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Abstract

Millimeter wave picocellular networks: capacity analysis and system design

by

Zhinus Marzi

The explosive growth in demand for wireless mobile data, driven by the proliferation

of ever more sophisticated handhelds creating and consuming rich multimedia, calls for

orders of magnitude increase in the capacity of cellular data networks. Millimeter wave

communication from picocellular base stations to mobile devices is a particularly promis-

ing approach for meeting this challenge because of two reasons. First, there is a large

amount of available spectrum, enabling channel bandwidths of the order of Gigahertz

(GHz) which are 1-2 orders of magnitude higher than those in existing WiFi and cellular

systems at lower carrier frequencies. Second, the small carrier wavelength enables the

realization of highly directive steerable arrays with a large number of antenna elements,

in compact form factors, thus significantly enhancing spatial reuse. Hence, we propose to

employ the 60 GHz unlicensed band for basestation to mobile communication in outdoor

picocells.

We first investigate the basic feasibility of such networks, showing that 60GHz links

are indeed viable for outdoor applications. For this purpose, we provided link budget

calculations along with preliminary simulations which show that despite the common

concerns about higher oxygen absorption and sensitivity to movement and blockage,

picocloud architecture provides availability rate of more than 99%.

Next, we explore the idea of increasing spatial reuse by shrinking picocells hoping

that interference is no longer the bottleneck given the highly directive antenna arrays at

this band. Our goal is to estimate the achievable capacity for small picocells along an

viii



urban canyon. We consider basestations with multiple faces or sectors, each with one

or more antenna arrays. Each such array, termed subarray can employ Radio Frequency

(RF) beamforming to communicate with one mobile user at a time. We first focus on

characterization and modeling the inter-cell interference for one subarray on each face.

Our analysis provides a strong indication of very large capacity (in the order of Tbps/km)

with a few GHz of bandwidth.

Following this, we explore the impact of adding multiple subarrays per face. This leads

to intra-cell interference as well as additional inter-cell interference. While the effect of

additional inter-cell interference can be quantified within our previous framework, intra-

cell interference has inherently different features that call for new approaches for analysis

and design. We propose a cross-layer approach to suppress the intra-cell interference in

two stages: (a) Physical layer (PHY-layer) method which mitigates interference by joint

precoding and power adaptation and (b) Medium Access Control layer (MAC-layer)

method which manages the residual interference by optimizing resource allocation. We

then estimate the capacity gain over conventional LTE cellular networks and establish

that 1000-fold capacity increase is indeed feasible via mm-wave picocellular networks.

Lastly, we examine fundamental signal processing challenges associated with channel

estimation and tracking for large arrays, placed within the context of system design

for a mm-wave picocellular network. Maintainance of highly directive links in the face

of blockage and mobility requires accurate estimation of the spatial channels between

basestation and mobile users. Here we develop the analytical framework for compressive

channel estimation and tracking. We also address the system level design discussing

link budget, overhead, and inter-cell beacon interference. Simulation results demonstrate

that our compressive scheme is able to resolve mm-wave spatial channels with a relatively

small number of compressive measurements.

ix
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Chapter 1

Introduction

The demand for cellular data is projected to increase 1000-fold by 2020 [2], driven to

a large extent by mobile video. According to Shannon’s capacity limit equation, there

exist three dimensions to boost up the cellular networks overall capacity:

• increasing data rate per user by allocating more channels to them (time/frequency)

• increasing data rate per channel use (spectral efficiency)

• increasing the number of coexisting users (same time, frequency and space)

Existing cellular systems below 5 GHz are fundamentally constrained by available

bandwidth [3], and are approaching their limits of spectral efficiency [4]. Moreover, de-

ploying smaller and denser cells (in order to serve a greater number of subscribers per

region) has already been explored in current cellular networks [5, 6]. However, this ap-

proach is fundamentally limited by interference constraints for the carrier frequencies

employed in today’s cellular systems [7]. This is because of the hard limit on the size of

the antenna employed at basestation or the mobile device. Therefore, even advances in

MIMO technology can only avoid interference to a limited degree at low carrier frequen-

cies which is not enough for realizing significant capacity gain [7].

1



Introduction Chapter 1

The promise of mm-wave. However, higher carrier frequencies, offer an attrac-

tive alternative. We take 60 GHz band as an example which has 7 GHz of unlicensed

spectrum. This can already enable channel bandwidths of the order of GHz, 1-2 orders

of magnitude higher than those in existing systems at lower carrier frequencies (more

channels). Moreover, shorter carrier wavelength allows for larger number of antenna el-

ements to fit within compact form factors 1. The highly directional beams of which will

drastically reduce interference (higher spectral efficiency) and enable highly overlapping

links with minimal mutual interference (greater number of users).

After all, there is no doubt about the potential for the mm-wave band to provide

significant capacity gain. Even though most of the attention so far has focused on using

60 GHz for indoor applications, the goal of this work is to show that it is a strong

candidate for delivering the 1000-fold capacity increase demanded for outdoor cellular

networks in dense urban environments.

We propose using picocells with base stations opportunistically deployed on lampposts

or rooftops 1.1. As we will show in section 1.1, the radius of 100 meters or less is a sweet

spot for mm-wave picocells where the impact on link budget due to oxygen absorption

(if using the 60 GHz unlicensed band) and rain (if using any mm-wave band) is relatively

small. The additional losses due to oxygen absorption and heavy rain are about 16 and

20 dB/km respectively. Hence, the total loss over 100m is 3.6 dB which can be handled

within our desired link budget.

Given the highly directive nature of the beam and the limited diffraction at short

wavelengths, mm-wave links are more prone to blockage and limiting range also reduces

the likelihood of blockage.

Given the high demand for wireless data in dense urban environments, we focus our

1A 100-element array at 60GHz band where carrier wavelength is only 5mm easily fits in no more
than a square inch

2
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60GHz BS1 60GHz BS2

60GHz  BS3

Control Plane (e.g. LTE network)

Figure 1.1: A potential 60GHz picocell architecture for outdoor mobile broadband.
Base stations are densely deployed, each of which contains a few antenna arrays, form-
ing highly directional beams simultaneously to multiple users. The beams follow users
through direct or reflected paths, creating high-bandwidth downlink transmissions [8].

modeling and performance evaluation on the urban canyon setting depicted in Figure 1.2,

with streets flanked by buildings on both sides. Picocellular basestations are deployed

on lampposts (at lamppost height of 6m) in a zig-zag pattern on both sides of the street.

We want to use pencil beams but provide omnidirectional coverage. To accomplish

this, we propose the use of base stations with multiple ”faces” where each face can have

multiple antenna arrays. A nominal field of view for each face might be 120 degrees.

Thus, two faces suffice for an urban canyon, where the overall field of view required is

180 degrees. For the east-west street shown, each base station has two faces, facing east

and west, respectively. Thus, a user in the street segment shown in Figure 1.2 is covered

by the eastward-facing face of BS2 and the westward-facing face of BS1. Denoting the

east-west distance between adjacent basestations as d, the street segment shown can be

termed a picocell of width d. Thus, each picocell is covered by one face each from two

base stations. Mobile stations are modeled as either pedestrian walking along sidewalks,

or cars moving along the street.

Multiple antenna systems at lower carrier frequencies have a relatively small num-

ber of elements, each with its own radio frequency (RF) chain. This provides control

of the individual baseband signals associated with each element, enabling sophisticated

adaptation, including frequency-selective spatiotemporal processing (e.g., per subcarrier

3



Introduction Chapter 1

Figure 1.2: Simulation environment: a typical street in New York City (observed
from the Google Map), where two basestations serve users on both sidewalks along
the street [8].

beamforming in OFDM systems). This approach does not scale when we have a large

number of antenna elements packed into a tiny form factor. Instead, we consider RF

beamforming, in which a common baseband signal is routed to/from the antenna ele-

ments, and we can only control the amplitude and phase for each element. In such an

architecture, each antenna array can only communicate with a single user at a time.

Thus, resource allocation for a single antenna array is using time division multiplexing,

but multiple users can be supported by deploying multiple antenna arrays per face (we

call each such array a subarray).

Mm-wave bands have also been studied toward developing the next generation (5G)

of wireless networks. 5G will use spectrum in the existing LTE frequency range (600

MHz to 6GHz) as well as mm-wave bands (24 - 86 GHz). One ambitious goal set for

5th generation wireless networks is the 1000x capacity increase. However, a critical

bottleneck is the limited available spectrum, especially at costly and crowded sub-6 GHz

bands. Hence, exploiting shared and especially unlicensed spectrum (including mm-wave

bands) is essential for meeting 5G goals [9]. Early mm-wave prototypes operate at 28

GHz to avoid oxygen absorption and deliver extreme data rates over a line-of-sight range

of 350 meters and non-line-of-sight coverage of 150 meters in a dense urban deployment

[10]. However, in this work we study the unlicensed 60GHz band since (a) it has already

4
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been standardized for indoor use, which can be leveraged for seamless indoor-outdoor

coverage (b) the amount of spectrum is massive and recently increased from 7GHz to

14GHz in the United States [11] and (c) the use of unlicensed spectrum potentially

enables new entrants into a market currently dominated by deep-pocketed carriers. We,

therefore, focus on 60GHz in our numerical results, although our general framework for

analysis and design applies to millimeter wave bands in general.

1.1 Basic Feasibility of mm wave Outdoor Picocells

Now, we review some of the results from our previous study which address the common

concerns about 60GHz via extensive measurements and simulations, showing that the

potential for 60GHz outdoor picocells can be realized without fighting physics [8]

1.1.1 Communication range

Link budget calculations leveraging IEEE 802.11ad: The IEEE 802.11ad stan-

dard for 60GHz [12] outlines a number of modulation and coding schemes to adapt to

different range-rate tradeoffs. We have leveraged 802.11ad physical layer for the purpose

of our link budget calculations by which we show that link ranges of the order of 100m

are attainable (see Table 1.1).

The receiver sensitivity for each data rate ( i.e., the minimum received power required

to sustain that data rate) is obtained from the 802.11ad standard and already accounts for

large values of implementation loss (5 dB) and noise figure (10 dB). Our link budget also

accounts for the FCC EIRP restriction of 40 dBm and loss due to free space propagation

and oxygen absorption. On top of that, we add a link margin of 15 dB, which is accounting

for reflection loss (in case we are using a bounce rather than a LoS path, which typically

leads to at most 5-7 dB loss) and for rain. That is, the receiver sensitivity as a function

5
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of range R (in meters) is computed as

PRX(dBm) = EIRP (dBm) +GRX(dBi)− Lploss(R)− Lmargin (1.1)

where GRX(dBi) = 10 log10NRX is the receiver antenna directivity as a function of the

number of receive elements NRX (we consider NRX = 16, 64, 100 for the 4× 4, 8× 8 and

10× 10 arrays). The path loss Lploss in dB is

Lploss(R) = 10 log10

16π2R2

λ2
+ αR (1.2)

with α = 0.016 dB/m (16 dB/km) accounting for oxygen absorption, and λ = 0.005m at

60 GHz.

Table 1.1: Outdoor range/rate tradeoffs with 802.11ad PHY
Data rate RX sensitivity 4× 4 RX array 8× 8 RX array 10×10 RX array

385 Mbps -68 dBm 63m 114m 138m

1.155 Gbps -64 dBm 41m 77m 94m

2.31 Gbps -61 dBm 30m 57m 70m

As shown in Table 1.1, within FCC’s power regulations, and taking into account oxygen

absorption and heavy rain, 60GHz offers coverage area that exceeds 130m for 385Mbps

and 70m for 2.31Gbps.

