficiently high

precision (Fig. 1.1). As we look to scale this DSP-centric design philosophy to

higher speeds and bandwidths (to achieve data rates of the order of multi-Gigabit

per second), the ADC becomes a bottleneck: high-speed high-precision ADC is

either not available, or is costly and power-hungry [1]. On the other hand, the

continuing progress of Moore’s “law” [3] implies that the integrated circuit im-
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Figure 1.1: Modern DSP-centric receiver design. Does it scale to multi-Gigabit
per second speeds ?

plementation of DSP algorithms is expected to continue to scale up in speed and

down in cost. It is of interest, therefore, to explore the feasibility of DSP-centic

transceiver design with low-precision ADC at the receiver.

The conventional approach to transceiver design, when the available ADC pre-

cision is high enough (10–12 bits or more), is to perform the design assuming that

the ADC has infinite precision, and to then conduct simulation tests to obtain

the algorithmic refinements needed to accommodate the effects of finite precision.

This paradigm for design and implementation is predicated on the assumption

that the performance with high-precision quantization essentially replicates that

with infinite precision. For drastically quantized systems (1–4 bits), this paradigm

breaks down, since the effect of such severe quantization is expected to be fun-

damentally different from that of high-precision quantization. This mandates a

comprehensive rethinking of the system design, ranging from a Shannon-theoretic

2



Chapter 1. Introduction

investigation to the design of new algorithms for performing the various receiver

operations, with the starting assumption that the ADC used at the receiver has

low-precision. In this thesis, we present results obtained from our efforts towards

building such an understanding of the impact of low-precision ADC.

We focus attention on transmission over the classical bandlimited additive

white Gaussian noise (AWGN) channel model. Not only is this model of funda-

mental significance, it also forms a good approximation for one of the emerging

applications for multi-Gigabit communication: short range line-of-sight wireless

communication in the 60 GHz mmwave band [4]. Communication in this band

must inherently be directional, in order to compensate for the severe free space

propagation loss, which scales up as the square of the carrier frequency. For-

tunately, the large carrier frequency (and hence the small wavelength) makes it

possible to use low-cost antenna arrays in order to synthesize highly directional

beams. This cuts down drastically on the multipath, so that a short range di-

rectional link operating in this band is well approximated by an AWGN model.

Furthermore, the limited dynamic range requirement in an AWGN setting indi-

cates, in the first place, that low-precision ADC may suffice to provide acceptable

performance. This is in contrast to transmission over severe fading and dispersive

channels, which would necessitate a large receiver dynamic range, unless we per-
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Chapter 1. Introduction

form some precoding at the transmitter. We do not tackle the latter problem in

this thesis.

1.1 Contributions

Consider linear modulation over the bandlimited AWGN channel. As a first

step, let us assume ideal carrier synchronization (no frequency or phase offset be-

tween the local oscillator at the receiver and the incoming carrier wave), and ideal

timing synchronization (enabling ideal Nyquist-rate sampling). Under the first as-

sumption, we can separate out the in-phase (I) and quadrature (Q) components,

and restrict attention to a real baseband AWGN channel. If the Nyquist-rate

samples received over this channel are now quantized drastically, we obtain a real

discrete-time memoryless quantized AWGN channel model. As our first prob-

lem, we investigate the information-theoretic limits of communication over this

channel.

1. The AWGN-Quantized Output Channel

The capacity of the average power constrained discrete-time AWGN channel,

along with the fact that a Gaussian input distribution achieves the capacity, is

perhaps the most well known result of information theory. Under output quantiza-

tion, however, we find that the Gaussian input distribution is no longer optimal.
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Rather, the capacity can be achieved using a discrete input. The main results

from our investigation are the following [5].

1. For K-bin (i.e., log2 K bits) output quantization, we prove that the input

distribution need not have any more than K + 1 mass points to achieve the

channel capacity. (Numerical computation of optimal input distributions re-

veals that K mass points are sufficient.) An intermediate result of interest is

that, when the channel output is quantized with finite-precision, an average

power constraint on the input leads to an implicit peak power constraint, in

the sense that an optimal input distribution must have bounded support.

2. For the extreme scenario of 1-bit symmetric quantization, the preceding

result is tightened analytically to show that binary antipodal signaling is

optimal for any signal-to-noise ratio (SNR). An analytical expression for

the channel capacity is also provided. For multi-bit quantizers, tight upper

bounds on capacity are obtained using a dual formulation of the channel

capacity problem. Near-optimal input distributions that approach these

bounds are computed using the cutting-plane algorithm [2].

3. While the preceding results optimize the input distribution for a fixed quan-

tizer, comparison with an unquantized system requires optimization over the

choice of the quantizer as well. We numerically obtain optimal 2-bit and 3-

5



Chapter 1. Introduction

bit symmetric quantizers. From our numerical results, we infer that the use

of low-precision ADC incurs a relatively small loss in capacity compared to

unquantized observations. For example, at 0 dB SNR, a receiver with 2-bit

ADC achieves 95% of the capacity attained with unquantized observations.

Even at a moderately high SNR of 20 dB, a receiver with 3-bit ADC achieves

85% of the capacity attained with unquantized observations. This indicates

that DSP-centric design based on low-precision ADC is indeed attractive

as communication bandwidths scale up, since the small loss in spectral ef-

ficiency should be acceptable in this regime. Furthermore, we observe that,

for K-bin quantization, a “sensible” choice of standard equiprobable K-level

pulse amplitude modulated input, with the ADC thresholds set to imple-

ment maximum likelihood hard decisions, achieves performance which is

quite close to that obtained by numerical optimization of the quantizer and

input distribution.

Given the encouraging nature of these results, our next step is to remove some

of the idealizations in the channel model. Towards that, we turn our attention

to the problem of carrier synchronization. While the receiver’s local oscillator

(LO) can be locked to the frequency of the incoming carrier wave using a classical

analog feedback loop, we continue with the modern DSP-centric view, in which

all of the processing happens at the baseband, and is mostly digital. Thus, we

6



Chapter 1. Introduction

assume that the LO at the receiver employs a fixed frequency, independent of the

incoming passband signal.

One possible approach to handle the LO asynchronism is to employ train-

ing based methods for explicit estimation and correction of the frequency offset,

which if accomplished sufficiently well, takes us back to the coherent AWGN chan-

nel model considered in our first problem. However, an alternate noncoherent ap-

proach can eliminate the need for explicit estimation and correction, by exploiting

the fact that, in practice, the value of the frequency offset is small enough to as-

sume that the phase after downconversion, although a priori unknown, can be well

approximated as constant over a small number of symbols. The classical method

to exploit this is to approximate the phase as constant over two symbols and apply

differential modulation and demodulation. More recent work has demonstrated

that significant performance gains can be obtained by considering larger blocks,

at least with unquantized observations. As our second problem, we investigate

the impact of low-precision quantization on the performance achievable over the

block noncoherent channel, while restricting attention to standard M-ary phase

shift keying (M-PSK) input constellations.

7
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Figure 1.2: QPSK input and 8-sector phase quantization

2. Block Noncoherent Communication with Output Quantization

There can be several ways to quantize a complex-valued received symbol. Phase

quantization, illustrated in Fig. 1.2, is an attractive option due to its ease of

implementation : it eliminates the need for automatic gain control (AGC), and

can be implemented using only 1-bit ADCs preceded by analog multipliers (more

details are provided later in Chapter 4). Moreover, for PSK inputs, the informa-

tion is encoded in the phase of the transmitted symbols, so that we can expect

phase quantization to perform well. For M -PSK input with K-level uniform phase

quantization of the received symbols, we obtain the following results [6, 7].

1. We begin by studying the structure of the input-output relationship of the

phase quantized block noncoherent AWGN channel. For the special case

when M divides K, we exploit the symmetry inherent in the channel model

to derive several results characterizing the output probability distribution

8



Chapter 1. Introduction

over a block of symbols, both conditioned on the input, and without con-

ditioning. These results are used to obtain a low complexity procedure for

computing the capacity of the channel (brute force computation has com-

plexity exponential in the block length L).

2. We also obtain low complexity optimal block noncoherent demodulation

rules. These rules are obtained by specializing the existing low complexity

procedures for block demodulation with unquantized observations, to our

setting with quantized observations. A close analysis of the block demod-

ulator reveals that, depending on the number of quantization sectors, the

symmetries inherent in the channel model (which on the one hand help us

compute the capacity efficiently) can also have a dire consequence : they can

make it impossible to distinguish between the effect of the unknown phase

offset and the phase modulation. As a result, we may have two equally

likely inputs for certain outputs, irrespective of the block length and the

SNR, leading to severe performance degradation. In order to break the un-

desirable symmetries, we propose a dithered-QPSK input scheme, in which

we rotate the QPSK constellation across the different symbols in a block.

3. Numerical results are obtained for QPSK input with 8 and 12 sector phase

quantization, for different choices of the block length L. We find that 8-

9



Chapter 1. Introduction

sector quantization, with a dithered-QPSK input, achieves more than 80-85

% of the capacity achieved with unquantized observations (with an identical

block length), while with 12-sector quantization, and no dithering, we can

get as much as 90-95 % of the unquantized capacity. The corresponding

loss in terms of SNR, for fixed capacity, varies between 2 – 4 dB for 8-

sector quantization, and between 0.5 – 2 dB with 12 sectors. In terms of

the uncoded symbol error rates (SER), the performance degradation is of

the same order. For instance, at SER= 10−3, the loss for 8 and 12 sector

quantization, compared to unquantized observations, is about 4 dB and 2

dB respectively.

1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we provide

some background on the different topics related to our work. This includes a brief

overview of the ADC technology, survey of the prior work on signal processing

with low-precision sampling, and background information on Shannon-theoretic

notions. Chapters 3 and 4 present our work on the quantized ideal AWGN channel

and the quantized block noncoherent AWGN channel, respectively. Chapter 5

contains our conclusions and directions for future research.
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Chapter 2

Background

We start this chapter by highlighting the limitations that hinder the progress

of the ADC technology. These limitations and their impacts were illustrated in

detail by Walden in a comprehensive state-of-the-art survey conducted in 1999

[1].

2.1 ADC Technology

The results published in Walden’s survey are reproduced here in Fig. 2.1. A

notable conclusion from the survey was the observation that for large sampling

rates (above 2 MS/s), the available ADC precision falls off by 1 bit for every

doubling of the sampling rate. This was attributed to aperture jitter, the error

due to the sample-to-sample variation in the instant of conversion. Another fun-

damental limitation on the performance of the ADC is imposed by comparator

ambiguity, which characterizes the uncertainty arising due to the finite speed with

11



Chapter 2. Background

Figure 2.1: ADC technology trends published in Walden’s survey [1]. The vari-
ous curves depict the fundamental limitations on the achievable precision imposed
by different non-idealities.

which the comparators used in the ADC can respond to the variations in the input

voltage. This ambiguity is governed by the speed of the device technology used

to fabricate the ADC. While it places an absolute limit on the sampling rate of

the ADC, Walden’s analysis showed that it also imposes limits on the achievable

precision of the ADC, which falls off rapidly as we move to Gs/s rates. As far as

the evolution of the ADC technology over time is concerned, it was observed that

12
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the progress was slow, with an average improvement of ∼ 1.5 bits for any given

sampling frequency over a period of six-eight years.

In addition to the precision and the sampling rate, power dissipation is another

key performance measure for ADCs. The power dissipated by an ADC depends on

the choice of its architecture. For high-speed applications, the flash architecture

is most preferred ([1], see also [8, Chapter 3]) due to its parallel design: to achieve

a resolution of N bits, the flash ADC uses 2N −1 comparators sampling the input

signal simultaneously. However, the exponential increase in the number of com-

parators as a function of the ADC precision leads to an exponential increase in the

power dissipation as well. Consequently, if we can achieve acceptable communica-

tion performance with low-precision ADC, it can lead to significant power savings,

while allowing us the liberty to use the fast and simple flash ADC architecture.

2.2 Signal Processing with Low-Precision ADC

Recognizing the limitations imposed by ADC technology, there have been prior

efforts in the circuit design community, as well as signal processing and commu-

nication communities, to explore the impact of low-precision ADC on commu-

nication system design. Most of this work has been in the specific context of

Ultrawideband (UWB) systems, designed to operate in the 3.1 to 10.6 GHz band
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[9]. In [10], the authors analyze the performance of several different UWB re-

ceivers using one-bit ADC, including the matched filter and transmitted reference

schemes, as well the use of dither and sigma-delta modulation. The impact of

low-precision ADC on the performance of a UWB receiver is studied in [11, 12].

Interference suppression for UWB signaling with one-bit ADC and analog pre-

processing is considered in [13]. Decomposition of the UWB signal into parallel

frequency channels, using pre-ADC analog components, in order to relax ADC

speed requirements is considered in [14, 15, 16]. Methods of moving complexity

to the transmitter, and to obtain spatial focusing gains akin to beamforming, by

the use of time reversal have been considered in [17, 18]. Finally, a more recent

work [19] explores a mixed-signal receiver architecture for designing a 1 Gbps link

in the 60 GHz mmwave band using low-precision ADC (4 bits).