1.1.2 Sensitivity to blockage and user motion

Given the highly directive nature of the beam and the limited diffraction at small

wavelengths [13], 60 GHz links can indeed be blocked easily by human body or other

obstacles. However, this issue can be solved by an electronically steerable antenna ar-

ray that can point its beam towards one of several available reflected paths or by the

picocloud architecture that can handle the handover of user among basestations seam-

6
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lessly. Next, we conduct simulations to show that making use of reflected paths together

with the picocloud architecture, provide robust connectivity even in obstacle-rich urban

environments.

Simulation Setup: We consider a street canyon as in Figure 1.2. We considers

pedestrians, cars and trees as obstacles that can potentially block or attenuate 60GHz

links. We model each pedestrian as a cylinder of radius 0.3m with height uniformly

distributed between 1.5m and 2m, and trees as cyclinders with radius 0.4m and height

3m. We model cars as rectangular cuboids of size 2m × 4.5m × 1.5m. We consider a

moderate pedestrian density of 0.08person/m2 [14]. The link budget in our simulations

is as in eq. (1.1)-(1.2).

We also consider regular square arrays of various sizes with standard radiation pat-

terns [15]. However, since we fix the EIRP to 40dBm, the size of the transmit array does

not impact the link budget, but can have a significant effect on interference. The receive

array size though, impacts both link budget and interference. The 60 GHz channel is well

characterized by a small number of dominant rays [16]. Path strengths will decay rapidly

with multiple bounces. Hence, in our model, we consider the LoS ray and one-bounce

paths.

Link Availability: We consider several factors that may affect link availability:

• User’s orientation: Four possible orientations (North, South, East and West) are

considered and when facing basestation 1, the user’s body blocks the LoS path from

basestation 2 and vice versa.

• Blockage by other obstacles e.g. other pedestrians, trees, and cars. We consider a

moderate pedestrian density of 0.08 per square meter2. We find that, in general,

2We obtain similar results for much higher densities since it turns out that blockage of user body is
the key source of link impairment.
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Data rate (Mbps) 385 1155 2310

LoS (BS1) 66.0% 66.0% 66.0%

LoS + 2 NLoS (BS1) 94.2% 93.8% 93.5%

LoS (BS1& BS2) 94.5% 94.5% 94.5%

6 paths (BS1&BS2) 100% 99.95% 99.95%

Table 1.2: Effect of picocloud and reflection paths on availability, 10×10 RX array,
100m separation between the two basestations.

cars are not tall enough to block LoS and wall reflections to users on sidewalks, but

may disrupt ground reflections. Hence our simulations do not utilize any ground

reflections from the street or sidewalk.

• The presence of gaps between buildings (see Figure 1.2) which might eliminate the

reflected paths from walls.

Taking into account these factors, we run simulations to estimate the distribution of RSS

at different receiver locations, accounting for different receiver orientations and locations

of other pedestrians and cars. We use this to compute the availability rate for three

802.11ad data rates listed in Table 1.1 (a data rate is “available” if the RSS exceeds its

required receiver sensitivity).

Table 1.2 summarizes the availability rates for four different scenarios in terms of

the capability of switching among available paths from a single or multiple basestations.

As shown in Table 1.2, using LoS path from a single basestation cannot provide robust

connectivity, but when both basestations are involved, the link availability jumps from

66% to 94.5% at 2310 Mbps. Adding just two wall-reflected paths further increases

availability to 99.95-100%.

Basestation Spacing and RX Array Size. Assuming a picocloud of two basesta-

tions and the use of both LoS and reflected paths, Table 1.3 reports the availability rate

for different basestation spacing and RX array size. We see that for the 10×10 RX array

and a BS spacing of 200m, we have high availability even at 2 Gbps (99.3% in clear,

8
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Table 1.3: Availability rates (blockage scenario).

Clear Rainy
RX BS Data rate (Mbps)

array spacing 385 1155 2310 385 1155 2310

4×4
100m 99.9% 99.5% 99% 99.8% 99.4% 98%
200m 99.4% 94.6% 85% 98.3% 89.2% 75.7%

8×8
100m 99.9% 99.75% 99.6% 100% 99.75% 99.7%
200m 99.5% 99.45% 98.9% 99.5% 99% 97.2%

10×10
100m 100% 99.95% 99.95% 99.9% 99.9% 99.8%
200m 99.5% 99.5% 99.3% 99.5% 99.5% 98.8%

BS1

BS1 BS2

BS2

BS3

Wall

Figure 1.3: Available path changes as a user rotates her body or gets blocked by
another pedestrian [1]

and 98.8% in rainy conditions). This implies that even with a sparse deployment, the

network offers robust connectivity and coverage.

User Motion: maintaining high rate connections toward moving users also require

switching among multiple paths from a single base station as well as handing over to an-

other basestation (Figure 1.3). However, most of the time we only need to realign beams

once every few seconds to keep up with outdoor pedestrian motion which is practical

since the time constant of electronic adaptation is small compared to the time constants

of motion. Later on in Chapter 4 we will introduce a fast and efficient algorithm that

make it possible to estimate and track the available paths to mobile users.
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1.2 Massive Capacity Gain of mm wave Outdoor Pic-

ocells

The small wavelengths in mm-wave bands enable the realization of highly directive

antennas in compact form factors, thus producing significant gains in spatial reuse. In

Chapter 2 and 3 of this thesis, we conduct an interference analysis that accounts for the

unique characteristics of mm-wave communication, and use this to provide rough esti-

mates of the attainable network capacity. Our analysis are tailored for outdoor picocells

along an urban canyon. More specifically, we consider picocellular base stations deployed

on lampposts on each side of the street along an urban canyon (e.g. a typical street in

New York City), as depicted in Figure 1.2. Each BS has two “faces,” facing east and

west. Each face may have multiple antenna arrays, each with a large number of elements.

In our prior work [8], we have obtained promising results regarding the basic fea-

sibility and massive spatial reuse achievable in the proposed architecture. While there

are significant design challenges in realizing the proposed architecture (e.g.,see the dis-

cussion in [8]), our focus in this work (Cahpter 2 and 3) is to quantify the achievable

network capacity as we shrink 60 GHz picocells, assuming that these challenges can be

surmounted.

1.2.1 Contributions

Prior work at lower carrier frequencies shows that interference becomes a fundamental

limiting factor [17] in picocellular settings, but as we show here, the narrow beams

synthesized using large arrays at 60 GHz alleviate this problem. Here is a brief overview

of our roadmap to estimate the capacity gain of mm-wave picocellular networks:

In Chapter 2, we obtain a rough estimate of the overall achievable capacity by
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shrinking cells. First, we mainly focus on inter-cell interference by considering only one

subarray per face of a base station. In our analysis, we account for the geometry of the

urban canyon, and obtain the following results.

• We show that the inter-cell interference caused by the main beam directed at the de-

sired user vanishes after a number of cells determined by the heights of the BS and the

user.

• We develop analytical expressions for the inter-cell interference due to sidelobes, ac-

counting for oxygen absorption and reflections.

• We simulate the statistics of the signal-to-interference-plus-noise ratio (SINR) and at-

tainable data rates under some simple resource management schemes, estimating the

attainable network capacity to be of the order of Terabits/sec per km along the canyon,

using 2 GHz of spectrum.

In Chapter 3, we have further explored mm-wave picocellular networks potential

by letting multiple subarrays per base station. This will evidently cause an excessive

amount of interference by (a) inducing intra-cell interference originated from the other

transmitters on the same base station and (b) raising inter-cell interference caused by

additional transmitters in neighboring cells.

Our previous analysis for inter-cell interference could still be applicable to this scenario

with minor modifications. Intra-cell interference however, has different features that calls

for new approaches to deal with. For example, joint precoding, power adaptation and

resource allocation schemes that require coordination among interfering transmitters are

easier to employ for combating intra-cell interference where transmitters are co-located,

as opposed to the inter-cell interference where the interfereing transmitters are installed

on different base stations.

We have proposed a cross-layer approach to deal with the intra-cell interference in

which we have combined techniques from two broad areas that have been studied in
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the literature: (a) downlink linear precoding and power control [18, 19, 20, 21, 22] (b)

powerful optimization approaches recently developed for network-level resource allocation

[23, 24]. Here is a brief description of our two-step method:

1. Given that a resource block is assigned to a pre-defined set of users, we develop a

PHY-layer building block which employs an optimal linear method (i.e., LMMSE)

for beamforming and power allocation to supress the LoS intra-cell interference

among them.

2. We then incorporate the PHY-layer block in designing the MAC-layer protocol

which solves an optimization problem to determine the set of active users on each

resource block.

Lastly, we evaluate our proposed scheme via comprehensive simulations of picocells along

an urban canyon in which both inter- and intra-cell interference are taken into account.

According to our simulation results, as we shrink cells (down to the cell width of 20(m)),

users spectral efficiency is mostly (≥ 97% ) limited by hardware limitations (even with

spectral efficiency of sM=6 bps/Hz corresponding to 64-QAM). Larger cells however, are

more prone to interference, yet our proposed scheme provides users with sufficient spectral

efficiency for employing smaller constellations like QPSK. We then computed the overall

capacity per square kilometer for a typical region in Manhattan area and demonstrated

that dense mm-wave picocellular networks can actually deliver the promised 1000-fold

capacity increase over the today’s cellular networks.

1.3 Compressive channel estimation and tracking

In Chapter 4, we address fundamental signal processing challenges associated with

channel estimation and tracking for large arrays, placed within the context of system
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design for a mm-wave picocellular network.

While the signal processing and system design concepts presented here are of rather

general applicability, our numerical results are for the particular setting that we discussed

in prior chapters 1.2.

At the base station, we consider very large 32× 32 arrays (such 1000-element arrays

are still only palm-sized at a carrier wavelength of 5 mm) targeting the long term, as well

as “moderately sized” 8 × 8 arrays (which can fit within an area of about half a square

inch) which are currently realizable. Note that 16-element arrays were reported several

years ago [25], and are already deployed in existing 60 GHz products, while 32-element

arrays have been prototyped [26]. We assume that mobile devices are equipped with

smaller 4× 4 antenna arrays.

We focus on downlink 60 GHz communication, with the goal of enabling base station

arrays to perform transmit beamforming towards mobile devices, despite the challenges

posed by mobility and blockage (which occurs more easily at smaller wavelengths). We

do not count on reciprocity. The uplink could be a standard LTE or WiFi link at

lower carrier frequencies, used both for uplink data (not modeled here) and feedback for

enabling spatial channel estimation at the transmitter.

We consider RF beamforming, in which a common baseband signal is routed to/from

the antenna elements, and we can only control the amplitude and phase for each element.

Indeed, we go even further, assuming that the amplitude for each element is fixed, and

that we can only apply coarse four-phase control for each element. Standard least squares

array adaptation and channel estimation techniques, which require access to the baseband

signals associated with each element, do not apply in this setting. Instead, we consider

here a compressive approach which exploits the sparsity of the mm-wave channel, so that

relatively few measurements are required for channel estimation despite the large number

of array elements.
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Figure 1.4: Channel sounding scheme: The transmitter repeats the M transmit bea-
cons L times so that receivers can measure the channel vi,j corresponding to the ith
setting at the transmitter and the jth at the receiver.

An alternative approach to spatial channel estimation with RF beamforming is ex-

haustive search, but its overhead does not scale for the large arrays of interest to us.

Hierarchical codebook search is more efficient [27, 28, 29, 30], but it cannot guarantee

overhead reduction in a multiuser setting. Furthermore, the multi-resolution beam pat-

terns used in hierarchical search require more than one RF chain [30], and these methods

only provide binned estimates of path directions. In contrast, the method presented here

provides fine-grained estimates while using only a single RF chain.

Chapter 4 of this thesis builds on prior conference papers of our group on compressive

array adaptation [31, 32], but goes well beyond them in several respects. In addition

to a more detailed development of the analytical framework underlying our estimation

algorithm, we now explicitly model the receive array at the mobile, which requires a

generalization of the beaconing and feedback strategy. We also address system level

design for compressive tracking in far greater detail, discussing link budget and overhead,
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and accounting for inter-cell beacon interference. The previous work on compressive

array adaptation [31] subsequently led to a general framework for compressive estimation

[33, 34], which identify the isometries required to preserve fundamental bounds such as the

Ziv-Zakai (ZZB) and Cramer-Rao (CRB), and use the relationship between these bounds

to provide criteria for determining the minimum number of compressive measurements

required to preserve geometry and to permit accurate parameter estimation based on

a signal corrupted by an AWGN. We now adapt these general results here to develop

guidelines for system-level parameter choices.

1.3.1 Contributions

Our contributions in this chapter are summarized as follows:

Architecture: We propose a novel architecture in which base stations send out compres-

sive beacons, with a different set of pseudorandom phases used to transmit each beacon.

Each mobile measures the complex gains associated with each beacon compressively, us-

ing pseudorandom control of the phases of its receive array. The scheme, described in

more detail later, is depicted in Figure 1.4: the base station sends M beacons, repeated

L times, which permits the mobile to use L different settings of its own array to measure

the associated complex gains. Each mobile feeds back appropriately chosen functions of

its measurements to the base stations on the uplink (which can be a standard LTE link).

Each base station use this information to estimate and track the dominant paths to each

mobile that it receives feedback from.

Algorithms: For the regular two-dimensional (2D) arrays considered here, directions of

arrival/departure map to 2D spatial frequencies. The base station estimates the spatial

frequencies to each mobile using a simple sequential algorithm, shown to be near-optimal

(in terms of approaching the Cramer-Rao Bound) in related publications. The algorithm
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exploits the geometric continuity of the channel across successive beaconing intervals to

reduce the required number of compressive measurements.

System Design: While we do not provide a complete system design centered around

our compressive strategy, we do provide preliminary results addressing some of the most

important issues. We show that the overhead incurred by our beaconing scheme is very

small (less than 1%). Furthermore, while compressive beacons are essentially omnidi-

rectional (in contrast to the highly directive beams employed for communication), the

link budget suffices for accurate channel estimation, and a simple beacon reuse strategy

suffices to control inter-beacon interference across picocells.

16



Chapter 2

Capacity of mm wave picocells: a

first estimate

2.1 Introduction

Millimeter (mm) wave picocellular networks are a promising approach for delivering

the 1000-fold capacity increase required to keep up with projected demand for wireless

data: the available bandwidth is orders of magnitude larger than that in existing cellular

systems, and the small carrier wavelength enables the realization of highly directive

antenna arrays in compact form factor, thus drastically increasing spatial reuse. In this

chapter, we carry out an interference analysis for mm wave picocells in an urban canyon,

accounting for the geometry associated with the sparse multipath characteristic of this

band. While we make some modeling simplifications, our analysis provides a strong

indication of the very large capacity, of the order of Terabits/sec per km, provided by

such networks, using system bandwidths of the order of a few GHz.
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2.1.1 Related Work

There are a number of prior papers investigating interference in mm wave networks.

The effect of directional links on mesh networks is investigated in [35], while indoor

environments are considered in [36, 37]. Coverage and attainable data rates in outdoor

mm wave networks are investigated in [38] using stochastic geometry models, with base

stations, users and obstacles placed in the plane according to Poisson point processes.

To the best of our knowledge, this is the first attempt to account for the geometry of an

urban canyon to quantify interference and capacity in mm-wave networks.

2.2 Interference analysis for mm-wave picocells

In the next section, we provide a geometric characterization of the inter-cell interfer-

ence in our model of an urban canyon 1.2. Two important simplifications: (a) we ignore

interference across parallel urban canyons, as well as interference which might leak from

cross streets; (b) we do not consider potential reflections from horizontal ledges. However,

while more detailed modeling and simulations are needed to refine the interference and

capacity estimates provided here to account for such effects, we expect the qualitative

conclusions to remain unchanged.

2.2.1 Inter-cell Interference Characterization and Modeling

We investigate the inter-cell interference caused by the main lobe and side lobes

separately, since they have different characteristics. Since we consider a large number of

antenna elements, the main beam is narrow and is well modeled by a single ray. Side

lobes are much weaker, but their directions are difficult to predict, hence we must be

more careful in bounding their effect.
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Main lobe interference

We consider basestation antenna arrays with a large number of elements forming

a pencil beam towards the desired user. This “desired” beam can be along the LoS,

or it can be a single bounce from a wall or the ground (e.g., when steering around an

obstacle blocking the LoS). We seek to understand the interference such a beam creates

for neighboring basestations. We can use ray tracing for this purpose, given the highly

directive nature of the beam and the limited diffraction at small wavelengths [13].

We assume that each face only creates interference in the direction it is facing. The

following theorem proves that the main beam will escape to the sky after a few bounces

(Figure 2.1), assuming that we can ignore the effect of potential reflections from horizontal

ledges. Specifically, we bound the distance (from the transmitting BS) over which the

main beam can create interference. We denote by hmax the maximum height of users,

by HBS the height of a BS, and by d the width of a picocell shared among two opposite

facing antennas on adjacent BSs (Figure 2.4).

Figure 2.1: Mainlobe will escape to sky after a few bounces

Theorem 1 The maximum range over which the main beam can create interference is

bounded by HBS+hmax

HBS−hmax
d. Thus, the main beam from a face creates interference for at most

Nmax = dHBS+hmax

HBS−hmax
e adjacent BSs in the direction it is facing.
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In order to prove this theorem, we need to introduce the “virtual” ray. When the

“real” (i.e., physical) ray is reflected from any surface (ground or walls), the corresponding

virtual ray is the straight line which is the mirror image of the real ray with respect to the

reflecting surface. Thus, the direction of the virtual ray is unchanged by the reflection,

and it “goes through” walls and the ground. Figure 2.2 shows an example of a real ray,

and the corresponding virtual ray for a single reflection.
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Figure 2.2: Real and virtual rays for a wall reflection

Proof: The proof is based on tracing the virtual ray associated with the main beam.

Since the BS height is larger than that of any user, the main beam must go downward

to reach the target user. It is easy to see that, in order to maximize the distance over

which this beam creates interference, we must have a ground reflection.

Now, suppose that the main beam undergoes a ground reflection. The “real” reflected

ray can only go upward, under our assumption that there is no horizontal surface above

the ground that can reflect it again to create a downward trajectory. After the ground

reflection, the virtual ray is as far below the ground as the real ray is above it (Figure

2.3). Setting Z = 0 as the ground surface, once the virtual ray crosses the Z = −hmax

plane, the real ray will have gone to a height of more than hmax, and can no longer create

interference, since a potential victim user has height at most hmax.

Figure 2.4 provides a bird’s eye view of the urban canyon, and lays out the coordinate

system. The line equation of the virtual ray corresponding to the main beam is as follows:
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Figure 2.3: Ground reflection

Figure 2.4: Problem geometry
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X −XBS

a
=
Y − YBS

b
=
Z − ZBS

c
(2.1)

where XBS = YBS = 0 and ZBS = HBS. As this virtual ray hits Z = −hmax, the actual

ray has gone beyond the region in which it could interfere with users of height at most

hmax.

X =
a

c
(z −HBS)|z=−hmax =

a

c
(−hmax −HBS) (2.2)

in which a and c are as follows for LoS and different NLoS paths to the target user,

specified in Figure 2.4.

LoS NLoS1 NLoS2 NLoS3

a Xu Xu Xu Xu

c Zu −HBS Zu −HBS Zu −HBS −Zu −HBS

Thus, we have the following expression for X:

X =
Xu

∓Zu +HBS

(hmax +HBS) (2.3)

Since each BS is serving a user inside the immediate picocell, the maximum value of X

corresponds to the maximum value of Xu = d (at the edge of coverage for the face), as

follows:

max
u
X =

d(HBS + hmax)

HBS − hmax
(2.4)

This is less than or equal to the width of HBS+hmax

HBS−hmax
picocells covered by dHBS+hmax

HBS−hmax
e

adjacent BSs.

For typical values ofHBS = 6(m) and hmax = 2(m) employed in our simulations, Theorem

1 implies that the main beam interferes with two adjacent BSs in the direction of the

face producing the beam.
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Sidelobe interference

While the main beam points towards a user inside the picocell, the direction of emis-

sion of sidelobes is highly variable, hence it is not possible to limit side lobe interference

to a finite number of adjacent picocells. However, as stated in Theorem 2 below, the

cumulative sidelobe interference seen within a given picocell is bounded (to a relatively

small value), because of the geometric decay (with distance) of the strength of the inter-

ference from a distant picocell caused by oxygen absorption and reflection losses, along

with the quadratic decay due to path loss. We consider a reference cell 0, and seek to

quantify interference from cells k > 0 to its east and k < 0 from its west.

Denote by P the smallest received power over the desired link, which is given by

P = PTxGTxGRx(
λ

4πLmax
)2e−βLmax (2.5)

where PTx,GTx and GRx are the transmitter power and the gains of Tx and Rx antenna

arrays, respectively. The parameters λ, β and Lmax denote, respectively, the wavelength,

oxygen absorption coefficient (16 dB/km) and maximum length of a link inside a picocell.

Theorem 2 For a user in cell 0, the sidelobe interference due to the BSs [K,∞) and

(−∞, K] is bounded by αKP , where P is the smallest received power over the desired

link.

αK =

∞∑
k=K

Ik +
−K∑

n=−∞
Ik

P
(2.6)

where αK decays geometrically with K, and is estimated below in (2.10).

Proof: The total interference introduced by the kth BS to a user inside cell0 known

as Ik is given by

Ik =
∞∑
n=0

Ik,n (2.7)
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where Ik,n is the interference component that travels from the kth BS undergoing n

number of bounces before being captured by the Rx antenna array. It can be evaluated

as follows:

Ik,n ≈ NnPTx(gTx)k,n(gRx)k,n(
λ

4πrk,n
)2e−βrk,n(

1

lk,n
)n (2.8)

where (gTx)k,n, (gRx)k,n and rk,n are the Tx gain, Rx gain and the length of corresponding

n times reflected path from kth BS, respectively. Moreover, 1
lk,n

is the corresponding

reflection loss coefficient which depends on the incidence angle and the reflecting surface

material. The factor Nn accounts for the number of possible paths (corresponding to

different possible ordering of reflectors). While the interference may differ across such

paths, we can replace them by a common value because we seek a pessimistic estimate

for the interference. By virtue of Theorem 1, for k > dHBS+hmax

HBS−hmax
e, (gTx)k,n is the gain of

the Tx antenna array outside the main beam.