The preceding contributions focus on specific applications, and are aimed at

devising strategies (possibly analog-centric) that “work” for those scenarios. How-

ever, the choice of low-precision ADC for communication system design is clearly

going to have fundamental ramifications that go beyond specific applications. The

objective of this thesis is to uncover some of these fundamental issues, keeping in

mind the long-term goal of devising DSP-centric receiver architectures.

While our emphasis here is on identifying Shannon-theoretic performance lim-

its, there is also prior work on fundamental problems of estimation using low-
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precision samples that may be relevant for further research on receiver design.

Such work includes the use of dither for reconstruction of a signal from its low-

precision samples [20, 21, 22], frequency estimation using 1-bit samples [23, 24],

study of the choice of the quantization threshold for signal amplitude estimation

[25], and signal parameter estimation using 1-bit dithered quantization [26, 27].

The ideas in these papers may be useful for the problems of synchronization,

channel estimation and equalization with low-precision ADC.

We now proceed to provide background on the subject of channel capacity,

which is the focus of our work in Chapter 3. The relevant background on the

problem of carrier synchronization, which we consider in Chapter 4, is provided

within that chapter.

2.3 Channel Capacity

The notion of a mathematical model for a noisy communication channel, and

its associated capacity, was formally introduced by Shannon in his seminal paper

in 1948 [28]. Modeling the channel as a probabilistic communication medium,

Shannon defined channel capacity to be the maximum possible rate at which we

can transfer data reliably over the channel, and provided an elegant mathematical

formula to characterize the capacity. While the result established the absolute lim-
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its of communication over a particular channel, it did not provide a constructive

coding mechanism which could be used to attain those limits. For a long pe-

riod of time, the Shannon limit remained elusive, as the performance of practical

coding techniques was found to be significantly inferior to what was promised by

Shannon’s results. This was until 1994, when Berrou et. al dramatically reduced

this gap to within a dB of the Shannon limit with the invention of turbo codes

[29, 30]. The field of error correction coding has since then been revolutionized,

with “turbo-like” codes being developed for a wide variety of channels and rates.

The rediscovery of Gallager’s low density parity check codes [31] by Mackay [32]

in 1999 has also provided an alternative coding approach to attain the Shannon

limit. Given these developments, it is of increasing interest to characterize the

capacity for different communication channels, hence our interest to study the

impact of low-precision ADC on the channel capacity.

2.3.1 Discrete Memoryless Channels

A discrete memoryless channel (DMC) is characterized by a finite set of channel

input symbols X = {x1, · · · , xM}, a finite set of channel output symbols Y =

{y1, · · · , yN}, and a transition probability matrix P = [P(yj|xi)], where P(yj|xi)

denotes the probability of the received symbol being yj when the transmitted

symbol is xi. The capacity of this channel (in bits/channel use) is defined to be

16



Chapter 2. Background

the maximum possible mutual information between the input and the output.

C = max
PX

I(X; Y ) (2.1)

= max
PX

∑
i

PX(xi)
∑

j

P(yj|xi) log
P(yj|xi)

PY (yj; PX)
, (2.2)

where PX denotes the probability mass function (PMF) of the channel input X

and PY (·; PX) denotes the PMF of the channel output Y induced by the input

PMF PX . For simple channel models (e.g., binary and/or symmetric channels), it

is usually possible to perform the optimization directly. For complicated channels,

the celebrated Blahut-Arimoto algorithm [33, 34] can be employed to perform the

optimization in iterative steps that guarantee convergence to the capacity.

2.3.2 Continuous Alphabet Channels

When the channel input and output are allowed to take a continuum of values,

rather than a finite discrete set of values, the capacity is given by

C = sup
FX

I(X; Y ) (2.3)

= sup
FX

∫ ∫
P(y|x) log

P(y|x)

PY (y; FX)
dy dFX(x) , (2.4)

where P(y|x) represents the transition density function that defines the chan-

nel, FX is the cumulative distribution function (CDF) of the channel input, and

PY (y; FX) is the output density induced by the input F . When the input and/or
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the output are discrete, the corresponding integral in (2.4) can be collapsed into

a summation, so that (2.2) is a special case of (2.4). The optimization in (2.4) is

usually performed under some set of power constraints on the input X.

From Shannon’s seminal work in [28] for a continuous-time bandlimited ad-

ditive white Gaussian noise (AWGN) channel, we know that the capacity for a

discrete-time real AWGN channel, under an average power constraint, is achieved

by a Gaussian input distribution. This is perhaps the most well-known result of

information theory. Shannon also considered the peak power constrained problem

(again for the continuous-time channel), and obtained a lower bound on the chan-

nel capacity, but could not characterize the optimal input. Smith in [35] showed

the rather surprising result that under peak power constraint, the capacity of the

discrete-time real AWGN channel is achieved by a discrete input distribution, with

a finite number of mass points. This was generalized to the discrete-time complex

AWGN channel in [36].

The optimality of a discrete input has recently been shown to hold for several

other continuous-alphabet channel models as well. This includes the Rayleigh

fading channel [37], Rician fading channel [38], vector Gaussian channels [39],

noncoherent AWGN channel [40], and the generalization of Smith’s results to a

bigger class of scalar additive channels [41]. For computation of the capacity for

continuous alphabet channels, one possibility is to use the Blahut-Arimoto algo-
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rithm after (finely) quantizing the support set of the input. An alternate approach

based on linear programming, aimed at finding near-optimal discrete input dis-

tributions for channels with continuous alphabets, has been recently proposed in

[2].

Moving on to the special case of finite-output channels (which is the subject

of interest for our work), there is prior work for both scenarios: when the input

alphabet is also finite (which corresponds to a DMC), and when the input is

allowed to be continuous. For the DMC, Gallager’s classic text [42] shows that for

output cardinality K, the capacity can be achieved by putting nonzero probability

mass on at most K input points. For continuous input alphabet, Witsenhausen

[43] has used Dubins’ theorem [44] to show an analogous result for peak power

constrained input. The key to the proof of our central result reported in Chapter

3, that the average power constrained capacity for K-level output quantization can

be attained with at most K+1 points, is to show that under output quantization,

an average power constraint automatically induces a constraint on the peak power

of the input. Once we have that, we use Dubins’ theorem in a manner analogous

to that in Witsenhausen’s work.

It is important to mention that there is also prior work on the impact of output

quantization on the mutual information achievable with fixed input distribution

[45, 46, 47]. However, we are not aware of an information-theoretic investigation
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with output quantization that includes optimization of the input distribution.

Another related class of problems that deserves mention relates to the impact

of finite-precision quantization on the information-theoretic measure of channel

cut-off rate rather than channel capacity (e.g., see [48, 49]).

2.4 Recent Related Work

Since the publication of the preliminary results from this thesis in [50, 51,

52], there have been other related efforts in the communication and information

theory literature to investigate the impact of low-precision ADC on system design.

Reference [53] considers the impact of overflows on the capacity under output

quantization, while reference [54] studies the fundamental communication limits

imposed by the precision of the ADC, from an information-theoretic view as well

as a theoretical physics view, applying the Heisenberg’s uncertainty principle to

the process of analog-to-digital conversion. Impact of receiver quantization in the

context of fading channels, and multiple input multiple output (MIMO) systems,

has been studied in [55, 56] respectively. Reference [57] investigates a scheme

in which the received complex signal is quantized using three low-precision ADCs

with three different phases (similar in principle to the phase quantization approach

considered in Chapter 4), and illustrates the achievable power savings using such
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an approach, while working with a mean squared error criterion to evaluate the

quantization performance.
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Chapter 3

The AWGN-Quantized Output
Channel

The discrete-time memoryless AWGN-Quantized Output (AWGN-QO) channel

is

Y = Q (X + N) . (3.1)

Here X ∈ R is the channel input with cumulative distribution function F (x), Y ∈

{y1, · · · , yK} is the (discrete) channel output, and N is N (0, σ2) (the Gaussian

random variable with mean 0 and variance σ2). Q maps the real valued input

X + N to one of the K bins, producing a discrete output Y . In this work, we

only consider quantizers for which each bin is an interval of the real line. The

quantizer Q with K bins is therefore characterized by the set of its (K − 1)

thresholds qqq := [q1, q2, · · · , qK−1] ∈ RK−1, such that −∞ := q0 < q1 < q2 < · · · <

qK−1 < qK := ∞. The output Y is assigned the value yi when the quantizer input

(X + N) falls in the ith bin, which is given by the interval (qi−1, qi]. The resulting
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transition probability functions are

Wi(x) = P(Y = yi|X = x)

= Q

(
qi−1 − x

σ

)
−Q

(
qi − x

σ

)
, 1 ≤ i ≤ K,

(3.2)

where Q(·) is the complementary Gaussian distribution function,

Q(z) =
1√
2π

∫ ∞

z

exp(−t2/2)dt . (3.3)

The Probability Mass Function (PMF) of the output Y , corresponding to the

input distribution F is

R(yi; F ) =

∫ ∞

−∞
Wi(x)dF (x), 1 ≤ i ≤ K, (3.4)

and the input-output mutual information I(X; Y ), expressed explicitly as a func-

tion of F is

I(F ) =

∫ ∞

−∞

K∑
i=1

Wi(x) log
Wi(x)

R(yi; F )
dF (x) .1 (3.5)

Under an average power constraint P , we wish to find the capacity of the channel

(3.1), given by

C = sup
F∈F

I(F ), (3.6)

where F =
{

F : E[X2] =
∫∞
−∞ x2dF (x) ≤ P

}
, i.e., the set of all average power

constrained distributions on R.

1The logarithm is base 2 throughout the chapter, so the mutual information is measured in
bits.
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Existence of an optimal input: The fact that there exists an input distribution

that achieves the capacity C follows by standard function analytic arguments. See

Appendix for details.

3.1 Structure of Optimal Inputs

We begin by employing the Karush-Kuhn-Tucker (KKT) optimality condition

to show that, even though we have not imposed a peak power constraint on the

input, it is automatically induced by the average power constraint. Specifically,

a capacity achieving distribution for the AWGN-QO channel (3.1) must have

bounded support.

3.1.1 Bounded Support

The KKT optimality condition for an average power constrained channel has

been derived in [37]. The mild technical conditions required for it to hold are ver-

ified for our channel model in the Appendix. The condition states that an input

distribution F ∗ achieves the capacity C in (3.6) if and only if there exists γ ≥ 0

such that
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F ∗)
+ γ(P − x2) ≤ C (3.7)
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for all x, with equality if x is in the support 2 of F ∗, where the transition probabil-

ity function Wi(x), and the output probability R(yi; F
∗) are as specified in (3.2)

and (3.4), respectively.

The summation on the left-hand side (LHS) of (3.7) is the Kullback-Leibler

divergence (or the relative entropy) between the transition PMF {Wi(x), i =

1, . . . , K} and the output PMF {R(yi; F ), i = 1, . . . , K}. For convenience, let

us denote this divergence function by d(x; F ), that is,

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )
. (3.8)

We begin by studying the behavior of this function in the limit as x →∞.

Lemma 1 For the AWGN-QO channel (3.1), the divergence function d(x; F ) sat-

isfies the following properties

(a) lim
x→∞

d(x; F ) = − log R(yK ; F ).

(b) There exists a finite constant A0 such that

for x > A0, d(x; F ) < − log R(yK ; F ).3

2The support of a distribution F (or the set of increase points of F ) is the set SX(F ) = {x :
F (x + ε)− F (x− ε) > 0, ∀ε > 0}.

3The constant A0 depends on the choice of the input F . For notational simplicity, we do not
explicitly show this dependence.
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Proof : We have

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )

=
K∑

i=1

Wi(x) log Wi(x)−
K∑

i=1

Wi(x) log R(yi; F ) .

As x → ∞, the PMF {Wi(x), i = 1, . . . , K} → 1(i = K), where 1(·) is the in-

dicator function. This observation, combined with the fact that the entropy of

a finite alphabet random variable is a continuous function of its probability law,

gives lim
x→∞

d(x; F ) = 0− log R(yK ; F ) = − log R(yK ; F ).

Next we prove part (b). For x > qK−1, Wi(x) is a strictly decreasing func-

tion of x for i ≤ K − 1 and strictly increasing function of x for i = K. Since

{Wi(x)} → 1(i = K) as x → ∞, it follows that there is a constant A0 such that

Wi(A0) < R(yi; F ) for i ≤ K − 1 and WK(A0) > R(yK ; F ). Therefore, it follows

that for x > A0,

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )

< WK(x) log
WK(x)

R(yK ; F )
< − log R(yK ; F ).

The saturating nature of the divergence function for the AWGN-QO channel,

as stated above, coupled with the KKT condition, is now used to prove that a

capacity achieving distribution must have bounded support.
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Proposition 1 For the average power constrained AWGN-QO channel (3.1), an

optimal input distribution must have bounded support.

Proof : Let F ∗ be an optimal input, so that there exists γ ≥ 0 such that

(3.7) is satisfied with equality at every point in the support of F ∗. We exploit this

necessary condition to show that the support of F ∗ is upper bounded. Specifically,

we prove that there exists a finite constant A2
∗ such that it is not possible to attain

equality in (3.7) for any x > A2
∗.