Note that rk,0 is actually the distance between the kth BS and the target user in cell0,

and can be roughly approximated by kd. By Pythagoras’s theorem, rk,n can be inter-

preted based on rk,0 and W which is the distance between parallel reflectors (buildings

or walls):

r2
k,n = r2

k,0 + n2W 2 ≈ (kd)2 + (nW )2 (2.9)

This approximation applies to bounces between two walls. By using arguments similar

to those in Theorem 1, there can be at most one ground reflection, and we can ignore

its effect on the path length since we are after a pessimistic estimate of the interference.

We have at most 4 different possible n-times reflected paths, accounting for whether we

have the ground reflection and the order of walls’ reflection: Nn = 4 for n > 1, N1 = 3

and N0 = 1. Thus, the total interference from cells [K,∞) or (−∞,−K], divided by P ,
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can be written as follows:

αK
2

=

∞∑
k=K

Ik

P
=

∞∑
k=K

∞∑
n=0

(
Nn

(gTx)k,n(gRx)k,n
GTxGRx

(
Lmax
rk,n

)2

e−β(rk,n−Lmax)(
1

(lk,n)
)n
)

(2.10)

By substituting (2.9) above, we obtain

∞∑
k=K

Ik

P
≤ 4L2

maxe
βLmax

∞∑
k=K

∞∑
n=0

( 1

(kd)2 + (nW )2

e−β
√

(kd)2+(nW )2(
1

(lmin)
)n
)
< 4

∞∑
k=K

e−βkd
∞∑
n=0

1

(lmin)n
(2.11)

= 4
e−βKd

1− e−βd
lmin

lmin − 1

The same computation holds for interference introduced by cells (−∞,−K]. Thus, αK

defined in equation 2.6 is bounded and decreases exponentially with increasing K.

We now compute αK using (2.6) and (2.8), and plot αK (dB) versus K in Figure

2.5. The results are for a 32 × 32 array at the BS TX, and a 4 × 4 array at mobile

RX. For K ≥ 3, we only capture interference from sidelobes (Theorem 1), hence
(gTx)k,n
GTx

has been substituted by average sidelobe strength relative to the main beam, averaged

over the different directions that the main beam can take for users in the picocell. The

normalized receive gain
(gRx)k,n
GRx

, however, is set to the average antenna gain strength in

all directions relative to the main beam. We fix the reflection loss at 5 dB, to avoid

detailed modeling of material and angle of incidence. This is the smallest reflection

loss encountered in outdoor environments for most surfaces, according to measurements

reported in [39], hence it is expected to give pessimistic estimates of the interference. We

see from Figure 2.5 that αK decreases exponentially with K, with higher rate of decrease
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for wider picocells. We also note that the interference is dominated by the contribution

from LoS and first order reflections (n = 0, 1); the interference due to these are plotted

as dashed lines, and falls on top of the net interference curves obtained by summing over

n. Thus, in the simulations in the next section, we restrict attention to n = 0, 1.
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Figure 2.5: Normalized Intercell interference

By Theorem 1, if we wish to avoid main beam interference, then dHBS+hmax

HBS−hmax
e adjacent

BSs have to coordinate. For HBS = 6(m) and hmax = 2(m), this means that every 3 adja-

cent BSs have to coordinate. Suppose, for example, that we orthogonalize transmissions

among such sets of 3 BSs (i.e., with a frequency reuse of 3). Now, from the computations

associated with Theorem 2 shown in Figure 2.5, the cumulative interference caused by

sidelobes from BSs beyond this set (K ≥ 3) is at least 40 dB weaker than the desired re-

ceived power. Thus, a frequency reuse of 3 leads to very large SINR, so that our spectral

efficiency is expected to be bounded only by hardware considerations. This is verified by

Monte Carlo simulations in the next section. However, we also show in the next section

that such orthogonalization is wasteful. Given the interference reduction due to narrow

beams, much larger network capacity can be obtained (at the expense of a small collision

rate) with spatial reuse one.
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2.3 An Initial Capacity Estimation

We now use Monte Carlo simulations for evaluation of inter-cell interference and

capacity. We wish to quantify the potential capacity gains from shrinking the picocell

width (e.g., down to 20 m). We consider an urban canyon of length 1 km, and consider

the interference seen by a typical user in a picocell in the middle of this canyon, which

would see the most interference. By virtue of Theorems 1 and 2, we ignore interference

coming from outside the 1 km segment.

Since a user in the target picocell can be served by one of two BSs on two different

sides, it is unlikely for her body to block the LoS path from both. Furthermore, as we

shrink the picocell width, the LoS path slants more steeply downward, hence it is difficult

for other obstacles (e.g., pedestrians, cars) to block it. Thus, in our computations, we

assume for simplicity that the LoS path is available to the desired user. Of course, both

LoS and first order NLoS paths are accounted for when computing interference from

other BSs. (as noted earlier, Figure 2.5 shows that the interference from higher order

reflections is negligible in comparison).

Figure 2.6 is the complementary CDF (CCDF) of the achievable SIR(dB) for 20(m)

width picocells. We consider 32× 32 Tx and 4× 4 Rx antenna arrays, the same settings

as for the analytical computations shown in Figure 2.5. We note that, for a frequency

reuse of three, orthogonalizing every three adjacent picocells, the SIR CCDF is consistent

with our observation that the main lobe interference has been eliminated (Theorem 1)

and sidelobe interference is at least 40 dB weaker than the desired received power as in

Figure 2.5.

In order to evaluate overall network performance, we now scale back to a smaller 8×8

BS TX array, while still keeping the mobile RX array at 4× 4. These values are chosen

because they are close to the current state of the art (32 element arrays are already
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Figure 2.6: CCDF of achievable SIR for a 32× 32 Tx and 4× 4 Rx antenna arrays.
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Figure 2.7: CCDF of achievable SINR for 8× 8 Tx and 4× 4 Rx antenna arrays.
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deployed in commercial 60 GHz products), and it turns out that they suffice to provide

full spatial reuse as we scale down cell sizes.

Figure 2.7 shows the CCDF of the achieved SINR(dB) for three different scenarios:

1) Frequency reuse of one and no coordination: each BS randomly chooses to serve a

single user in its own picocell, and hence may interfere with the target user through LoS

or NLoS paths.

2) Frequency reuse factor of three, orthogonalizing every set of three adjacent BSs. As

already noted, this eliminates main beam interference and drastically reduces sidelobe

interference.

3) Multi-User Diversity (MUD) with sets of three adjacent BSs coordinating (minimally).

If the SINR of the target user is less than a threshold (set at a fairly high 40 dB in these

simulations), out of the two adjacent BSs, the one which introduces the most interference

is asked to change its main beam’s direction and choose another user to serve (we assume

that such a user is always available and is randomly located within the coverage area).

If this results in more interference at the target user, the interfering BS reverts to its

previously chosen user.

It is possible to consider far more complicated scheduling rules, and optimally choose

users to serve among groups of neighboring BSs. However, we leave detailed exploration

of medium access control and scheduling to the next section, seeking here just to provide

some simple capacity benchmarks.

As seen in Figure 2.7, a frequency reuse of three increases SINR by up to 20dB,

mainly because of elimination of main beam interference. However, the corresponding 3X

reduction in signaling bandwidth leads to a significant penalty in achievable data rates;

see Figure 2.8. The third scenario, which utilizes multiuser diversity, offers relatively

small improvement. This is because our minimal coordination strategy only allows one

possible switch. (In addition to simplifying medium access control, another reason for

29



Capacity of mm wave picocells: a first estimate Chapter 2

our minimalism is so as not to count on a large pool of users for multiuser diversity within

a small picocell.)

We also notice from Figure 2.7 that the SINR is worse for larger cell widths (d = 40(m)

compared to d = 20(m)). This might seem surprising, especially because the results in

Figure 2.5 show that sidelobe interference decreases with d. However, the increased

interference is due to the main beam from neighboring BSs: for larger cell widths, the

target user can be farther away from the BS, and, since the BS height is fixed, the main

beam slants down less and therefore interferes with a larger region in the adjacent cell.

In order to estimate capacity, we use the following approximation for the spectral

efficiency (in bps/Hz)

s =
1

F
min (sM , log2(1 + SINR)) (2.12)

where F denotes the frequency reuse factor, and sM the maximum spectral efficiency

supported by the system. In our simulations, we (somewhat arbitrarily) set sM = 6

bps/Hz, corresponding to uncoded 64QAM (in practice, we would use light coding).

Such large constellations may be a stretch with today’s hardware, given the phase noise

in mm-wave radios and the difficulty of high-precision digitization at large bandwidths,

but we hope that such hardware limitations would be overcome in the future.

The achievable data rate for a BS face is therefore given by Rpicocell = sB, where B

denotes the available system bandwidth. Figure 2.8 shows the achievable data rates in

a picocell for system bandwidth B = 2 GHz. We do not account for excess bandwidth

in our data rate estimates. While frequency reuse of 3 (which could be implemented via

either time division or frequency division) yields more deterministic performance, the

achievable rate is about 4 Gbps, which is significantly smaller than the 90% availability

rate of 12 Gbps for our third scheme (full reuse, minimal coordination). This data rate

corresponds to saturation of spectral efficiency at sM = 6 bps/Hz, and would scale down
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if we used smaller constellations (e.g., 4 Gbps for QPSK). Thus, as long we allow a small

outage probability for occasional collisions across adjacent picocells, hardware rather

than interference is the bottleneck.
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Figure 2.8: CCDF of achievable data rates over 2GHz bandwidth for 8 × 8 Tx and
4× 4 Rx antenna arrays

We can now estimate the capacity of a picocellular network deployed over a length of

urban canyon. Since each BS has two faces, there are twice the number of active links as

BSs. For d = 20(m), there are 50 BSs per km, and hence 100 active links. According to

Figure 2.8, each link can support 12 Gbps at 90% availability, so that the entire network

capacity is estimated at 1.2 Tbps per km using 2 GHz of spectrum.
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Chapter 3

Enhancing capacity via managed

intra-cell interference

3.1 Introduction

In addition to cell densification, one can attain further spatial reuse within the cell

by increasing the number of subarrays on each base station. However, this benefit comes

with the pitfall of intra-cell inteference, i.e., when a transmitter interferes with receivers

in the same cell that it does not target. This could significantly reduce the spectral

efficiency of spatially correlated users.

In this section, we first characterize intra-cell interference in our system model and

then propose a cross-layer approach to deal with it. To this end, we combined techniques

from two broad areas that have been studied in the literature: (a) downlink linear precod-

ing and power control [18, 19, 20, 21, 22] (b) powerful optimization approaches recently

developed for network-level resource allocation [23, 24]. Here is a brief description of our

two-step method:

1. Given that a resource block is assigned to a pre-defined set of users, we develop
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a building block at the PHY-layer, which employs an optimal linear method (i.e.,

LMMSE) for beamforming and power allocation to suppress the LoS intra-cell

interference among them.

2. We then incorporate the PHY-layer block in designing the MAC-layer protocol,

which determines the set of active users on each of the resource blocks.

We then evaluate our proposed scheme via comprehensive simulations of picocells along

an urban canyon in which both inter- and intra-cell interference are taken into account.

Our simulation results demonstrate that, as we shrink cells (down to the cell width of

20m), users’ spectral efficiency is mostly ( ≥ 97% ) limited by the hardware limitations

(even with large constellations such as 64-QAM). A quick-glance comparison with our

previous results (from Chapter 2) indicates that we are able to increase the capacity by a

factor of K (at least for small number of subarrays per face i.e., K=2) in small cells. Larger

picocells are more prone to interference and do not enjoy multiple subarray architecture,

yet our proposed scheme provides users with sufficient spectral efficiency for employing

smaller constellations like QPSK. Lastly, we computed the overall capacity per square

kilometer for a typical region in Manhattan area and demonstrated that dense mm-wave

picocellular networks can actually deliver the promised 1000-fold capacity increase over

the conventional LTE networks.

3.2 System Model

In this chapter, we consider the same street canyon as before (Figure 1.2) except that

we consider K subarrays placed each face of a basestation (Figure 3.1).

We now describe the channel model. Since mm-wave channels can accurately be esti-

mated by efficient algorithms proposed in Chapter 4, we assume that channel knowledge
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Figure 3.1: Multiple subarrays placed on each face of a basestation which leads to
intra-cell interference.

is available at both the base station and mobile users. We assume that the transmitters

have learned channel matrices {H1,H2, · · · ,HK}, each of size M × N where M is the

antenna size of the mobile user and N that of the transmitter. Hk is characterized by

the path loss and spatial frequencies between the k-th transmitter and its corresponding

mobile user.

Note that link distances are large enough that all transmitters installed on a face could

be approximated as co-located from the users point of view. Therefore, the channel

matrix from all transmitters to the k-th user is same as Hk. We have also made the

assumption that target users are served through the LoS path, and hence each mobile

user automatically beamforms towards all the transmitters.

34



Enhancing capacity via managed intra-cell interference Chapter 3

3.3 Characterization and Mitigation of Intra-cell In-

terference

3.3.1 Intra-cell Interference Characterization

Similar to the inter-cell case, intra-cell interference is composed of LoS and NLoS

components (depicted in Figure 3.2). However, the LoS component is expected to be the

dominant one for three reasons:

1. Since the target users are served via the LoS path, the receiver’s main lobe is

unlikely to encompass the NLoS components of interference. The LoS component

would in contrast get amplified by the same amount as the desired signal.

2. NLoS components are subject to higher path loss.

3. NLoS components suffer from reflection loss induced by reflecting surfaces.

Our simulation results for the same urban canyon scenario also validate this assumption

(depicted in Figure 3.2(b).)
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Figure 3.2: (a) Intracell interference composed of LoS and NLoS components, (b)
CDF of Signal to Intracellular Interference
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Therefore, we assume that intra-cell interference can be alleviated by suppressing the

LoS component only. For the rest of this section, by the term interference we refer to the

LoS component of intra-cell interference.

3.3.2 PHY layer design: Power allocation and beamforming

Mitigation of co-channel interference in multiuser MIMO has been extensively studied

in the literature [18, 19, 20, 21, 22]. Different approaches such as precoding, transmitter

or/and receiver beamforming, power adaptation, etc. have been explored. In this sec-

tion, we restrict ourselves to RF beamforming and power control to avoid the hardware

complexity of digital precoders.

In the context of power control and beamforming, there are two classical optimization

problems: (a) sum-rate maximization and (b) minimum-rate maximization, subject to the

power constraint(s). The former is often studied in the context of information-theoretic

capacity, and does not guarantee fair sharing of resources among users. We therefore

focus on the latter, which guarantees a minimum level of QoS (Quality of Service) for

each of the streams.

The minimum-rate optimization can be translated to the following problem:

S(PT ) =


max{ω1,ω2,··· ,ωK} mini SINRi

s.t.
∑K

k=1 ‖ωk‖2
2 ≤ PT

(3.1)

where ωk ∈ CN is the transmit beamforming vector aimed at the k-th user, ‖ωk‖2
2 is

the power consumed by the k-th antenna array, and SINRk is the signal to interference
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ratio at k-th receiver

SINRk =

∣∣ωH
k hk

∣∣2∑K
i=1
i 6=k
|ωH

i hk|
2

+ σ2
k

A straightforward argument shows that (3.1) will result in the same SINR for all the

users, and hence the maximum index of fairness is guaranteed.
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Figure 3.3: Transmit antenna patterns causing intra-cell interference (left) and the
new antenna patterns after employing interference suppression via Algorithm 1 (right).
The spatial frequency of the target user is marked by a green star, and the remaining
users are marked by blue circles. Employing Algorithm 1 (right) aligns the non-tar-
geted users with the null directions.

Our solution to problem (3.1) builds on previous work in [18, 19]. We start with the

related power optimization problem

P(γ) =


min{ω1,ω2,··· ,ωK}

∑K
k=1 ‖ωk‖2

2

s.t. mini SINRi ≥ γ

(3.2)

It was shown in [19] that (3.1) and (3.2) are inverse problems, meaning that S(P(γ0)) = γ0

and P(S(PT )) = PT . Furthermore, (3.2) has an iterative solution [18]. We leverage these
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observations to formulate Algorithm 1, which iteratively solves (3.2) for increasing val-

ues of γ until the power constraint in (3.1) is saturated. The solution to (3.2) employs

LMMSE (Linear Minimum Mean Square Error) to estimate the transmit beamforming

vector (lines 8-15) , followed by power allocation to enforce the minimum SINR con-

straints (line 16).

Algorithm 1 PHY layer design

1: Input: {p0
i ,hi} ∀i, γ, ∆γ

2: Output: {ωi} ∀i, γ

3: procedure Beamforming and power adaptation

4: Compute normalized channels: h̃k = hk/σ
2
k ∀k

5: while Gmax‖ωk‖2
2 ≤ EIRP, ∀k do

6: γ = γ + ∆γ

7: n← 0

8: repeat

9: for k ∈ {1, 2, · · · , K} do

10: ω̂n
k = argminωk

∑K
j=1
j 6=k

pnj |ωH
k h̃j|2 + ‖ωk‖2

2,

s.t. ωH
k h̃k = 1

11: pn+1
k = γ

∑K
j=1
j 6=k

pnj |(ω̂n
k )H h̃j|2 + γ‖ω̂n

k‖2
2

12: p̃n+1
k = γ

∑K
j=1
j 6=k

p̃nj |(ω̂n
j )H h̃k|2 + γ

13: end for

14: n← n+ 1

15: until convergence

16: ωk =
√
p̃kω̂

,
k ∀k

17: end while
18: end procedure

Figure 3.3 illustrate how the algorithm distorts the transmitter antenna pattern by push-

ing nulls toward the users that the transmitter does not target. This improves SINR but

might cause SNR degradation (as shown in Figure 3.4).
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Some remarks on the algorithm:

• Intuitively, the goal of the optimization problems in (3.1) and (3.2) is to manipulate

the transmitters antenna pattern to minimize the induced interference toward the

non-targeted users while maintaining constant gain along the desired direction. In

addition, power adaptation is employed to cope with link distance variations.

• In practice, we have individual power constraints on the Equivalent Isotropically

Radiated Power (EIRP), which impose the following constraint:

Gmax‖ωk‖2
2 ≤ EIRP ∀k ∈ {1, 2, · · · , K}

where Gmax is the maximum array gain provided by the antenna and EIRP is

the limit established by FCC (Federal Communications Commission) for different

frequencies (e.g., EIRP=40 dBm at 60 GHz). Our iterative solution allows us to

impose the individual power constraints by setting the stopping criteria as when

any of the transmit powers has reached the threshold (line 5).

• We have omitted the effect of the receiver antenna array in our formulation. Specif-

ically, the channel matrix Hk has been replaced by a vector hk. This is for two

reasons:

1. In order to limit te complexity of mobile receivers, interference suppression is

employed at the base station alone.

2. For intra-cell interference, the receiver antenna provides an array gain of M

for both signal and interference. Thus, it does not affect performance in an

interference-limited scenario.

That said, we note that in a noise-limited regime (which is most likely the case
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once interference suppression algorithms are applied) receiver antenna arrays boost

SINR by a factor of M . Therefore, we take the receiver arrays back into account

for our simulation results (Section 3.4).
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Figure 3.4: CDF of ∆SNR and ∆SINR, showing how employing Algorithm 1 im-
proves SINR values while it might cause SNR degradation. By nullforming along
the undesired directions, we boost the SINR (which essentially determines the data
rate). However, there might be an SNR degradation due to sidelobe enhancement.
∆SNR denotes SNRafter nullforming − SNRbefore nullforming.

3.3.3 MAC layer design: Resource allocation

The preceding PHY layer optimization is for sharing a single resource block among a

pre-defined set of users. In this section, we consider interference management in the MAC

layer, where resources are divided into blocks (resource granularity) and only certain users

allowed to operate in each block (user selection). Intuitively, these additional degrees of

freedom can be exploited in the following manner: by selecting spatially separated users

to operate in the same block, we can mitigate interference and increase spectral efficiency.
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Preliminaries:

Consider a cell with Q users sharing frequency band B over a frame of duration T .

We make two assumptions:

1. The frame duration T is small enough that mobile users can be considered to be

quasi-stationary over a frame.

2. The directive antenna arrays employed on both transmitter and receiver suppress

multipath fading sufficiently that we may approximate the channel as frequency

non-selective.

We consider resource allocation via time division, so that at every point in time each

active user utilizes the entire bandwidth B. For simplicity we allow an infinite time

granularity.

We need to allocate each frame to a subset of users. Denoting by Q the set of all

users, we define P≤K(Q) as the set of all possible subsets of users (configurations) that

can be served simultanously by (up to) K antenna arrays:

P≤K(Q) = {Uc ⊂ Q | |Uc| ≤ K}

We wish to find the fraction of resources that should be allocated to each of these

configurations in order to maximize sum (or minimum) spectral efficiency. More specif-

ically, let xc represent the portion of resources allocated to the c-th configuration. We

want to find x = [x1, x2, · · · , xC ]T where C =
∑K

k=0

(
Q
k

)
is the cardinality of P≤K(Q).

The spectral efficiency for the q-th user under policy x is then defined as

rq =
C∑
c=1

xc log(1 + γqc ) (bits/sec/Hz) (3.3)
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where γqc is the SINR of the q-th user under c-th configuration (where Uc is the set of

active users.) Clearly, we set γqc = 0, for q /∈ Uc).