From Lemma 1, we get lim
x→∞

d(x; F ∗)=− log R(yK ; F ∗)=:L. Also, there exists

a finite constant A0 such that for x > A0, d(x; F ∗) < L.

We consider two possible cases.

• Case 1: γ > 0.

For x > A0, we have d(x; F ∗) < L.

For x >
√

max{0, (L− C + γP )/γ} =: Ã, we have γ(P − x2) < C − L.

Defining A∗
2 = max{A0, Ã}, we get the desired result.

• Case 2: γ = 0.

Since γ = 0, the KKT condition (3.7) reduces to

d(x; F ∗) ≤ C , ∀x.

Taking limit x →∞ on both sides, we get

L = lim
x→∞

d(x; F ∗) ≤ C.
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Hence, choosing A∗
2 = A0, for x > A∗

2 we get, d(x; F ∗) < L ≤ C, that is,

d(x; F ∗) + γ(P − x2) < C.

Combining the two cases, we have shown that the support of the distribution

F ∗ has a finite upper bound A2
∗. Using similar arguments, it can easily be shown

that the support of F ∗ has a finite lower bound A1
∗ as well, which implies that

F ∗ has bounded support.

Remark: For the (unquantized) AWGN channel, we know that the optimal

input has a Gaussian distribution, so that the support is unbounded. It is worth

checking, therefore, the behavior of the divergence function for the unquantized

AWGN channel. It is easy to obtain

dAWGN(x) =
1

2
log2

(
1 +

P

σ2

)
− 1

2 ln 2

(
P − x2

P + σ2

)
,

which does not saturate, but rather goes to ∞ as x →∞, enabling an equality in

the KKT condition even as x →∞

3.1.2 Optimality of a Discrete Input

In [43], Witsenhausen considered a stationary discrete-time memoryless chan-

nel, with a continuous input X taking values on the bounded interval [A1, A2] ⊂ R,

and a discrete output Y of finite cardinality K. Using Dubins’ theorem [44], it

was shown that if the transition probability functions are continuous (i.e., Wi(x)
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is continuous in x, for each i = 1, · · · , K), then the capacity is achievable by a

discrete input distribution with at most K mass points. As stated in Proposition

2 below (proved in the Appendix), this result can be extended to show that, if an

additional average power constraint is imposed on the input, the capacity is then

achievable by a discrete input with at most K + 1 mass points.

Proposition 2 Consider a stationary discrete-time memoryless channel with a

continuous input X that takes values in the bounded interval [A1, A2], and a dis-

crete output Y ∈ {y1, y2, · · · , yK}. Let the channel transition probability function

Wi(x) = P(Y = yi|X = x) be continuous in x for each i, where 1 ≤ i ≤ K.

The capacity of this channel, under an average power constraint on the input, is

achievable by a discrete input distribution with at most K + 1 mass points.

Proof : See Appendix.

Proposition 2, coupled with the implicit peak power constraint derived in the

previous subsection (Proposition 1), gives us the following result.

Theorem 1 The capacity of the average power constrained AWGN-QO channel

(3.1) is achievable by a discrete input distribution with at most K + 1 points of

support.

Proof : From Proposition 1, we know that an optimal input F ∗ has bounded sup-

port [A1
∗, A2

∗]. Hence, to obtain the capacity in (3.6), we can maximize I(F ) over
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only those average power constrained distributions that have support in [A1
∗, A2

∗].

Since the transition functions Wi(x) are continuous, Proposition 2 guarantees that

this maximum is achievable by a discrete input with at most K + 1 points.

Note that our result does not guarantee uniqueness of the capacity achieving

input.

3.1.3 Symmetric Inputs for Symmetric Quantization

For our capacity computations ahead, we assume that the quantizer Q em-

ployed in (3.1) is symmetric, i.e., its threshold vector qqq is symmetric about the

origin. Given the symmetric nature of the AWGN noise and the power constraint,

it seems intuitively plausible that restriction to symmetric quantizers should not

be suboptimal from the point of view of optimizing over the quantizer choice in

(3.1), although a proof of this conjecture has eluded us. However, once we as-

sume that the quantizer in (3.1) is symmetric, we can restrict attention to only

symmetric inputs without loss of optimality, as stated in the following Lemma.4

Lemma 2 If the quantizer in (3.1) is symmetric, then, without loss of optimality,

we can consider only symmetric inputs for the capacity computation in (3.6).

4A random variable X (with distribution F) is symmetric if X and −X have the same
distribution, that is, F (x) = 1− F (−x), ∀ x ∈ R.
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Proof: Suppose we are given an input random variable X (with distribution F )

that is not necessarily symmetric. Denote the distribution of −X by G (so that

G(x) = 1 − F (−x), ∀ x ∈ R). Due to the symmetric nature of the noise N and

the quantizer Q, it is easy to see that X and −X result in the same input-output

mutual information, that is, I(F ) = I(G). Consider now the following symmetric

mixture distribution

F̃ (x) =
F (x) + G(x)

2
.

Since the mutual information is concave in the input distribution, we get I(F̃ ) ≥
I(F )+I(G)

2
= I(F ), which proves the desired result.

In the next subsection, we consider the extreme scenario of 1-bit quantization,

and tighten the result in Theorem 1 to show that binary antipodal signaling

achieves capacity.

3.1.4 1-bit Quantization: Antipodal Signaling is Optimal

With 1-bit symmetric quantization, the channel is

Y = sign(X + N). (3.9)

Theorem 1 (Section 3.1.2) guarantees that the capacity of this channel, under

an average power constraint, is achievable by a discrete input distribution with
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at most 3 points. This result is further tightened by the following theorem that

shows the optimality of binary antipodal signaling for all SNRs.

Theorem 2 For the 1-bit symmetric quantized channel model (3.9), the capacity

is achieved by binary antipodal signaling and is given by

C = 1− h
(
Q

(√
SNR

))
, SNR =

P

σ2
,

where h(·) is the binary entropy function,

h(p) = −p log(p)− (1− p) log(1− p) , 0 ≤ p ≤ 1 ,

and Q(·) is the complementary Gaussian distribution function shown in (3.3).

Proof : Since Y is binary it is easy to see that

H(Y |X) = E
[
h

(
Q

(
X

σ

))]
,

where E denotes the expectation operator. Therefore

I(X, Y ) = H(Y )− E
[
h

(
Q

(
X

σ

))]
,

which we wish to maximize over all input distributions satisfying E[X2] ≤ P .

Since the quantizer is symmetric, we can restrict attention to symmetric input

distributions without loss of optimality (cf. Lemma 2). On doing so, we obtain

that the PMF of the output Y is also symmetric (since the quantizer and the

noise are already symmetric). Therefore, H(Y ) = 1 bit, and we get

C = 1− min
X symmetric

E[X2]≤P

E
[
h

(
Q

(
X

σ

))]
.
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Since h(Q(z)) is an even function, we get that

H(Y |X) = E
[
h

(
Q

(
X

σ

))]
= E

[
h

(
Q

( |X|
σ

))]
.

In the Appendix we show that the function h(Q(
√

z)) is convex in z. Jensen’s

inequality [58] thus implies

H(Y |X) ≥ h
(
Q

(√
SNR

))

with equality iff X2 = P . Coupled with the symmetry condition on X, this implies

that binary antipodal signaling achieves capacity and the capacity is

C = 1− h
(
Q

(√
SNR

))
.

3.2 Capacity Computation

In this section, we consider capacity computation for K-bin symmetric quan-

tization, with K > 2. Every choice of the quantizer results in a unique channel

model (3.1). This section discusses capacity computation assuming a fixed quan-

tizer only. Optimization over the quantizer choice is performed in Section 3.3.

3.2.1 Cutting-Plane Algorithm

Contrary to the 1-bit case, closed form expressions for optimal input and capac-

ity appear unlikely for multi-bit quantization, due to the complicated expression
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for mutual information. We therefore resort to the cutting-plane algorithm [2,

Sec IV-A] to generate optimal inputs numerically. For channels with continuous

input alphabets, the cutting-plane algorithm can, in general, be used to generate

nearly optimal discrete input distributions. It is therefore well matched to our

problem, for which we already know that the capacity is achievable by a discrete

input distribution.

For our simulations, we fix the noise variance σ2 = 1, and vary the power

P to obtain capacity at different SNRs. To apply the cutting-plane algorithm,

we take a fine quantized discrete grid on the interval [−10
√

P, 10
√

P ], and opti-

mize the input distribution over this grid. Note that Proposition 1 (Section 3.1.1)

tells us that an optimal input distribution for our problem must have bounded

support, but it does not give explicit values that we can use directly in our sim-

ulations. However, on employing the cutting-plane algorithm over the interval

[−10
√

P, 10
√

P ], we find that the resulting input distributions have support sets

well within this interval. Moreover, increasing the interval length further does not

change these results.

While the cutting-plane algorithm optimizes the distribution of the channel in-

put, a dual formulation of the channel capacity problem, involving an optimization

over the output distribution, can alternately be used to obtain easily computable
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tight upper bounds on the capacity. We discuss these duality-based upper bounds

next.

3.2.2 Duality-based Upper Bound

In the dual formulation of the channel capacity problem, we focus on the distri-

bution of the output, rather than that of the input. Specifically, assume a channel

with input alphabet X , transition law W (y|x), and an average power constraint

P . Then, for every choice of the output distribution R(y), we have the following

upper bound on the channel capacity C

C ≤ U(R) = min
γ≥0

sup
x∈X

[D(W (·|x)||R(·)) + γ(P − x2)] , (3.10)

where γ is a Lagrange parameter, and D(W (·|x)||R(·)) is the divergence between

the transition and output distributions. While [59] provides this bound for a dis-

crete channel, its extension to continuous alphabet channels has been established

in [60]. For a more detailed perspective on duality-based upper bounds, see [61].

For an arbitrary choice of R(y), the bound (3.10) might be quite loose. There-

fore, to obtain a tight upper bound, we may need to evaluate (3.10) for a large

number of output distributions and pick the minimum of the resulting upper

bounds. This could be tedious in general, especially if the output alphabet is

continuous. However, for the channel model we consider, the output alphabet is
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discrete with small cardinality. For example, for 2-bit quantization, the space of all

symmetric output distributions is characterized by a single parameter α ∈ (0, 0.5).

This makes the dual formulation attractive, since we can easily obtain a tight up-

per bound on capacity by evaluating the upper bound in (3.10) for different choices

of α.

It remains to specify how to compute the upper bound (3.10) for a given output

distribution R. For our problem, the favorable nature of the divergence function

D(W (·|x)||R(·)) facilitates a systematic procedure to do this, as discussed next.

Computation of the Upper Bound: For convenience, we denote

d(x) = D(W (·|x)||R(·)), and g(x, γ) = d(x)+γ(P −x2). For symmetric quantizer

and symmetric output distribution, the function g is also symmetric in x, so that

we need to compute min
γ≥0

sup
x≥0

g(x, γ). Consider first the maximization over x, for

a fixed γ. Although we need to perform this maximization over x ≥ 0, from a

practical standpoint, we can restrict attention to a bounded interval x ∈ [0,M ]

only. This is justified as follows. From Lemma 1, we know that lim
x→∞

d(x) =

log
1

R(yK)
. The saturating nature of d(x), coupled with the non-increasing nature

of γ(P − x2), implies that for all practical purposes, the search for the supremum

of d(x) + γ(P − x2) over x ≥ 0 can be restricted to x ∈ [0,M ], where M is

chosen large enough to ensure that the difference |d(x) − log 1
R(yK)

| is negligible

for x > M . In our simulations, we take M = qK−1 + 5σ, where qK−1 is the largest
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quantizer threshold, and σ2 is the noise variance. This choice of M ensures that for

x > M , the conditional PMF Wi(x) is nearly the same as the unit mass at i = K,

which consequently makes the difference between d(x) and log 1
R(yK)

negligible for

x > M , as desired.

We now need to compute min
γ≥0

max
x∈[0,M ]

{g(x, γ)}. To do this, we quantize the

interval [0,M ] to generate a fine grid {x1, x2, · · · , xI}, and approximate the max-

imization over x ∈ [0,M ] as a maximization over this quantized grid, so that we

need to compute the function min
γ≥0

max
1≤i≤I

g(xi, γ). Denoting ri(γ) := g(xi, γ), this

becomes min
γ≥0

max
1≤i≤I

ri(γ). Hence, we are left with the task of minimizing (over γ)

the maximum value of a finite set of functions of γ, which in turn can be done

directly using the standard numerical tools (e.g., fminimax in Matlab). More-

over, we note that the function being minimized over γ, i.e. m(γ) := max
1≤i≤I

ri(γ),

is convex in γ. This follows from the observation that each of the functions

ri(γ) = d(xi) + γ(P − xi
2) is convex in γ (in fact, affine in γ), so that their point-

wise maximum is also convex in γ [62, pp. 81]. The convexity of m(γ) guarantees

that fminimax provides us the global minimum over γ.