The resource allocation problem:

Like the optimization problems for beamforming and power adaptation, the resource

allocation problem could also be formulated to maximize either the sum-rate or the min-

rate. In order to provide fairness among users, we focus on the min-rate version, which

can be formulated as follows:

max
x

min
q

rq (3.4)

s.t. STx = r

1Tx = 1

x � 0

In the first constraint, we have rewritten the equations in (3.3) in a matrix form by

defining SC×Q = [scq] where scq = log2(1 + γqc ) is the spectral efficiency of the q-th user

under the c-th configuration and r = [r1, r2, · · · , rQ]T is the vector of resultant spectral

efficiency over all resource blocks. The last two conditions ensure that sum of the portions

allocated to different configurations add up to one and neither of them can be negative.

Theoretically, allocation policies resulting from (3.4) should maximize the min-rate

among users. However, in practice we might not be able to attain the theoretical rate due

to hardware constraints. If sM is the hardware-constrained spectral efficiency limit, the

maximum min-rate will be bounded by (K/Q) sM . This corresponds to the saturation

point where all transmitters operate at their highest modulation rate.

Figure 3.5 shows the empirical CCDF of maximum min-rate for different cell sizes, along

42



Enhancing capacity via managed intra-cell interference Chapter 3

2 4 6 8 10 12

bit/sec/Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l 
C

C
D

F

Maximum min-rate

d=20

d=50

d=100

16-QAM
QPSK

1 2 3 4 5 6 7 8

bits/sec/Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l 
C

C
D

F

Maximum min-rate

d=20

d=50

d=100

QPSK 16-QAM 64-QAM

Figure 3.5: Empirical CCDF of the maximum min-rate for (a) Q=K=4 (b) Q=6,
K=4. In scenarios with smaller cell sizes, maximum min-rates are larger than and
hence limited to the saturation point imposed by modulation (vertical lines). This
is because smaller cells have (almost) vertically aligned beams which illuminate a
smaller region and hence induce intra-cell interference for a smaller number of users.
Moreover, larger number of users could increase the attainable spectral efficiency by
enabling us to utilize multiuser diversity to avoid interference.

with the saturation point imposed by the various modulations (i.e., (K/Q) sM). As

depicted in Figure 3.5, for smaller picocells with larger number of users (d ≤ 20(m) and

Q > K) spectral efficiency is limited by hardware rather than noise or interference.

Some remarks:

• The optimization problem in (3.4) maximizes the worst users’ spectral efficiency

and therefore will result in equal rate for all users in Q. Its performance is therefore

inherently bounded by that of the worst user. However, there are certain scenarios

where we can maximize the sum-rate as well: for example, when we have surplus

resources after providing all users with the minimum required datarate rmin. There-

fore, if the resultant min-rate provided by the allocation policy in (3.4) is greater

than rmin, we employ the following optimization problem to maximize the sum-rate
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by utilizing multiuser diversity.

max
x

1TSTx (3.5)

s.t. STx � rmin1

1Tx = 1

x � 0

• An important observation is that an optimal allocation policy typically allocates

more resource blocks to configurations with a larger number of users. This is

because the overall datarate is linearly proportional to the number of simultaneous

users, whereas the dependence on SINR is logarithmic. However, there are settings

in which time multiplexing leads to a higher data rate than spatial multiplexing (for

example, when users are highly spatially correlated such that by eliminating their

mutual interference, higher data rates can be attained even over smaller number of

resource blocks.)

• Figure (3.6) demonstrates this phenomenon by showing a few examples for the

solution to the resource allocation problem. The optimal solution tends towards

serving maximum number of users (K) simultaneously (blue portions) unless the

induced interference is so large that only a subset of them are served (green or red

portions).

3.4 Capacity Estimation

We now demonstrate via simulations that mm-wave cells enjoy a significant gain in

capacity over conventional LTE cellular networks, despite the increased amount of inter-
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Figure 3.6: Optimal solution of the resource allocation problem for different realiza-
tions of mobile users. The picocell parameters are d=50m and K = Q=4. Optimal
allocation policies tend to serve the largest possible number of users (blue portions)
while in some cases it is better to turn off a subset of subarrays, i.e., green/red por-
tions.

and intra-cell interference.

3.4.1 Preliminaries

Our interference analysis in the preceding sections is partially geometry dependent

and specifically tailored for cells along an urban canyon. Hence for our simulations, we

consider an urban canyon of length 1 km and investigate a picocell in the middle of this

canyon, where users would see the most interference (Figure 3.7). By virtue of Theorems

1 and 2 in Chapter 2, we ignore interference coming from outside the 1 km segment.

Since a user in the target picocell can be served by one of two BSs on two different

sides, it is unlikely for her body to block both LoS paths. Furthermore, as we shrink the

picocell width, the LoS path slants more steeply downward, hence it is difficult for other

obstacles (e.g., pedestrians, cars) to block it. Thus, in our computations, we assume for

simplicity that at least one LoS path is available to every user. Of course, both LoS

and first order NLoS paths are accounted for when computing interference from other

base stations. (As noted in [40] interference from higher order reflections is negligible in
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comparison.)

We consider 8× 8 base station TX array and 4× 4 mobile RX arrays. These values

are chosen because they are close to the current state of the art (32 element arrays are

already deployed in commercial 60 GHz products), and it turns out that they suffice to

provide high spectral efficiency as we scale down cell sizes.

By Theorems 1 and 2 (Chapter 2), for a typical user served by BS0, the interference

induced by the base stations farther than 2d away from BS0, is negligible. Specifically, in

the scenario depicted in Figure 3.7, the following sources would interfere with the shaded

user served with one of the eastward facing antenna arrays of BS0:

1. inter-cell interference from K eastward facing antenna arrays on BS−2

2. inter-cell interference from K eastward facing antenna arrays on BS−1

3. intra-cell interference from K-1 eastward facing antenna arrays on BS0

4. inter-sector interference from K westward facing antenna arrays on BS1

5. inter-cell interference from K westward facing antenna arrays on BS2

each of which is composed of LoS and multiple NLoS components.

Note that the inter-sector interference refers to the interference caused by the immediate

neighboring base station on the opposite side of the street (BS1) which serves users

inside the cell. This should have been accounted as intra-cell interference but since it has

different characteristics from item three above, we put a different name on it.

In our simulations, we have employed frequency reuse of two which automatically

eliminates items two and four above. We also attenuate the LoS interference of item

three by employing Algorithm 1 introduced in section 3.3.2. We compute the overall

spectral efficiency, log2(1+SINR), for the users served by BS0 by taking into account the
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BS0

… …

BS1BS-1
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Figure 3.7: Simulation scenario

residual interference from items one, three and five. The resultant matrix S is then fed

into the optimization problem (3.4) to obtain the maximum min-rate obtained by the

optimal time allocation.
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Figure 3.8: Empirical CCDF of the maximum min-rate for users in a picocell in the
middle of an urban canyon for (a) K=2, Q=4 and (b) K=4, Q=4 .

Figure 3.8 shows the empirical CCDF of the maximum min-rate provided for each of

the users. Note that the hardware saturation points corresponding to QPSK, 16-QAM

and 64-QAM modulations are (K/Q) sM= 1, 2 and 3 respectively for the case K=2 and

Q=4.
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3.4.2 Capacity calculations

We now are ready to estimate the attainable capacity gain over the conventional LTE

networks. The downlink capacity of LTE network is estimated as 0.6 Gbps/km2 over a

total bandwidth of 255 MHz in [41]. However, the available bandwidth for downlink cel-

lular networks is 500 MHz, hence the total capacity could be further increased by adding

more channels per base station. Therefore, we estimate the total downlink capacity of

LTE networks as 1.2 Gbps/km2. For the sake of comparison, we consider a one square

kilometer region in Manhattan area (Figure 3.9), which encompasses 15 urban canyons.

Thus, we can get a rough estimate of the overall capacity per square kilometer of our

approach via the following computations:

Capacity (bps/km2) = Maximum min-rate(bps/Hz/user)× (3.6)

B

F
(Hz)× 2Q (Num. users/cell)× nc (Num. cells/km2)

where B, F and nc are the total bandwidth, the frequency reuse factor and the

number of picocells per square kilometer respectively. Note that 2Q in (3.6) refers to the

number of users served within the picocell 1 which are covered by either eastward facing

antennas of BS0 or westward facing antennas of BS1. In our example of a 1km2 region in

Manhattan shown in Figure 3.9, there are a total of 15 street canyons of length 1km (in

both directions), each of which encompasses 1km/d cells. Hence, we get nc ≈ 150,300

and 750 for picocell widths of d=100,50 and 20 meters respectively.

We have summarized the above results in table 3.1 specifying the overall attainable

capacity for different scenarios. Note that the Maximum-min-rate in equation 3.6 is

1This requires 2Q × nc users/km2 = 9000 users/km2 in our most extreme case: d=20m and Q=6
which is still much smaller than the population density of Manhattan area: 27,826 persons/km2 [42].
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Figure 3.9: 1 km2 in Manhattan area, encompassing 15 street canyons.

replaced with the average of datarates attained in 3.8 after quantizing to the hardware

limited values of (K/Q) sM .

Table 3.1: Capacity (Tbps/km2) over a total bandwidth of 2GHz for a rural area in
New York employing 8 × 8 and 4 × 4 antenna arrays as transmitter and receivers.

Capacity (Tbps/km2) K = 1 K = 2 K = 1 K = 2 K = 4

F = 1 F = 2

d=100 m 1.3 1.8 1.6 2.6 2.7

d=50 m 5.3 8.9 3.3 6.4 8.9

d=20 m 17.6 33.1 8.9 17.9 30.9

Smaller picocells (d=20) are less prone to interference since the antenna beams aiming

their target users, are slanted more steeply and hence will illuminate (induce interference

to) an smaller area around them. This feature, along with the increased spatial reuse

attained with smaller cell sizes, leads to massive estimated capacity of 30.9 Tbps/km2.

Users in larger picocells experience higher interference levels, and hence smaller constel-

lations are employed to serve them. This still suffices for achieving capacity as large as
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2.7 Tbps/km2.

Note that, users in larger picocells are not gaining much from more subarrays per

face (Table 3.1). This is because almost horizontally aligned beams in wide cells, lead to

much closer spatial frequencies for which our interference suppression algorithm is not

as effective. Possible approaches to solve this problem are (a) increasing the number of

antenna elements which provides more degrees of freedom for employing the interference

suppression algorithm or (b) increasing basestation height which will draw users away in

the spatial frequency domain.

Table 3.2: Comparing convention LTE and mm-wave cellular networks

LTE mm-wave Gain

d=20 d=100

Capacity 1.2Gbps 30.9 Tbps 2.7 Tbps ≥ 2250X

Bandwidth 500 MHz 2GHz 4X

Spatial reuse – – ≥ 500X

Table 3.2 compares the resultant capacity for mm-wave picocells computed via sim-

ulations with the benchmark capacity of LTE networks. As shown below, the promised

1000-fold capacity increase is immediately reachable even with the largest picocell size

(d=100m) considered here. Excluding the 4X gain from the larger bandwidth of 2GHz

employed in our system (which is still a small fraction of the 14GHz of available band-

width at 60GHz), the remaining gain (≥ 500) is attained through the larger spatial reuse

from small cells and pencil beams.
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Chapter 4

Compressive channel estimation and

tracking for large arrays in mm-wave

picocells

4.1 Introduction

In this chapter, we propose and investigate a compressive architecture for estimation

and tracking of sparse spatial channels in mm-wave picocellular networks. Since the base

stations in our system employ radio frequency (RF) beamforming, so that standard least

squares adaptation techniques (which require access to individual antenna elements) are

not applicable. We focus on the downlink, and show that “compressive beacons,” trans-

mitted using pseudorandom phase settings at the base station array, and compressively

processed using pseudorandom phase settings at the mobile array, provide information

sufficient for accurate estimation of the two-dimensional (2D) spatial frequencies associ-

ated with the directions of departure of the dominant rays from the base station, and

the associated complex gains. This compressive approach is compatible with coarse
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phase-only control, and is based on a near-optimal sequential algorithm for frequency

estimation which approaches the Cramér Rao Lower Bound. The algorithm exploits the

geometric continuity of the channel across successive beaconing intervals to reduce the

overhead to less than 1% even for very large (32× 32) arrays. Compressive beaconing is

essentially omnidirectional, and hence does not enjoy the SNR and spatial reuse benefits

of beamforming obtained during data transmission. We therefore discuss system level

design considerations for ensuring that the beacon SNR is sufficient for accurate channel

estimation, and that inter-cell beacon interference is controlled by an appropriate reuse

scheme.

4.1.1 Related Work

We assume that the channel is well described by a relatively small number of dis-

crete rays with delays and angles of arrival/departure taking values in a continuum. The

key contribution of this work is to provide a super-resolution framework for estimating

and tracking these rays, with model-based estimation allowing us to go beyond (spatial)

bandwidth based resolution limits. To the best of our knowledge, the existing literature

on mm-wave measurements does not attempt to super-resolve channels in this fashion,

hence we do not know, for example, whether the continuous power-delay profiles reported

in [43] are consistent with a parsimonious channel model such as ours. However, pre-

liminary experimental results [44], which use compressive measurements to successfully

recover power-angle profiles for a controlled experiment (a small number of reflectors in

an anechoic chamber), indicate that a simple ray-based model like ours may well suffice.

Validating this assertion would require application of the more sophisticated compressive

estimation techniques discussed here, as opposed to the standard basis pursuit algorithms

employed in [44]. Note that existing models for simulation-based evaluations, such as the
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channel models standardized for IEEE 802.11ad indoor 60 GHz channels, typically as-

sume more complex models which are variants of the Saleh-Valenzuela model, with a

number of clusters, each consisting of multiple closely spaced rays. Such cluster-based

models could be motivated by the roughness of reflecting surfaces such as walls, but they

have not been experimentally demonstrated. While these issues fall beyond the scope of

the present work, which aims to make a fundamental contribution to signal processing for

sparse spatial channels, a sustained effort in measurement-based validation of our model

and approach is a critically important topic for future work.

4.2 System Model

We focus our modeling and performance evaluation on the urban canyon setting de-

picted in Figure 1.2. We consider mm-wave transmission on the downlink (for beaconing

and downlink data) and LTE or WiFi at lower carrier frequencies on the uplink (for

feedback and uplink data). In terms of channel estimation and tracking, this could be

viewed as a worst-case assumption, since two-way transmission on the same mm-wave

band could potentially be exploited using channel reciprocity. For simplicity, we consider

a single antenna array for each face, used for both compressive beaconing and downlink

data communication. Mobile stations are modeled as either pedestrians walking along

sidewalks, or cars moving along the street.

In our simulations, we model K = 4 dominant paths from base station to mobile in

our simulations: the line of sight (LoS), and the single bounce reflections from the ground

or the side walls. Some of these paths may be blocked by obstacles (diffraction around

obstacles is limited for small carrier wavelengths). We ignore multiple bounces, since

such paths get attenuated significantly, especially because each bounce sees a smaller

angle of incidence than a typical single bounce. However, our compressive estimation
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algorithm does not use the preceding assumptions on number of dominant paths as prior

information, and automatically discovers and tracks paths.

For a regular d-spaced square N1D×N1D antenna array and a point transmitter in the

far-field, the channel seen by the array is a mixture of 2D sinusoids, each corresponding

to a propagation path, and is given by

hm,n =
K∑
k=1

gke
j(ωx,km+ωz,kn), gk ∈ C, 1 ≤ m,n,≤ N1D,

where gk is the propagation gain of the k-th path, ωk = (ωx,k, ωz,k) are the spatial

frequencies corresponding to the k-th path (w.l.o.g. we have assumed that the square

array is placed in the x-z plane, with its sides aligned to the coordinate axes) and hm,n

refers the channel seen by the m,n-th antenna element,. The spatial frequencies of

the k-th path are given by ωx,k = 2π(d/λ) sin θk cosφk and ωz,k = 2π(d/λ) sin θk sinφk,

where d denotes the array spacing, λ the carrier wavelength and (θk, φk) the inclination

and azimuthal angles of the k-th path relative to x − z plane. We vectorize the 2D

sinusoid
[
ej(ωxm+ωzn), 0 ≤ m,n ≤ N1D − 1

]
and denote the resulting N2

1D long vector

by x(N1D,ω), where ω = (ωx, ωz) is the frequency of the 2D sinusoid. Vectorizing

[hm,n, 1 ≤ m,n ≤ N1D] in an identical manner gives us

h =
K∑
k=1

gkx(N1D,ωk).

Now, consider a base station transmitter with a regularly spaced 2D array of size

Nt,1D×Nt,1D, and a mobile receiver with a regular 2D antenna array of size Nr,1D×Nr,1D.

Let H denote the corresponding N2
t,1D × N2

r,1D channel matrix. Denoting by hi the ith

row of this matrix, hTi is the response of the receive antenna array to the ith transmit

antenna. Denoting x (Nt,1D,ω) by xt (ω) and x (Nr,1D,ω) by xr (ω), under the far-field
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assumption, it can be shown that

H =
K∑
k=1

gkxt
(
ωt
k

)
xTr (ωr

k) , gk ∈ C. (4.1)

Since we know the array geometries (in this case, a regularly spaced 2D array), an

estimate of the N2
t,1D × N2

r,1D MIMO channel matrix H can be efficiently arrived at by

estimating the spatial frequencies and the associated gains: {(gk,ωt
k,ω

r
k) , k = 1, . . . , K}.

Such a parametric approach is far more efficient that direct estimation of individual

entries of H, and enables us to drastically reduce the number of measurements required.

4.3 Compressive channel estimation

We now describe our compressive approach for spatial channel estimation, which

consists of a channel sounding strategy and an estimation algorithm which allows a base

station to estimate the propagation gains {|gk|} and the spatial frequencies {ωt
k} in

parallel for all mobiles in the picocell.

4.3.1 Channel sounding

The basestation sounds the channel using M compressive beacons. Each beacon is

a known signal sent using a different set of transmit weights. The weights are chosen

uniformly and independently at random from a small set of coarse phase shifts (for

e.g. from the set {±1,±j}, where j =
√
−1). We may therefore view each beacon

as being transmitted from a different “virtual antenna” with a quasi-omnidirectional

pattern. Each of the M transmit beacons are repeated L times by the basestation (see

Figure 1.4). For each of these M transmit beacons, a mobile receiver employs L “virtual

antennas” to measure the channel response, using receive weights chosen uniformly at
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random from {±1,±j}. Let y(m,n) denote the response at the (m,n)th receive element

due to a given transmit beacon. Letting b(m,n, l) ∈ {±1,±j} denote the weight for

(m,n)th receive element for the lth virtual receive antenna, the response seen by the lth

virtual receive antenna is given by

r(l) =
∑

1≤m,n≤Nr,1D

b(m,n, l)× y(m,n), 1 ≤ l ≤ L. (4.2)

These measurements are used to construct the M × L Multiple Input Multiple Output

(MIMO) “virtual channel” matrix V between the virtual transmit and receive antennas.

Note that we do not require that the base station know the receive weights used by the

mobile, or that the mobile know the transmit weights used by the base station.

Denoting the vectorized version of weights of the i-th virtual transmit antenna by ai

(a vector of shape N2
t,1D×1) and that of the j-th virtual receive antenna by bj (N2

r,1D×1),

the i, j-th element of V (the channel between the (i, j)-th virtual transmit-receive pair)

is given by vi,j = aTi Hbj. Letting A = [a1 . . . aM ]T and B = [b1 . . . bL]T , it is easy to

see that V = AHBT . Using (4.1), we have that

V =
K∑
k=1

gk
(
Axt

(
ωt
k

))
(Bxr (ωr

k))
T . (4.3)

The channel measurements are perturbed by i.i.d measurement noise, and are given by

yi,j =
√
Pevi,j + zi,j, zi,j ∼ CN (0, σ2),

where Pe is the per-element transmit power. Letting Y and Z denote M × L matrices

with their i, j-th entries given by yi,j and zi,j respectively, the “measured virtual channel”
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is given by

Y =
√
PeV + Z =

√
Pe

K∑
k=1

gk
(
Axt

(
ωt
k

))
(Bxr (ωr

k))
T + Z. (4.4)

4.3.2 Feedback strategies

Our goal is to track the mm-wave spatial channel as seen from the basestation, de-

scribed by the parameters P = {(|gk| ,ωt
k) , k = 1, . . . , K}. To this end, every mobile

in the picocell needs to feed back a portion of the measured virtual channel Y to the

basestation. From (4.4), we see that the information regarding the spatial channel as

seen from the basestation, given by P , is available in the column space of Y. Building

on this observation, we propose two feedback strategies:

(i) The receiver feeds back the entire matrix Y.

(ii) A more elaborate strategy involves feeding back Q ≤ L strongest left singular vec-

tors of Y scaled by their corresponding singular values. i.e., if Y =
∑L

l=1 σlulv
H
l with

σ1 ≥ σ2 ≥ · · · ≥ σL ≥ 0, the receivers feed back D ≡ [σ1u1 · · · σQuQ]. This strategy

identifies the Q-dimensional subspace of the column space of Y with maximum energy.

4.4 Estimation Algorithm

We now present an algorithm to estimate the parameters {(|gk| ,ωt
k) , k = 1, . . . , K}

characterizing the mm-wave channel as seen from the basestation. The same algorithm

applies for both forms of feedback discussed in Section 4.3.2: the entire measured virtual

MIMO matrix Y or the dominant weighted left singular vectors D.
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The lth column of Y is given by

yl =
K∑
k=1

hk,lAxt
(
ωt
k

)
+ zl, l = 1, . . . , L (4.5)

where zl ∼ CN (0, σ2IM) denotes the l-th column of Z and hk,l =
√
Pegkb

T
l xr (ωr

k).

We assume the weight sequence {bl} used to construct the receive virtual antennas at

the receive antenna array is not available at the transmitter, and hence cannot jointly

estimate ωt
k and ωr

k. However, since {bl, l = 1, . . . , L} were picked in an i.i.d manner, we

have that {hk,l, l = 1, . . . , L} are i.i.d realizations of a random variable with E |hk,l|2 =

PeE
∣∣gkbTl xr (ωr

k)
∣∣2 = PeN

2
r,1D |gk|

2. This allows us to estimate |gk|2 as follows:

Pe |ĝk|2 =
(

1
/(
LN2

r,1D

)) L∑
l=1

∣∣∣ĥk,l∣∣∣2 .
From here on, in Section 4.4, we use the notation ωk to refer to ωt

k and x(ωk) to refer to

Axt(ω
t
k). Thus, the measurements can be written as

yl =
K∑
k=1

hk,lx (ωk) + zl, l = 1, . . . , L. (4.6)

We now provide an algorithm to estimate {ωk, {hk,l}}.