3.2.3 Numerical Example

We compare results obtained using the cutting-plane algorithm with capacity

upper bounds obtained using the dual formulation. We consider 2-bit quantiza-
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Figure 3.1: Probability mass function of the optimal input generated by the
cutting-plane algorithm [2] at various SNRs, for the 2-bit symmetric quantizer
with thresholds {−2, 0, 2}. (noise variance σ2 = 1.)

tion, and provide results for the specific choice of quantizer having thresholds at

{−2, 0, 2}.

The input distributions generated by the cutting-plane algorithm at various

SNRs (setting σ2 = 1) are shown in Figure 3.1, and the mutual information

achieved by them is given in Table 3.1. As predicted by Theorem 1 (Section

3.1.2), the support set of the input distribution (at each SNR) has cardinality

≤ 5.

For upper bound computations, we evaluate (3.10) for different symmetric

output distributions. For 2-bit quantization, the set of symmetric outputs is

characterized by just one parameter α ∈ (0, 0.5), with the probability distribution

on the output being {0.5−α, α, α, 0.5−α}. We vary α over a fine discrete grid on
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SNR(dB) −5 0 5 10 15 20
Upper Bound 0.163 0.406 0.867 1.386 1.513 1.515

MI 0.155 0.405 0.867 1.379 1.484 1.484

Table 3.1: Duality-based upper bounds on channel capacity, compared with
the mutual information (MI) achieved by the distributions generated using the
cutting-plane algorithm.

(0, 0.5), and compute the upper bound for each value of α. The least upper bound

achieved thus, at a number of different SNRs, is shown in Table 3.1. The small

gap between the upper bound and the mutual information (at every SNR) shows

the tightness of the obtained upper bounds, and also confirms the near-optimality

of the input distributions generated by the cutting-plane algorithm.

It is insightful to verify that the preceding near-optimal input distributions

satisfy the KKT condition (3.7). For instance, consider an SNR of 5 dB, for which

the input distribution generated by the cutting-plane algorithm has support set

{−2.86,−0.52, 0.52, 2.86}. Figure 3.2 plots, as a function of x, the LHS of (3.7) for

this input distribution. (The value of γ used in the plot was obtained by equating

the LHS of (3.7) to the capacity value of 0.867, at x = 0.52 .) The KKT condition

is seen to be satisfied (up to the numerical precision of our computations), as the

LHS of (3.7) equals the capacity at points in the support set of the input, and is

less than the capacity everywhere else. Note that we show the plot for x ≥ 0 only

because it is symmetric in x.
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Figure 3.2: The left-hand side of the KKT condition (3.7) for the input distribu-
tion generated by the cutting-plane algorithm (SNR = 5 dB). The KKT condition
is seen to be satisfied (up to the numerical precision of our computations).

3.3 Quantizer Optimization

Until now, we have addressed the problem of optimizing the input distribution

for a fixed output quantizer. In this section, we optimize over the choice of the

quantizer, and present numerical results for 2-bit and 3-bit symmetric quantiza-

tion.

A Simple Benchmark Input-Quantizer Pair: While an optimal quantizer, along

with a corresponding optimal input distribution, provides the absolute communi-

cation limits for our model, we do not have a simple analytical characterization of

their dependence on SNR. From a system designer’s perspective, therefore, it is of

interest to also examine suboptimal choices that are easy to adapt as a function of
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SNR, as long as the penalty relative to the optimal solution is not excessive. Specif-

ically, we take the following input and quantizer pair to be our benchmark strategy

: for a K-bin quantizer, consider equiprobable, equispaced K-PAM (pulse ampli-

tude modulated) input, with quantizer thresholds chosen to be the mid-points of

the input mass point locations. That is, the quantizer thresholds correspond to

the ML (maximum likelihood) hard decision boundaries. Both the input mass

points and the quantizer thresholds have a simple, well-defined dependence on

SNR, and can therefore be adapted easily at the receiver based on the measured

SNR. With our K-point uniform PAM input, we have the entropy H(X) = log2 K

bits for any SNR. Also, it is easy to see that as SNR →∞, H(X|Y ) → 0 for the

benchmark input-quantizer pair. This implies that the benchmark scheme is near-

optimal if we operate at high SNR. The issue to investigate therefore is how much

gain an optimal quantizer and input pair provides over this benchmark at low to

moderate SNR. Note that, for 1-bit symmetric quantization, the benchmark input

corresponds to binary antipodal signaling, which has already been shown to be

optimal for all SNRs.

As before, we set the noise variance σ2 = 1 for convenience. Of course, the

results are scale-invariant, in the sense that if both P and σ2 are scaled by the same

factor R (thus keeping the SNR unchanged), then there is an equivalent quantizer

(obtained by scaling the thresholds by
√

R) that gives identical performance.

41



Chapter 3. The AWGN-Quantized Output Channel

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Quantizer threshold ’q’

C
ap

ac
ity

 (
bi

ts
 / 

ch
an

ne
l u

se
)

−5 dB

0 dB

3 dB

7 dB

10 dB

15 dB

Figure 3.3: 2-bit symmetric quantization : channel capacity (in bits per channel
use) as a function of the quantizer threshold q. (noise variance σ2 = 1.)

3.3.1 2-Bit Quantization

A 2-bit symmetric quantizer is characterized by a single parameter q, with the

quantizer thresholds being {−q, 0, q}. We therefore employ a brute force search

over q to find an optimal 2-bit symmetric quantizer. In Figure 3.3, we plot the

variation of the channel capacity (computed using the cutting-plane algorithm)

as a function of the parameter q at various SNRs. Based on our simulations, we

make the following observations:

• For any SNR, there is an optimal choice of q which maximizes capacity. For

the benchmark quantizer (which is optimal at high SNR), q scales as
√

SNR,
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hence it is not surprising to note that the optimal value of q we obtain

increases monotonically with SNR at high SNR.

• For low SNRs, the variation in the capacity as a function of q is quite small,

whereas the variation becomes appreciable as the SNR increases. A practi-

cal implication of this observation is that imperfections in Automatic Gain

Control (AGC) have more severe consequences at higher SNRs.

• For any SNR, as q → 0 or q → ∞, we approach the same capacity as with

1-bit symmetric quantization (not shown for q → ∞ in the plots for 10

and 15 dB in Figure 3.3). This conforms to intuition: q = 0 reduces the

2-bit quantizer to a 1-bit quantizer, while q → ∞ renders the thresholds

at −q and q ineffective in distinguishing between two finite valued inputs,

so that only the comparison with the quantizer threshold at 0 yields useful

information.

Comparison with the Benchmark : In Table 3.2, we compare the performance

of the preceding optimal solutions with the benchmark scheme (see the relevant

columns for 2-bit ADC). The corresponding plots are shown in Figure 3.5. In addi-

tion to being nearly optimal at high SNR, the benchmark scheme is seen to perform

fairly well at low to moderate SNR as well. For instance, even at -10 dB SNR,

which might correspond to a wideband system designed for very low bandwidth
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efficiency, it achieves 86% of the capacity achieved with optimal choice of 2-bit

quantizer and input distribution. On the other hand, for SNR of 0 dB or above,

the capacity is better than 95% of the optimal. These results are encouraging from

a practical standpoint, given the ease of implementing the benchmark scheme.

Optimal Input Distributions : It is interesting to examine the optimal input

distributions (given by the cutting-plane algorithm) corresponding to the opti-

mal quantizers obtained above. Figure 3.4 shows these distributions, along with

optimal quantizer thresholds, for different SNRs. The solid vertical lines show

the locations of the input distribution points and their probabilities, while the

quantizer thresholds are depicted by the dashed vertical lines. As expected, bi-

nary signaling is found to be optimal for low SNR, since it would be difficult for

the receiver to distinguish between multiple input points located close to each

other. The number of mass points increases as SNR is increased, with a new point

emerging at 0. On increasing SNR further, we see that the non zero constella-

tion points (and also the quantizer thresholds) move farther apart, resulting in

increased capacity. When the SNR becomes enough that four input points can be

disambiguated, the point at 0 disappears, and we get two new points, resulting in

a 4-point constellation. The eventual convergence of this 4-point constellation to

uniform PAM with mid-point quantizer thresholds (i.e., the benchmark scheme)

is to be expected, since the benchmark scheme approaches the capacity bound
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Figure 3.4: 2-bit symmetric quantization : optimal input distribution (solid
vertical lines) and quantizer thresholds (dashed vertical lines) at various SNRs.

of two bits at high SNR. It is worth noting that the optimal inputs we obtained

all have at most four points, even though Theorem 1 (Section 3.1.2) is looser,

guaranteeing the achievability of capacity by at most five points.

3.3.2 3-Bit Quantization

For 3-bit symmetric quantization, we need to optimize over a space of 3 param-

eters : {0 < q1 < q2 < q3}, with the quantizer thresholds being {0,±q1,±q2,±q3}.

Since brute force search is computationally complex, we investigate an alternate

iterative optimization procedure for joint optimization of the input and the quan-

tizer in this case. Specifically, we begin with an initial quantizer choice Q1, and

then iterate as follows (starting at i = 1)
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SNR 1-bit ADC 2-bit ADC SNR 3-bit ADC UQ
(dB) OPT AQNM OPT BM AQNM (dB) OPT BM AQNM
-20 0.005 0.007 0.006 0.005 0.007 -20 0.007 0.005 0.007 0.007
-10 0.045 0.067 0.061 0.053 0.068 -10 0.067 0.056 0.069 0.069
-5 0.135 0.185 0.179 0.166 0.195 -5 0.193 0.177 0.197 0.198
0 0.369 0.424 0.455 0.440 0.479 0 0.482 0.471 0.494 0.500
3 0.602 0.610 0.693 0.687 0.736 3 0.759 0.744 0.777 0.791
5 0.769 0.733 0.889 0.869 0.931 5 0.975 0.955 1.002 1.029
7 0.903 0.843 1.098 1.064 1.133 7 1.215 1.180 1.248 1.294
10 0.991 0.972 1.473 1.409 1.417 10 1.584 1.533 1.634 1.730
12 0.992 1.032 1.703 1.655 1.579 12 1.846 1.766 1.886 2.037
15 1.000 1.091 1.930 1.921 1.765 15 2.253 2.138 2.232 2.514
17 1.000 1.115 1.987 1.987 1.853 17 2.508 2.423 2.427 2.838
20 1.000 1.136 1.999 1.999 1.938 20 2.837 2.808 2.655 3.329

Table 3.2: Performance comparison : For 1, 2, and 3−bit ADC, the table shows
the mutual information (in bits per channel use) achieved by the optimal solutions
(denoted OPT), as well as the benchmark solutions (denoted BM). Also shown
are the capacity estimates obtained by assuming the additive quantization noise
model (AQNM). (Note that for 1-bit ADC, the benchmark solution coincides
with the optimal solution, and hence is not shown separately.) The last column
shows the unquantized AWGN channel’s capacity.
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• For the quantizer Qi, find an optimal input. Call this input Fi.

• For the input Fi, find a locally optimal quantizer, initializing the search at

Qi. Call the resulting quantizer Qi+1.

• Repeat the first two steps with i = i + 1.

We terminate the process when the capacity gain between consecutive iterations

becomes less than a small threshold ε.

Although the input-output mutual information is a concave functional of the

input distribution (for a fixed quantizer), it is not guaranteed to be concave jointly

over the input and the quantizer. Hence, the iterative procedure is not guaranteed

to provide an optimal input-quantizer pair in general. A good choice of the initial

quantizer Q1 is crucial to enhance the likelihood that it does converge to an

optimal solution. We discuss this next.

High SNR Regime: For high SNRs, we know that uniform PAM with mid-point

quantizer thresholds (i.e., the benchmark scheme) is nearly optimal. Hence, this

quantizer is a good choice for initialization at high SNRs. The results we obtain

indeed demonstrate that this initialization works well at high SNRs. This is seen

by comparing the results of the iterative procedure with the results of a brute force

search over the quantizer choice (similar to the 2-bit case considered earlier), as

both of them provide almost identical capacity values.
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Figure 3.5: Capacity plots for different ADC precisions. For 2 and 3-bit ADC,
solid curves correspond to optimal solutions, while dashed curves show the per-
formance of the benchmark scheme (PAM input with ML quantization).

Lower SNRs : For lower SNRs, one possibility is to try different initializations

Q1. However, on trying the benchmark initialization at some lower SNRs as well,

we find that the iterative procedure still provides us with near-optimal solutions

(again verified by comparing with brute force optimization results).

While our results show that the iterative procedure (with benchmark initial-

ization) has provided (near) optimal solutions at different SNRs, we leave the

question of whether it will converge to an optimal solution in general as an open

problem.
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Comparison with the Benchmark : The efficacy of the benchmark initialization

at lower SNRs suggests that the performance of the benchmark scheme should

not be too far from optimal at small SNRs as well. This is indeed the case, as

seen from the data values in Table 3.2 and the corresponding plots in Figure 3.5.

At 0 dB SNR, for instance, the benchmark scheme achieves 98% of the capacity

achievable with an optimal input-quantizer pair.

Optimal Input Distributions : Although not depicted here, we again observe

(as for the 2-bit case) that the optimal inputs obtained all have at most K points

(K = 8 in this case), while Theorem 1 guarantees the achievability of capacity

by at most K + 1 points. Of course, Theorem 1 is applicable to any quantizer

choice (and not just optimal symmetric quantizers). Thus, it is possible that there

might exist a K-bin quantizer for which the capacity is indeed achieved by exactly

K + 1 points. We leave open, therefore, the question of whether or not the result

in Theorem 1 can be tightened to guarantee the achievability of capacity with at

most K points for the AWGN-QO channel.

3.3.3 Comparison with Unquantized Observations

We now compare the capacity results for different quantizer precisions against

the capacity with unquantized observations. Again, the plots are shown in Figure

3.5 and the data values are given in Table 3.2. We observe that at low SNR, the
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performance degradation due to low-precision quantization is small. For instance,

at -5 dB SNR, 1-bit receiver quantization achieves 68% of the capacity achievable

without any quantization, while with 2-bit quantization, we can get as much

as 90% of the unquantized capacity. Even at moderately high SNRs, the loss

due to low-precision quantization remains quite acceptable. For example, 2-bit

quantization achieves 85% of the capacity attained using unquantized observations

at 10 dB SNR, while 3-bit quantization achieves 85% of the unquantized capacity

at 20 dB SNR. For the specific case of binary antipodal signaling, [45] has earlier

shown that a large fraction of the capacity can be obtained by 2-bit quantization.

On the other hand, if we fix the spectral efficiency to that attained by an

unquantized system at 10 dB (which is 1.73 bits/channel use), then 2-bit quanti-

zation incurs a loss of 2.30 dB (see Table 3.3). For wideband systems, this penalty

in power maybe more significant compared to the 15% loss in spectral efficiency

on using 2-bit quantization at 10 dB SNR. This suggests, for example, that in

order to weather the impact of low-precision ADC, a moderate reduction in the

spectral efficiency might be a better design choice than an increase in the transmit

power.
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Spectral Efficiency (bits per channel use)
0.25 0.5 1.0 1.73 2.5

1-bit ADC −2.04 1.79 − − −
2-bit ADC −3.32 0.59 6.13 12.30 −
3-bit ADC −3.67 0.23 5.19 11.04 16.90

Unquantized −3.83 0.00 4.77 10.00 14.91

Table 3.3: SNR (in dB) required to achieve a specified spectral efficiency with
different ADC precisions.

3.3.4 Additive Quantization Noise Model

It is common to model the quantization noise as independent additive noise

[63, pp. 122]. Next, we compare this approximation with our exact capacity

calculations. In this model Y = X + N + NQ, where the quantization noise NQ

is assumed to be uniformly distributed, and independent of X, N . The signal to

quantization noise ratio P
E(NQ

2)
is assumed to be 6 log2 K dB for K-bin quantization

[63, pp. 122]. As SNR → 0, the distribution of N + NQ approaches that of a

Gaussian, and hence we expect

1

2
log

(
1 +

P

σ2 + E(NQ
2)

)

to be a good approximation of the capacity at low SNR. Table 3.2 shows that this

approximation can be useful in terms of providing a quick estimate, although it

can either underestimate or overestimate the actual capacity, depending on the

parameters.
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3.4 Conclusions

Our Shannon-theoretic investigation indicates that the use of low-precision

ADC may be a feasible option for designing future high-bandwidth communica-

tion systems. At low to moderate SNR, which would be the preferred regime of

operation given that the bandwidth is large, the small loss in spectral efficiency

due to 2-3 bit ADC can be quite acceptable.

The observation that standard uniform PAM input, with ML receiver quan-

tization is near-optimal (at all SNRs) is also quite encouraging, due to the ease

of implementation: both the PAM input points and ML thresholds have simple

analytical dependence on the SNR, eliminating the need for any complicated op-

timization. Of course, accurate measurement of the SNR at the receiver is still

predicated on the reliable performance of the automatic gain control (AGC).

Given the encouraging nature of the these results, our next step is to go about

trying to achieve them. This involves algorithm design for carrier and timing syn-

chronization, AGC, as well as devising coding and decoding mechanisms. Given

that turbo-like codes are now available for a wide variety of channels and rates,

it would be safe to presume that (with some ingenuity) coding schemes that ap-

proach the capacity for our quantized channel can be devised. What is crucial,

therefore, is whether we can do reliable synchronization with low-precision quan-
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tization or not. Towards that, in the next chapter, we consider the problem of

carrier synchronization.

Before proceeding further, we list some open technical questions based on this

chapter.

3.4.1 Open Technical Issues

There are some unresolved technical issues that we leave as open problems.

While we show that at most K +1 points are needed to achieve capacity for K-bin

output quantization of the AWGN channel, our numerical results reveal that K

mass points are sufficient. Can this be proven analytically, at least for symmetric

quantizers ? Are symmetric quantizers optimal ? Does our iterative procedure

(with the benchmark initialization, or some other judicious initialization) for joint

optimization of the input and the quantizer converge to an optimal solution in

general ?

A technical assumption worth revisiting is that of Nyquist sampling (which

induces the discrete-time memoryless AWGN-Quantized Output channel model

considered in this work). While symbol rate Nyquist sampling is optimal for

unquantized systems in which the transmit and receive filters are square root

Nyquist and the channel is ideal, for quantized samples, we have obtained nu-

merical results that show that fractionally spaced samples can actually lead to
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small performance gains. A detailed study quantifying such gains is important in

understanding the tradeoffs between ADC speed and precision. However, we do

not expect oversampling to play a significant role at low to moderate SNR, given

the small degradation in our Nyquist sampled system relative to unquantized ob-

servations (for which Nyquist sampling is indeed optimal) in these regimes. Of

course, oversampling in conjunction with hybrid analog/digital processing (e.g.,

using ideas analogous to delta-sigma quantization) could produce bigger perfor-

mance gains.
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Carrier Synchronization with
Low-Precision ADC

We now turn our attention to the problem of carrier synchronization with low-

precision ADC. While, in principle, the local oscillator (LO) at the receiver can

be locked to the frequency of the incoming carrier wave using a classical analog

feedback loop, we stick to the modern DSP-centric design approach, in which all

the processing happens at the baseband, and is mostly digital. Thus, we assume

that the LO at the receiver runs at a fixed frequency, independent of the incoming

carrier wave.

Denoting the frequency offset between the LO and the incoming wave by ∆f ,

the received Nyquist-rate complex baseband sample at time n is

Yn = Xnej(2π∆fnTs+θo) + Wn ,

where Xn is the transmitted symbol, Wn is complex Gaussian noise, Ts is the

symbol interval, and θo is the initial phase offset between the LO and the incom-
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Figure 4.1: Correction for frequency offset. (a) For high-precision ADC, the
correction is done in the digital domain. (b) For low-precision ADC, it may be
possible to perform analog offset correction based on digital feedback.

ing wave. Both ∆f and θo are unknown a priori. When the received symbols

Yn are sampled with high-precision, the standard approach to recover the trans-

mitted symbols Xn, termed coherent demodulation, is to estimate the unknown

parameters ∆f and θo, derotate Yn to get Yne−j(2π∆fnTs+θo) and use it to estimate

Xn (Fig. 4.1(a)). The estimation of ∆f and θo is typically based on an initial

training sequence, followed by some mechanism to track the slow variations due

to the drift in the frequency of the LO [64, pp. 155] However, if we now consider

drastic quantization of the received samples Yn, the feasibility of this estimate and

correct approach becomes questionable. For instance, if the LO has a frequency

offset of 100 ppm (parts per million) (i.e., ∆f = 100fc

106 ), and the bandwidth is
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10 % of the carrier frequency (so that 1
Ts

= 0.1fc), then the phase rotation from

one symbol to the next is ≈ 0.006 radians. With drastically quantized samples,

estimating and correcting for such a small rate of phase change might be tough.

While this issue is still open, one plausible way to circumvent the problem, that

has indeed been explored recently in the literature as well [19], is to regress back

into the analog domain and do the offset compensation before the ADC, based on

feedback of the estimates generated by post-ADC DSP (Fig. 4.1(b)).

Given the seeming difficulty of explicit estimation and correction of the offsets

with low-precision ADC (at least for a “mostly-digital” design), we now concen-

trate attention on an alternate noncoherent (or differentially coherent) approach,

which exploits the fact that the phase offset 2π∆fnTs + θo, although a priori

unknown, can be assumed to be constant over consecutive symbols. Under this

assumption, the transmitter can encode information in the phase difference across

consecutive symbols, allowing successful recovery at the receiver even when there

is no absolute phase reference. This forms the basis for the well-known modulation

technique, differential phase modulation. While this approach does not require

any explicit training, it does incur a loss in performance compared to a coherent

receiver [64, pp. 173]. However, recent work has shown that this loss can be recov-

ered under the assumption that the unknown phase offset is constant over a larger

block of symbols (rather than just two symbols). In this chapter, we investigate
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the performance of this block noncoherent approach under low-precision output

quantization.

We first provide background on the related literature.

4.1 Block Noncoherent Communication

Divsalar and Simon [65] were the first to point out the gains that could be

achieved by using blocks of length greater than two. The complexity of the maxi-

mum likelihood detector used to achieve the gains however grows exponentially in

the block length; we must make a joint decision on the block of input symbols, so

that the cardinality of the space over which we do the optimization is exponential

in the block length. Fortunately, later research showed that the detection could

be performed with lower complexity; Mackenthun in [66] showed that the optimal

solution could be attained with linear-logarithmic complexity in the block length,

i.e., complexity of order L log2 L for block length L, (a similar result was presented

by Sweldens in [67]), Warrier and Madhow [68] provided a near optimal solution

with complexity growing only linearly in the block length. From an information

theoretic perspective, Peleg and Shamai obtained the capacity of the block nonco-

herent channel in [69], assuming, for analytical tractability, that the phase offset

varies independently from one block to the next.
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Note that while we are only concerned with a phase offset (induced by the

asynchronous LO) in this work, the block noncoherent model extends to the setting

of communication over narrowband slow fading channels as well, where the channel

state, although unknown, can be assumed to be constant over a block of symbols.

Indeed, this block fading model has been investigated extensively in the recent

literature, ranging from capacity analysis [70], to efficient capacity approaching

architectures ([71, 72], and references therein).

We now proceed to our investigation of block noncoherent communication with

low-precision quantization at the receiver. There are several ways to quantize a

complex-valued received signal. As illustrated in the next section, phase quantiza-

tion can be implemented efficiently using 1-bit ADCs and analog pre-multipliers,

and eliminates the need for any automatic gain control (since no amplitude infor-

mation is used). Moreover, for phase constellations, we expect phase quantization

to work well. Hence, we evaluate the performance under phase quantization.

As with the previous literature, we assume, for analytical tractability, that the

unknown phase is constant over a block of L symbols, but varies independently

across blocks.

Notation: Throughout the chapter, we denote random variables by capital

letters, and the specific value they take using small letters. Bold faced notation

is used to denote vectors of random variables. E is the expectation operator.
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4.2 Channel Model and Receiver Architecture

The received signal over a block of length L, after quantization is represented

as

Zl = Q(Sle
jΦ + Nl) , l = 0, 1, · · · , L− 1, (4.1)

where,

• S := [S0 S1 · · · SL−1] is the transmitted vector,

• Φ is an unknown constant with uniform distribution on [0, 2π),

• N := [N0 · · · NL−1] is a vector of i.i.d. complex Gaussian noise with variance

σ2 = N0/2 in each dimension,

• Q : C → K = {0, 1, · · · , K − 1} denotes a quantization function that maps

each point in the complex plane to one of the K quantization indices, and

• Z := [Z0 Z1 · · · ZL−1] is the vector of quantized received symbols, so that

each Zl ∈ K.

Each Sl is picked in an i.i.d. manner from a uniform M-PSK constellation denoted

by the set of points A = {ejθ0 , ejθ1 , · · · , ejθM−1}, where θm = (θm−1 + 2π
M

) 1, for

m = 1, 2, · · · , M − 1.

1Unless stated otherwise, any arithmetic operations for phase angles are assumed to be
performed modulo 2π. For the output symbols Zl, the arithmetic is modulo K, while for the
input symbols Xl (introduced immediately after in the text ), it is modulo M.
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We now introduce the random vector X = [X0 X1 · · · XL−1], with each Xi

picked in an i.i.d. manner from a uniform distribution on the set {0, 1, · · · ,M−1}.

Our channel model (4.1) can now equivalently be written as

Zl = Q(ejθXl ejΦ + Nl) , l = 0, 1, · · · , L− 1 , (4.2)

with every output symbol Zl ∈ {0, 1, · · · , K−1} as before, and every input symbol

Xl ∈ {0, 1, · · · ,M − 1}. The set of all possible input vectors is denoted by X ,

while Z denotes the set of all possible output vectors.

We consider K-bin (or K-sector) phase quantization: our quantizer divides

the interval [0, 2π) into K equal parts, and the quantization indices go from 0

to K − 1 in the counter-clockwise direction. Fig. 4.2(b) depicts the scenario for

K=8. Thus, our quantization function is Q(c) = barg(c)|(2π
K

)c, where c ∈ C, and

bpc denotes the greatest integer less than or equal to p. Such phase quantization

can be implemented using 1-bit ADCs preceded by analog multipliers which pro-

vide linear combinations of the I and Q channel samples. For instance, employing

1-bit ADC on I and Q channels results in uniform 4-sector phase quantization,

while uniform 8-sector quantization can be achieved simply by adding two new

linear combinations, I+Q and I-Q, corresponding to a π/4 rotation of I/Q axes

(no analog multipliers needed in this case), as shown in Fig. 4.2(a).

We begin our investigation by studying the inherent symmetry in the rela-

tionship between the channel input and output. This study provides us several
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Figure 4.2: Receiver architecture for 8-sector quantization.

results that govern the structure of the output probability distribution, both con-

ditioned on the input (i.e., P(Z|X)), and without conditioning (i.e., P(Z)). These

distributions are integral to computing the channel capacity (one of our focuses

in this chapter), as well as for soft decision decoding (not considered here). While

brute force computation (computing P(z|x) for every z ∈ Z and every x ∈ X )

of these distributions has exponential complexity in the block length, our results

allow their computation with significant reduction in the complexity.

Note: Throughout the chapter, we assume that the PSK constellation size

M , and the number of quantization bins K, are such that K = aM for some

positive integer a. We illustrate our results with the running example of QPSK

with 8-sector quantization, depicted in Fig. 4.3(a)
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Figure 4.3: QPSK with 8-sector quantization (i.e., M=4, K=8). a) depicts
how the unknown channel phase φ results in a rotation of the transmitted symbol
(square : original constellation , circle : rotated constellation). (b) and (c) depict
the circular symmetry induced in the conditional probability P(z|x, φ) due to the
circular symmetry of the complex Gaussian noise. (b) shows that increasing φ
by 2π/K = (π/4) and z by 1 will keep the conditional probability unchanged,
i.e., P(z = 3|x, φ) = P(z = 4|x, φ + 2π/K). (c) shows that increasing x by
1 and z by 2 = (K/M) will keep the conditional probability unchanged, i.e.,
P(z = 2|x, φ) = P(z = 4|x + 1, φ).

4.3 Input-Output Relationship

Conditioned on the channel phase Φ, P(Z|X, Φ) is a product of individual

symbol probabilities P(Zl|Xl, Φ). We therefore begin by analyzing the symmetries

in the latter.

4.3.1 Properties of P(Zl|Xl, Φ)

We have that P(zl|xl, φ) is the probability that arg(ej(θxl
+φ) + Nl) belongs

to the interval [2π
K

zl
2π
K

(zl + 1)). In other words, it is the probability that the

complex Gaussian noise Nl takes the point ej(θxl
+φ) on the unit circle, to another
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point whose phase belongs to [2π
K

zl
2π
K

(zl + 1)). Due to the circular symmetry

of the complex Gaussian noise, this is the same as the probability that Nl takes

the point ej(θxl
+φ+ 2π

K
i) on the unit circle, to another point whose phase belongs to

[2π
K

(zl + i) 2π
K

(zl + 1 + i)), where i is an integer. We thus get our first two results.

Property A-1: P(zl|xl, φ) = P(zl + i|xl, φ + i2π
K

).

Property A-2: P(zl|xl, φ) = P(zl + ia|xl + i, φ).

Note that θxl+i = θxl
+ 2π

M
i = θxl

+ 2π
K

(ia), which gives Property A-2.

Property A-2 simply states that if we jump from one point in the M-PSK

constellation to the next, then we must jump a = K
M

quantization sectors in

order to keep the conditional probability invariant. This is intuitive, since the

separation between consecutive points in the input constellation is 2π/M , while

each quantization sector covers an angle of 2π/K. For QPSK with K = 8, Fig.

4.3(b) and 4.3(c) depict example scenarios for the two properties.

If we put i = −xl in Property A-2, we get the following special case, which

relates the conditioning on a general xl to the conditioning on 0.

Property A-3: P(zl|xl, φ) = P(zl − axl|0, φ).

To motivate our final property, we consider our example of QPSK with K = 8.

While we have 8 distinct quantization sectors, if we look at Fig. 2(a), the orienta-

tion of these 8 sectors relative to the 4 constellation points (shown as squares) can

be described by dividing the sectors into 2 groups : {0, 2, 4, 6}, and {1, 3, 5, 7}. For
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instance, the positioning of the first sector (z = 0) w.r.t. x = 0 is identical to the

positioning of the third sector (z = 2) w.r.t. x = 1 (and similarly z = 4 w.r.t x = 2,

and z = 6 w.r.t x = 3). On the other hand, the positioning of the second sector

(z = 1) w.r.t. x = 0 is identical to the positioning of the fourth sector (z = 3) w.r.t.

x = 1 (and similarly z = 5 w.r.t x = 2, and z = 7 w.r.t x = 3). In terms of the

conditional probabilities, this implies, for example, that we will have P(zl = 7|xl =

3, φ) = P(zl = 1|xl = 0, φ), and similarly, P(zl = 6|xl = 3, φ) = P(zl = 0|xl =

0, φ). In general, we can relate the conditional probability of every odd zl with that

of zl = 1, and similarly of every even zl with that of zl = 0, with corresponding

rotations of the symbol xl. For general values of K and M , the number of groups

equals a = K
M

, and we can relate the probability of any zl with that of zl mod a.

Property A-4: Let zl = qla+rl, where ql is the quotient on dividing zl by a, and

rl is the remainder, i.e, rl = zl mod a. Then, P(zl|xl, φ) = P(zl mod a|xl − ql, φ).

While this result follows directly from Property A-2 by putting i = −ql, it

is an important special case, as it enables us to restrict attention to only the

first a sectors (Zl ∈ {0, 1, · · · , a − 1}), rather than having to work with all the

K sectors. As detailed later, this leads to significant complexity reduction in

capacity computation.

We now use these properties to present results for P(Z|X).
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4.3.2 Properties of P(Z|X)

Property B-1 : Let 111 denote the row vector with all entries as 1. Then P(z|x) =

P(z + i111|x).

Proof: For a fixed x, increasing each zl by the same number i leaves the

conditional probability unchanged, because the phase Φ in the channel model

(4.1) is uniformly distributed in [0, 2π). A detailed proof follows. We have

P(z|x) = EΦ (P(z|x, Φ)) = EΦ

(
L−1∏

l=0

P(zl|xl, Φ)

)

= EΦ

(
L−1∏

l=0

P(zl + i|xl, Φ + i
2π

K
)

)

= EΦ̂

(
L−1∏

l=0

P(zl + i|xl, Φ̂)

)

= EΦ̂

(
P(z + i111|x, Φ̂))

)
= P(z + i111|x).

The second equality follows by the fact that the components of Z are independent

conditioned on X and Φ. Property A-1 gives the third equality. A change of

variables, Φ̂ = Φ + i2π
K

gives the fourth equality (since Φ is uniformly distributed

on [0, 2π), so is Φ̂), thereby completing the proof.

Remark 1: For the rest of the chapter, we refer to the operation z → z + i111

as constant addition.

Our next result concerns the observation that the conditional probability re-

mains invariant under an identical permutation of the components of the vectors

z and x.
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Property B-2 : Let Π denote a permutation operation, and Πx (Πz) the vector

obtained on permuting x (z) under this operation. Then, P(z|x) = P(Πz|Πx).

Proof: As in the proof of Property 1, the idea is to condition on Φ and work

with the symbol probabilities P(zl|xl, Φ). Consider P(z|x, Φ) =
∏L−1

l=0 P(zl|xl, Φ),

and P(Πz|Πx, Φ) =
∏L−1

l=0 P((Πz)l|(Πx)l, Φ). Since multiplication is a commuta-

tive operation, we have P(z|x, Φ) = P(Πz|Πx, Φ). Taking expectation w.r.t. Φ

completes the proof.

The next two results extend properties A-3 and A-4.

Property B-3: Define the input vector x0 = [0 · · · 0]. Then, P(z|x) = P(z −

ax|x0), where a = K
M

, and the subtraction is performed modulo K.

Property B-4: Let zl = qla + rl, where ql is the quotient on dividing zl by

a, and rl is the remainder, i.e, rl = zl mod a. Define q = [q0, · · · , qL−1], and,

z mod a = [z0 mod a · · · zL−1 mod a]. Then P(z|x) = P(z mod a | x− q).

Proofs: The properties follow from A-3 and A-4 respectively, by first noting

that the vector probability P(z|x, Φ) is the product of the scalar ones, and then

integrating over Φ .

4.3.3 Properties of P(Z)

We now consider the unconditional distribution P(z). The first result states

that P(z) is invariant under constant addition.
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Property C-1: P(z) = P(z + i111).

Proof: Using Property B-1, this follows directly by taking expectation over X

on both sides.

On similar lines, we now extend Property B-2 to show that P(z) is invariant

under any permutation of z.

Property C-2: P(z) = P(Πz).

Proof: We have P(z) = 1
ML

∑
x∈X P(z|x). Using Property B-2, we get P(z) =

1
ML

∑
x∈X P (Πz|Πx). Since Π is just a permutation operation, every unique choice

of x ∈ X results in a unique Πx ∈ X . Hence, we can rewrite the last equation as

P(z) = 1
ML

∑
x∈X P(Πz|x) = P(Πz).

Our final result extends Property B-4.

Property C-3: Let a = K
M

. Then P(z) = P(z mod a).

Proof: Using the same notation as in Property B-4, we have P(z|x) = P(z mod

a | x− q) . Noting that the transformation x → x− q is a one-to-one mapping,

the proof follows on the same lines as the proof of Property C-2.

Example: For QPSK with K = 8 and L = 4, P(z = [5 7 2 4]) = P(z = [1 1 0 0]).

We now apply these results for low complexity capacity computation.
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4.4 Efficient Capacity Computation

We wish to compute the mutual information

I(X;Z) = H(Z)−H(Z|X).

We first discuss computation of the conditional entropy.

4.4.1 Conditional Entropy

We have H(Z|X) =
∑

X H(Z|x)P(x), where H(Z|x) = −∑
Z P(z|x) log P(z|x)

is the entropy of the output when the input vector X takes on the specific value

x. Our main result in this section is that H(Z|x) is constant ∀x.

Property D-1 : H(Z|x) is a constant.

Proof: We show that for any input vector x, H(Z|x) = H(Z|x0), where x0 =

[0 · · · 0] as defined before. We have

H(Z|x) = −
∑
Z

P(z|x) log P(z|x)

= −
∑
Z

P(z− ax|x0) log P(z− ax|x0) , (4.3)

where the second equality follows from Property B-3. Now, since z → z − ax is

just a subtraction operation, it is easy to see that every unique choice of z ∈ Z

results in a unique choice of z− ax ∈ Z. Hence, we can rewrite (4.3) as

H(Z|x) = −
∑
Z

P(z|x0) log P(z|x0) = H(Z|x0) (4.4)

69



Chapter 4. Carrier Synchronization with Low-Precision ADC

Thus, H(Z|X) = H(Z|x0), but brute force computation of H(Z|x0) still has

exponential complexity, P(Z|x0) must be computed for each of the KL possible

output vectors Z. However, we show that it suffices to compute P(Z|x0) for a

much smaller set of Z vectors.

Using Property B-2, we have P(z|x0) = P(Πz|Πx0). Since x0 = [0..0], any

permutation of x0 gives back x0. Hence, P(z|x0) = P(Πz|x0). Combined with

Property B-1, we thus get that it suffices to compute P(z|x0) for a set of vectors

SZ in which no vector can be obtained from another by performing the joint op-

erations of constant addition and permutation. We do not have an exact method

to get SZ, but can resort to a sub-optimal procedure, which still provides signif-

icant complexity reduction. Instead of jointly accounting for constant addition

and permutation, we first account for constant addition, and then for permuta-

tion. Specifically, we first note that using Property B-1, it suffices to compute

P(z|x0) only for a set of vectors SZ1 for which the first symbol is 0. Next, us-

ing the fact that P(z|x0) = P(Πz|x0), within the set SZ1 , we can further restrict

attention to a subset SZ2 in which no vector can be obtained from another one

by a permutation operation. Since permutations don’t matter, all we are inter-

ested in is how many symbols of each type are picked, so that obtaining the set

SZ2 is simply equivalent to the well-known problem of distributing L–1 identical
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balls into K distinct boxes, with empty boxes allowed. The number of ways to

do this is C(K + L − 2, L − 1), and each of these combinations can be obtained

easily using standard known procedures. For K = 8, and L = {3, 4, 5, 6, 7},

the cardinality of SZ2 is {36, 120, 330, 792, 1716}, whereas the exponential figure

KL is {512, 4096, 32768, 2.6 × 105, 2.1 × 106}, illustrating the large reduction in

complexity.

Once we have the set SZ2 , we can numerically compute the probability P(z|x0)

for every vector in SZ2 . The entropy H(Z|x0) can then be obtained as follows. For

z ∈ SZ2 , let n(z) denote the number of distinct permutations that can be gener-

ated from it, while keeping the first symbol fixed. This is simply equal to (L−1)!∏K−1
i=0 ri

,

where ri is the number of times the symbol i occurs in z. The conditional en-

tropy then is H(Z|x0) = −
∑
Z

P(z|x0) log P(z|x0) = −
∑
SZ1

KP(z|x0) log P(z|x0) =

−
∑
SZ2

K n(z) P(z|x0) log P(z|x0).

4.4.2 Output Entropy

The output entropy is H(Z) = −∑
Z P(z) log P(z). A brute force computation

requires us to know P(z) ∀z ∈ Z, which clearly has exponential complexity. How-

ever, using Properties C-1, C-2 and C-3, we get that it is sufficient to compute

P(z) for a set of vectors S̃Z in which no vector can be obtained from another one

by performing the operations of constant addition and permutation, and also, the
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vector components ∈ {0, 1, · · · , a − 1}. This is similar to the situation we en-

countered earlier in the last subsection, except that the vector components there

were allowed to be in {0, 1, · · · , K − 1}. To exploit this for further complexity

reduction, we can begin by defining the set Z̃ to be the set of vectors in which the

vector components take values in {0, 1, · · · , a−1} only. Since P(z) = P(z mod a),

a moment’s thought reveals that each vector in Z̃ has the same probability as a

set of (K
a
)L = ML distinct vectors in Z, and the sets corresponding to different

vectors are disjoint. Thus H(Z) = −
∑
Z

P(z) log P(z) = −ML
∑

Z̃
P(z) log P(z).

To obtain {P(z)} for z ∈ Z̃, we can follow exactly the same procedure as de-

scribed in the last subsection, with K being replaced by a. In particular, we need

to compute P(z) only for C(a + L− 2, L− 1) vectors.

Example: For QPSK with 8 sectors (so a = 2), the relevant vectors for block

length 2 are [0 0] and [0 1].

Computation of P(Z)

We now need to compute of P(z) = 1
ML

∑
x∈X P(z|x) for each of the C(a +

L − 2, L − 1) vectors. A brute force approach is to compute P(z|x) for each x,

but again, has exponential complexity. We exploit the structure in z to reduce

the number of vectors x for which we need P(z|x). Specifically, we have that each

zi ∈ {0, 1, · · · , a − 1}. Since there are only a different types of components in z,
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for block length L > a, some of the components in z will be repeated. For any

x, we can then use Property B-2 to rearrange the components at those locations

for which the components in z are identical, without changing the conditional

probability. For instance, let zm = zn for some m,n. Then, P(z|x) = P(z|Πx),

where Πx is obtained from x by rearranging the components at locations m and

n. To sum up, we can restrict attention to a set of vectors SX in which no vector

can be obtained from another one by permutations between those locations for

which the elements in z are identical.

To obtain the set SX, we divide the L locations into a groups, and permutations

are allowed only between locations belonging to the same group. The problem

then breaks down into a sub-problems. Specifically, let the number of locations in

the groups be n0, n1, · · · , na−1, then we need to distribute ni identical balls into

M distinct boxes, for each i. The required number of combinations is the product

of the individual solutions. While for large a, the reduction in complexity may

not be huge, for small values of a (which is the paradigm of interest in this work),

the savings will be significant. For instance, for QPSK with L = 8, and a = 2,

the worst case (which happens when n0 = n1) number of combinations is 1225,

compared to the exponential figure of ML = 65536. Once the set SX has been ob-

tained, we can get P(z) = 1
ML

∑
x∈SX

q(x)P(z|x). Here, q(x) =
∏a−1

i=0
(ni)!∏M−1

j=0 (ri,j(x))!

73



Chapter 4. Carrier Synchronization with Low-Precision ADC

, where ri,j(x) is the number of times the input symbol j occurs in the locations

belonging to group i, for the vector x.

Our numerical results for capacity computation are provided in Section 4.6.

In the next section, we focus on efficient block noncoherent demodulation. This

enables us to evaluate the uncoded error rates for our phase-quantized channel

model.

4.5 Block Noncoherent Demodulation

We consider the generalized likelihood ratio test (GLRT) for block noncoherent

demodulation. This entails a joint maximum likelihood estimation of the unknown

block of input symbols and the unknown channel phase. Specifically, given the

received vector z, the GLRT estimate for x is given by

x̂(z) = argmax
x∈X

max
φ∈[0,2π)

P(z|x, φ) . (4.5)

Brute force computation of the solution to (4.5) has prohibitive complexity,

since the cardinality of the input space X grows exponentially with the block

length. For unquantized observations, it is known that the solution can rather be

obtained with linear-logarithmic complexity [67]. The key idea used to obtain this

complexity reduction works for quantized observations as well, and we illustrate

it next.
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First, we make some observations resulting due to the symmetry of our channel

model. As before, we let a = K
M

, and q = [q0 · · · qL−1], where ql is the quotient

obtained on dividing zl by a. Using Property A-4, we get

x̂(z) = argmax
x∈X

max
φ∈[0,2π)

P(z mod a|x− q, φ) , (4.6)

which in turn gives

x̂(z) = x̂(z mod a) + q(z) , (4.7)

where we have explicitly noted that q is a function of z. This result is useful in the

sense that the solution for a received vector z can be easily obtained if the solution

for z mod a is known, since computing q(z) is a trivial task. Hence, we restrict

attention to computing the GLRT solution only for those z for which the vector

components ∈ {0, 1, · · · , a− 1}. Also observe that P(z|x, φ) = P(z|x+ i, φ− i2π
M

).

This implies that the demodulator can not distinguish between two input vectors

that are related by the operation of constant addition. This is well known (for

unquantized observations), and is the basis for using techniques such as differential

modulation.

To obtain a low complexity solution, the key is to interchange the order of

maximization in (4.5). Consider

max
φ

max
x∈X

P(z|x, φ) . (4.8)
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For a fixed φ, the inner maximization over x is straightforward since it can done in

a coherent manner, i.e., on a symbol by symbol basis. For φ = 0, let the coherent

solution be denoted by c(0) = [c0(0) · · · cL−1(0)]. (We dropped the dependence on

z to simplify notation). Note that this means cl(0) = argmax
xl∈{0,··· ,M−1}

P(zl|xl, φ = 0).

As φ is increased, the coherent solution c will change. However, this will happen

only when any of the individual solutions cl changes. The crucial observation now

is that as φ is varied over 0 to 2π
M

, each of the individual solutions cl(φ) changes

only once. In other words, for each l, there is a crossover angle αl, such that

cl(φ) = cl(0) , if 0 ≤ φ ≤ αl

= cl(0) + 1 , if αl < φ <
2π

M
.

(4.9)

The exact crossover angles can be obtained simply as a function of zl, K, M and

the locations of the input constellation points. Now, since we only consider those

z vectors for which every component ∈ {0, · · · , a − 1}, there can be at most a

distinct crossover angles. Hence, when φ is varied between [0, 2π
M

), the number of

distinct coherent solutions to the inner maximization in (4.8) is at most a, and

these solutions can be obtained simply by sorting the crossover angles in an as-

cending order. For each of these (at most) a input vectors, we can now numerically

compute the metric max
φ∈[0,2π)

P(z|x, φ), and pick the one with the largest metric as

the GLRT solution. This numerical computation can be done, for example, by

fine discretization of the interval [0, 2π), and computing P(z|x, φ) for every φ in
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this discrete set. The number of computations (multiplications) required to obtain

max
φ∈[0,2π)

P(z|x, φ) then scales linearly in the block length L.

Note that we restricted attention to φ ∈ [0, 2π
M

) only while performing the inner

maximization in (4.8). This is because if we go on beyond 2π
M

, any new solution we

get, say c1 will be related to one of the existing solutions, say c2, by the operation

of constant addition, so that the noncoherent demodulator can not distinguish

between c1 and c2.

4.6 Numerical Results

We now present results for QPSK with 8-sector and 12-sector phase quanti-

zation, for different block lengths L. We begin with the symbol error rate (SER)

plots for block demodulation. Fig. 4.4 (left plot) shows the results for 8-sector

quantization. Looking at the topmost curve, which corresponds to L = 2, we find

that the performance is disastrous. As the SNR is increased, the SER falls off ex-

tremely slowly. A close analysis of the block demodulator reveals that the reason

behind this is an ambiguity in the demodulator decision rule: for certain outputs

z, irrespective of the SNR, the demodulator always returns two equally likely so-

lutions for the input x. While we do not provide a complete analysis of this

ambiguous behavior, an example scenario is shown in Fig. 4.5 to give insight. If
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Figure 4.4: Symbol error rate performance for QPSK with 8-sector phase quan-
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Figure 4.5: Ambiguity in the block noncoherent demodulator. If the received
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) are both

equally likely solutions.
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( a ) (b )

Figure 4.6: (a) Standard PSK : the same constellation (the one shown) is used
for both symbols in the block. (b) Dithered-PSK : the constellations used for the
two symbols are not identical, but the second one is a dithered version of the first
one.

the quantized output vector is z = [1 0], then we find that P(z|x, φ) is maximized

by two equally likely pairs, (x1, φ1) = ([0 0], 0), and (x2, φ2) = ([0 3], π/4), so that

the block demodulator, which does joint maximum likelihood estimation over the

input and the unknown phase, becomes ambiguous. In other words, the symme-

try inherent in the channel model, which on the one hand helped us reduce the

complexity of capacity computations, is also making it impossible to distinguish

between the effect of the unknown phase offset and the phase modulation on the

received signal, resulting in poor performance. While we showed the performance

plot for L = 2 only, we find that the ambiguity persists for larger block lengths

also.

Possible ways to break the undesirable symmetries could be to use non-uniform

phase quantization, or to employ dithering. Here we investigate the role of the

latter. We can either dither the QPSK constellation points at the transmitter,
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or use analog pre-multipliers to dither the phase quantization boundaries at the

receiver. We use a transmit dither scheme in which we rotate the QPSK constel-

lation by an angle of 1
L
(2π

K
) from one symbol to the next. Fig. 4.6 shows this

scheme for block length L=2 and K=8. The constellation used for the second

symbol (shown by the diamond shape) is dithered from the constellation used for

the first symbol by an angle of π/8. With this choice of transmit constellations,

we find that the ambiguity in the block demodulator is removed, and hence the

performance is expected to improve. The results in Fig. 4.4 (left plot) indeed

show a significant performance improvement compared to the no-dithering case,

although increasing the block length does not provide much gain. At SER of

10−3, 8-sector quantization with L = 8 results in a loss of about 4 dB compared

to unquantized observations.

On the other hand, if we consider the performance with 12-sector quantiza-

tion, it is observed that the block demodulator performs well, and dithering is

not required. This suggests that 12-sector quantization does not result in any

undesirable symmetries in the channel model. Fig. 4.4 (right plot) shows the

performance for different block lengths. At SER of 10−3, and L = 8, the loss

compared to the unquantized observations is reduced to about 2 dB.

Next we show the plots for channel capacity. For all our results, we normalized

the mutual information I(X;Z) by L-1 to obtain the per symbol capacity, since
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in practice the successive blocks can be overlapped by one symbol due to slow

phase variation from one block to the next. Fig. 4.7 shows the results for 8-

sector quantization. (To avoid clutter, we show the results for L = 6 only.) Also

shown for reference are the capacity values for the coherent case, and for the block

noncoherent case without any quantization. Despite the disastrous performance

of the uncoded scheme witnessed earlier, we see that, in terms of the channel

capacity, 8-sector quantization scheme recovers more than 80-85% of the capacity

obtained with unquantized observations, for SNR > 2-3 dB . However, the capacity

approaches 2 bits/per channel use extremely slowly. Since H(X) is constant, this

implies that H(X|Z) falls off very slowly as SNR → ∞, which is consistent with
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the earlier observation that there is significant ambiguity in X, given Z, even at

high SNR. The performance improvement obtained by using a dithered-QPSK

input is also shown in Fig. 4.7. It is seen that the slow increase of capacity

towards 2 bits/channel use has been eliminated. 2

While the simple transmit dither scheme considered here has improved the

performance (in terms of both the SER, as well as channel capacity), we hasten to

add that there is no optimality associated with it. A more detailed investigation

of different dithering schemes and their potential gains is therefore an important

topic for future research.

2Since the low-complexity procedure outlined in Section 4.4 does not work once we dither,
we used Monte Carlo simulations to compute the capacity with dithering.
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In Fig. 4.8, we plot the capacity curves for QPSK with 12-sector quantiza-

tion, for block length L=2,4,6,8. Also shown for reference are the coherent and

unquantized block noncoherent performance curves. For identical block lengths,

the loss in capacity (at a fixed SNR > 2-3 dB) compared to the unquantized case

is less than 5-10 %, while the loss in power efficiency (for fixed capacity) varies

between 0.5-2 dB, and as before, dithering is not required.

4.7 Open Issues

There are several open issues to be addressed. Given the performance im-

provement obtained by using the simple dithering scheme considered here, a more

detailed investigation of different dithering schemes is required. Another pos-

sibility to consider would be non uniform phase quantization. While we have

restricted attention to PSK inputs in this work, it is important to evaluate perfor-

mance with QAM alphabets as well, in which case we need to consider amplitude

quantization. Note that, amplitude quantization can, in principle help improve

performance with PSK inputs as well, especially if the SNR is low, and the block

lengths are small.

As with prior work in the literature, we assumed that the phase across the

different blocks varies independently. While this allows analytical tractability,
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the continuous variation of the phase from one block to the next can be used to

enhance performance, especially when we are constrained to using low-precision

samples. How best to leverage this memory might be worth investigating.
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Conclusions

The work in this thesis marks the first steps towards a comprehensive inves-

tigation, and a theory, of communication system design with low-precision ADC

at the receiver. The results obtained from our Shannon-theoretic investigations

in Chapter 3 indicate that the choice of low-precision ADC is consistent with the

overall design goals for future high-bandwidth systems. The availability of a large

amount of bandwidth encourages us to use power-efficient communication using

small constellations (for two of the emerging high-bandwidth systems, this is es-

sential as well: regulatory restrictions prohibit large transmit powers in UWB,

while at mmwave frequencies, it is difficult to generate large transmit powers with

integrated circuits in low-cost silicon processes), so that the symbol rate, and

hence the sampling rate, for a given bit rate must be high. This forces us towards

using ADCs with lower precision. Fortunately, this turns out to be consistent

with the use of small constellations in the first place for power-efficient design.
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Thus, if we plan on operating at low to moderate SNR, the small reduction in

spectral efficiency due to low-precision ADC is acceptable in such systems, given

that bandwidth is plentiful.

For the problem of carrier synchronization with low-precision ADC, we have

investigated the feasibility of the block noncoherent approach, that amounts to

joint detection of the transmitted symbols and the unknown carrier phase. While

our results indicate that this approach could be a feasible option, they also lead

to two important observations: first, low-precision quantization might lead to

unexpected and ambiguous receiver operation when dealing with unknown pa-

rameters, and second, mechanisms such as dithering might be essential to attain

good performance in the face of such ambiguities.

5.1 Directions for Future Work

While this thesis has laid some of the basic groundwork, there is clearly a

lot of research to be done before low-precision ADC can make its way into real

systems. Immediate problems to investigate, are aplenty: further exploration is

needed to tackle carrier asynchronism, for both the implicit noncoherent approach,

as well as for possible explicit estimation and correction approaches; robust and
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elegant solutions are also required for the problems of timing synchronization and

automatic gain control, which we have not investigated in this work.

Another topic of interest, which needs exploration, is the use of low-precision

ADC for fading and dispersive channel environments. Since low-precision ADC

may not provide enough dynamic range to work with the signal received over such

channels, it would be fruitful to investigate feedback-based transmit precoding

strategies, wherein the receiver estimates the channel impulse response (possibly

using sophisticated dithering techniques [27]) and feeds it back to the transmitter

for precompensation. Such an architecture could be suitable for slowly varying

indoor wireless personal area network channels, and especially for applications

where the transmitter is more powerful than the receiver (e.g., laptop transmit-

ting to a handheld). Indeed, if the channel impairments can be ignored after

precoding, then we are back to the AWGN model, so that a receiver employing

low-precision ADC can be expected to work well. Possible techniques to accom-

plish transmit precoding could include time reversal [17], or nonlinear techniques

such as Tomlinson-Harashima precoding [73, 74]. Such techniques must, how-

ever, be assessed keeping in mind the small dynamic range available in a receiver

employing low-precision ADC.

A complementary approach to using low-precision ADC, which can overcome

the ADC bottleneck at high speeds, is to use a time-interleaved (TI)-ADC archi-

87



Chapter 5. Conclusions

tecture, in which several low-speed, high-precision ADCs operate in parallel to

synthesize a high-speed high-precision ADC. The problem to address here is ef-

fective compensation of the mismatches between the different sub-ADCs, such as

gain and timing mismatches, which if left uncompensated can lead to error floors

in the performance [75]. Much further research and experimentation is needed

to determine the relative merits of the low-precision and TI-ADC approaches, as

well as to investigate combinations thereof, for different application scenarios.
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Appendix A

A.1 Achievability of Capacity

Theorem 3 [76] Let V be a real normed linear vector space, and V∗ be its normed
dual space. A weak* continuous real-valued functional f evaluated on a weak*
compact subset F of V∗ achieves its maximum on F .

Proof: See [76, p. 128, Thm 2].
The use of this optimization theorem to establish the existence of a capacity

achieving input distribution is standard (see [37, 77] for details). To use the the-
orem for our channel model (3.1), we need to show that the set F of all average
power constrained distribution functions is weak* compact, and the mutual infor-
mation functional I is weak* continuous over F , so that I achieves its maximum
on F 1. The weak* compactness of F has been shown in [37]. (The authors in
[77] later generalized this result, to show the weak* compactness of a larger class
of sets of distribution functions). To prove continuity, we need to show that

Fn
weak∗−−−→F =⇒ I(Fn) −→ I(F )

The finite cardinality of the output for our problem trivially ensures this. Specif-
ically,

I(F ) = HY (F )−HY |X(F )

= −
K∑

i=1

R(yi; F ) log R(yi; F ) +

∫
dF (x)

K∑
i=1

Wi(x) log Wi(x)

where,

R(yi; F ) =

∫ ∞

−∞
Wi(x)dF (x).

1The notion of weak* convergence here is actually the same as the standard weak convergence
defined in probability theory [78].
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The continuous and bounded nature of Wi(x) ensures that R(yi; F ) is continuous

(by the definition of weak* topology). Moreover, the function
K∑

i=1

Wi(x) log Wi(x)

is also continuous and bounded, implying that HY |X(F ) is also continuous (again
by the definition of weak* topology). The continuity of I(F ) thus follows.

A.2 KKT Condition

The KKT condition holds if the mutual information is weak* continuous and
weak differentiable. The weak* continuity of mutual information for our problem
has already been shown above, and we show the weak differentiability next.

Weak Differentiability of Mutual Information

The weak derivative of I at a point F0 ∈ F is defined as ([35, 37])

I ′F0
(F ) = lim

θ→0

I((1− θ)F0 + θF )− I(F0)

θ
∀F ∈ F (A.1)

Let us define the divergence function

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )

and also let, Fθ = (1− θ)F0 + θF .
Then,

I(Fθ)−I(F0) = θ

∫
dF (x)d(x; Fθ)−θ

∫
dF0(x)d(x; Fθ)+

∫
dF0(x)

K∑
i=1

log
R(yi; F0)

R(yi; Fθ)

Putting R(yi; Fθ) = (1− θ)R(yi; F0) + θR(yi; F ), we get

I ′F0
(F ) = lim

θ→0

I(Fθ)− I(F0)

θ
=

∫
dF (x)d(x; F0)− I(F0) ∀ F0, F ∈ F

The weak derivative defined above exists for our case because both terms in
the difference are finite (due to the discrete nature (with finite cardinality K) of
the output Y ).
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A.3 Proof of Proposition 2

We extend Witsenhausen’s result in [43] to incorporate an average power con-
straint on the input. Our approach is the same as taken by Witsenhausen.

Proof: Let S be the set of all average power constrained distributions with
support in the interval [A1, A2]. The required capacity, by definition, is C =
sup
S

I(X; Y ), where I(X; Y ) denotes the mutual information between X and Y .

The achievability of the capacity is guaranteed by Theorem 3 in Appendix A.1.
The result [77, Lemma 3.1] ensures the weak* compactness of the set S, while
weak* continuity of I(X; Y ) is easily proven given the assumption that the tran-
sition functions Wi(x) are continuous. Let S∗ be a capacity achieving input dis-
tribution.

The key idea that we employ is a theorem by Dubins [44], which characterizes
extreme points of the intersection of a convex set with hyperplanes. We first give
some necessary definitions, and then state the theorem.

Definitions :

• Let E be a vector space over the field of real numbers, and M be a convex
subset of E . M is said to be linearly bounded (respectively, linearly closed)
if every line intersects M in a bounded (respectively closed) subset of the
line.

• Let f : E → R be a linear functional (not identically zero). The set {x ∈ E :
f(x) = c} defines a hyperplane, for any real c.

Dubins’ Theorem : Let M be a linearly closed and linearly bounded convex
set and U be the intersection of M with n hyperplanes, then every extreme point
of U is a convex combination of at most n + 1 extreme points of M.

To apply Dubins’ theorem to our problem, we begin by defining C[A1, A2] : the
real normed linear space of all continuous functions on the interval [A1, A2], with
sup-norm. The dual of C[A1, A2] is the space of functions of bounded variations
[76, Sec 5.5], and it includes the (convex) set of all distribution functions with
support in [A1, A2]. We take E to be the dual of C[A1, A2], and M to be the
subset of E consisting of all distribution functions with support in [A1, A2]. Note
that the optimal input distribution S∗ ∈M.

Let the probability vector of the output Y , when the input is S∗, be R∗ =
{p1

∗, p2
∗, . . . , pK

∗}. Also, let the average power of the input under the distribution
S∗ be P0, where P0 ≤ P .

Now, consider the following subset U of M
U = {M ∈M|R(y; M) = R∗ and E(X2) = P0}. (A.2)
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The set U is the intersection of the set M with the following K hyperplanes

Hi :

∫ A2

A1

Wi(x)dM(x) = pi
∗ 1 ≤ i ≤ K − 1 (A.3)

and,

HK :

∫ A2

A1

x2dM(x) = P0 (A.4)

where Wi(x) are the transition probability functions. Note that there are only
K − 1 hyperplanes in (A.3) since the probabilities must sum to 1, thus making
the requirement on pK

∗ redundant.
We know that the set M is compact in the weak* topology [77, Lemma 3.1].

Also, each of the hyperplanes Hi, 1 ≤ i ≤ K−1, is a closed set since the functions
Wi(x) are continuous. The hyperplane HK is closed as well, since x2 is a continuous
function. Therefore, the set U , being the intersection of a weak* compact set with
K closed sets, is weak* compact. It is easy to see that U is a convex set as well.
On the set U , we have

I(X; Y ) = H(Y )−H(Y |X)

= −
K∑

i=1

pi
∗ log pi

∗ +

∫ A2

A1

dM(x)
K∑

i=1

Wi(x) log Wi(x).

As a function of the distribution M(·), we get
I(X; Y ) = constant + linear ,

and the linear part is weak* continuous since
K∑

i=1

Wi(x) log Wi(x) is in C[A1, A2].

It follows that the (continuous and linear) functional I(X; Y ) attains its max-
imum over the (compact and convex) set U at an extreme point of U . However,
since S∗ ∈ U , any maxima over U is a maxima over S as well. Hence, the required
capacity is achieved at an extreme point of U .

We now apply Dubins’ theorem to characterize the extreme points of U . Since
U is the intersection of M with K hyperplanes, every extreme point of U is a
convex combination of at most K + 1 extreme points of M. The extreme points
of M however are distributions concentrated at single points within the interval
[A1, A2]. Therefore, we get that the required capacity is achievable by a discrete
distribution with at most K + 1 points of support.
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Figure A.1: The second derivative of h(Q(
√

y)) is positive for small values of y.

A.4 Convexity of the Function h(Q(
√

y))

To show convexity, we verify that the second derivative of the function h(Q(
√

y))
is positive everywhere. For y > 2, we do this analytically, while for 0 ≤ y ≤ 2,
the positivity of the second derivative is demonstrated numerically in Figure A.1.

Let u(y) = h(Q(
√

y)). Then,

u′(y) =
−e−y/2

2
√

2πy ln 2
ln

(
1−Q(

√
y)

Q(
√

y)

)

Note that
1−Q(

√
y)

Q(
√

y)
≥ 1, ∀y ≥ 0. Therefore, to show that the second derivative

u′′(y) is positive, it suffices to show that the function v(y) = e−y/2 ln
[

1−Q(
√

y)

Q(
√

y)

]
is

a decreasing function of y. Taking the derivative of v(y), we get

v′(y) =
−e−y/2

2

[
ln

(
1−Q(

√
y)

Q(
√

y)

)
− e−y/2

√
2πy Q(

√
y)(1−Q(

√
y))

]

To show that v(y) is decreasing, it suffices to show that

ln

(
1−Q(

√
y)

Q(
√

y)

)
≥ e−y/2

√
2πy Q(

√
y)(1−Q(

√
y))

(A.5)
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Using the fact [64, pp. 78] that Q(y) ≥ (1− 1
y2 )

e−y2/2

y
√

2π
, we get that if y > 1, then

the following condition is sufficient for (A.5) to be true

ln

(
1−Q(

√
y)

Q(
√

y)

)
≥ 1

(1− 1
y
)(1−Q(

√
y))

(A.6)

or, equivalently

(1− 1

y
)(1−Q(

√
y)) ln

(
1−Q(

√
y)

Q(
√

y)

)
≥ 1 (A.7)

The left hand side of (A.7) is a monotone increasing function of y. For y = 2,
it equals 1.133. Thus (A.7) holds ∀y > 2, and hence the second derivative of
h(Q(

√
y)) must be positive for y > 2.
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