4.4.1 Single path

We first present an algorithm for estimating a single path K = 1, which forms the

basis for our sequential estimation algorithm for K > 1. Omitting the path index k in

(4.6), we have

yl = hlx (ω) + zl, l = 1, . . . , L.
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Given that {zl} are independent realizations of CN (0, σ2IM), the maximum likelihood

(ML) estimates of ω, {hl} are given by:

ω̂,
{
ĥl

}
= arg min

ω,{hl}

L∑
l=1

‖yl − hlx (ω)‖2 . (4.7)

For any ω, the optimal hl-s are given by least-squares estimates:

h?l (ω) = 〈x (ω),yl〉
/
‖x (ω)‖2 (4.8)

where 〈x, y〉 denotes xHy. Plugging into (4.7), the ML estimate of ω is given by:

ω̂ = arg max
ω

1

‖x (ω)‖2

L∑
l=1

|〈x (ω) ,yl〉|2 (4.9)

and the ML estimate of hl is given by h?l (ω̂). We employ a two-step algorithm to arrive

the ML estimates: a “detection” phase followed by a “refinement” phase.

Detection phase: Using M two-dimensional FFT computations, we precompute x(ω)

for frequencies of the form ω ∈ Φ ≡ {(2πi/T, 2πj/T ) , 0 ≤ i, j ≤ T − 1} , T = RN1D,t,

where R is the oversampling factor. We pick the frequency ω̂ from Φ which maximizes

(4.9). The corresponding gains are given by ĥl = h?l (ω̂). We remove the contribution

of the newly detected sinusoid from the measured channel response and this residual

measurement is given by

rl = yl − ĥlx (ω̂) . (4.10)

(This residue is used for sequential detection for K > 1, as discussed shortly.)

Refinement phase: Our estimate from the detection phase is restricted to the discrete

set Φ and consequently we do not expect ω̂ to be equal to the ML estimate given by

(4.9) (where the maximization is over [−2πd/λ, 2πd/λ]2 with d being the spacing between
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transmitter antennas). However, if we make the grid fine enough, the best estimate of ω

in Φ is expected to be close enough to the optimal solution to allow refinement via local

optimization. In order to do this, we first fix the gain estimates {ĥl} and refine only the

estimate of the spatial frequency ω by seeking the minimizer of the ML cost function

C(ω) =
L∑
l=1

∥∥∥yl − ĥlx (ω)
∥∥∥2

in the neighborhood of the current estimate ω̂ using the Newton method. This involves

evaluating the gradient vector G (ω) and the Hessian matrix H(ω) of C(ω) at the current

estimate ω̂. The corresponding expressions are given by:

Gi(ω) =
∂C(ω)

∂ωi
= −2

L∑
l=1

<
{〈

rl, ĥl
∂x(ω)

∂ωi

〉}
,

Hij(ω) =
∂2C(ω)

∂ωi∂ωj
= −2

L∑
l=1

<

{〈
rl, ĥl

∂2x(ω)

∂ωi∂ωj

〉
−

∣∣∣ĥl∣∣∣2〈∂x(ω)

∂ωi
,
∂x(ω)

∂ωj

〉}
, 1 ≤ i, j ≤ 2

where ω = [ω1, ω2]. {rl}-s are the residual measurements given by (4.10). The Newton

update for ω̂ is

ω̂ ← ω̂ −H−1 (ω̂)G (ω̂) . (4.11)

We follow this up by updating our estimates
{
ĥl

}
by plugging the new value of ω̂ in

(4.8), i.e.,

ĥl ← h?l (ω̂) = 〈x (ω̂),yl〉
/
‖x (ω̂)‖2 (4.12)

and modifying the residues ({rl}) accordingly using (4.10). The algorithm alternates

between the updates in (4.11) and (4.12) for a few iterations.
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4.4.2 Multiple paths

We now build on the preceding single path algorithm for the general setting of

K ≥ 1. Suppose that our current estimate of the sinusoids/paths is given by PK ={(
ω̂k, {ĥk,l}

)
, k = 1, . . . , K

}
. The residual measurements corresponding to a set of

estimated parameters P is given by:

vl(P) = yl −
∑

ωk,{hk,l}∈P hk,lx (ωk) .

Detect a new path: Assuming that the measurements yl are given by the current

residue vl(Pq) (corresponding to the q detected paths), we use the single path algorithm

in Section 4.4.1 to detect and refine a new sinusoid (ω̂q+1, {ĥq+1,l}). Let Pq+1 denote the

new set of estimated parameters Pq ∪ {(ω̂q+1, {ĥq+1,l})}.

Refine existing paths: Once we add this new path, we refine the parameters of all q+1

sinusoids in Pq+1 one by one. Consider the parameters (ω̂k, {ĥk,l}) of the k-th sinusoid.

We use the refinement algorithm in Section 4.4.1 to refine (ω̂k, {ĥk,l}) by assuming that

the measurements yl are given by the residual measurements after excluding the sinusoid

of interest. i.e, vl(Pq+1 \ {(ω̂k, {ĥk,l})}). Sinusoids are refined in a round robin manner,

and the process is repeated for a few rounds: 1→ 2→ · · · → (q+1)→ 1→ · · · → (q+1).

Stopping criterion: The algorithm terminates when the residues {vl(Pq)} after refine-

ment satisfy:

max
ω∈DFT

1

‖x (ω)‖2

L∑
l=1

|〈x (ω) ,vl(Pq)〉|2 ≤ τ, (4.13)

with the threshold τ given by σ2γ−1
(
L,Γ(L)(1− Pfa)1/N2

1D,t

)
where γ−1(S, y) is the in-

verse of incomplete gamma function γ(S, x) with respect to integral limit x and DFT =

{(2πi/N1D,t, 2πj/N1D,t) : 0 ≤ i, j ≤ N1D,t − 1}. This choice of τ corresponds to a Con-

stant False Alarm Rate (CFAR) test (the false alarm rate being Pfa) for whether the
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residual measurements {vl(Pq)} can be explained by another path. In arriving at this

expression for τ we make two assumptions: (i) channel sounding is not compressive:

i.e, A = IN2
1D,t

and (ii) new paths correspond to specific beam orientations given by

ω ∈ DFT. However, our simulation results show that, this is a good approximation for

our case with compressive measurements and continuous values of beam directions. We

refer the reader to Appendix A for details on the stopping criterion.

4.4.3 Tracking

We sound the channel often enough so that between any two successive channel

estimation cycles, the geometry of the mm-wave channel, given by the spatial frequencies

{ωk} of the paths, does not change “significantly,” even if the path gains {gk} do. This

ensures that angle of departure estimates from the prior sounding round do not become

stale over the course of the communication phase during which they are needed for

beamforming purposes. For example, if we do not wish to tolerate a beamforming loss

of 3dB or more, then our estimate from the previous round ω̂ should be close enough to

the current ω so that

|〈x (ω̂),x (ω)〉|2
/
‖x (ω)‖2 > 0.5

over the entire communication phase. This condition is met if ‖ω − ω̂‖∞ < 0.5 ×

(2π/Nt,1D ). Therefore, the estimates of spatial frequencies from the previous sound-

ing round are good approximations of their current true value (within a DFT spacing of

2π
Nt,1D

). We exploit this by using {ω̂k, k = 1, . . . , K} from the prior round to initialize our

algorithm (as opposed to using the empty set {}). We do this by constructing the matrix

X = [x (ω̂1) . . . x (ω̂K)] and setting ĥk,l to be the (k, l)-th entries of
(
XHX

)−1
XHY,

where Y = [y1 . . . yL]. We refine all parameters in PK = {(ω̂k, {ĥk,l}), k = 1, . . . , K}

using the refinement algorithm in Section 4.4.2 before proceeding to seek for new paths
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using the algorithm in Section 4.4.2.

Deleting weak paths: Paths estimated in prior rounds may not be viable at the cur-

rent time instant (e.g, because of blockage). Therefore, we need means to remove

such stale paths. We use the stopping criterion (4.13) as a means to delete weak

paths. If deleting the path under question (say k) and optimizing other parameters

Pk,opt ← Refine
(
P \ (ω̂k, {ĥk,l})

)
using our refinement algorithm results in residual mea-

surements {vl(Pk,opt)} that can be explained by noise (i.e., satisfies (4.13)), we delete the

path permanently. Otherwise we keep the path.

4.5 Protocol Parameter Choices

In this section, we give a principled approach to choosing parameters of the com-

pressive channel estimation protocol, namely the number of unique transmit beacons

M , the number of receive measurement weights L and the minimum effective Signal to

Noise Ratio (SNR) needed for channel estimation, which we use to choose the sounding

bandwidth Ws. We then turn to the question of how frequently the channel has to be

sounded. In Section 4.7, we take two scenarios and apply this recipe to arrive at system

level parameters for the protocol.

4.5.1 Number of compressive transmit beacons

Classical compressive sensing aims to reconstruct signals which are sparse in a discrete

basis, based on a small number of projections. In order for reconstruction to be successful,

these projections must preserve the underlying geometry [45]. In [34], these ideas are

extended to compressive estimation, in which a small number of projections are used to

estimate continuous-valued parameters.

We now translate these concepts to our present context. Our goal is to estimate the
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spatial frequencies {ωt
k} from measurements of the form

yl =
K∑
k=1

hk,lAxt
(
ωt
k

)
+ zl, l = 1, . . . , L.

The algorithm in Section 4.4 aims to estimate parameters {hk,l,ωk} by minimizing the

ML cost function:

∑L
l=1

∥∥∥yl −∑K
k=1 ĥk,lAxt (ω̂k)

∥∥∥2

=
∑L

l=1

∥∥∥A×∑K
k=1

(
hk,lxt (ωt

k)− ĥk,lxt (ω̂t
k)
)

+ zl

∥∥∥2

,

where
{
ĥk,l, ω̂

t
k

}
refer to our estimates of {hk,l,ωt

k}. If the compressive measurement

matrix A ensures that

∥∥∥A×∑K
k=1

(
hk,lxt (ωt

k)− ĥk,lxt (ω̂t
k)
)∥∥∥2

(4.14)

≈M
∥∥∥∑K

k=1

(
hk,lxt (ωt

k)− ĥk,lxt (ω̂t
k)
)∥∥∥2

, ∀hk,l, ĥk,l,

for relevant ({ωk}, {ω̂k})-pairs, the cost structure of the estimation problem is roughly

preserved. Therefore, estimation using compressive measurements is similar to estimation

with all N2
t,1D measurements (except for a reduction in effective SNR, given by M/N2

t,1D)

[34].

We now state an isometry property relevant for our purpose. For some fixed ε, the

matrix Φ ∈ Cm×p is said to enjoy the s-isometry property for the basis B (of size p× n)

if there exists a constant C > 0 such that

C(1− ε) ≤ ‖ΦBu‖2/‖Bu‖2 ≤ C(1 + ε),
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for all s-sparse u in Cn. It can be shown using the celebrated Johnson-Lindenstrauss

Lemma (JL Lemma) [46] (with arguments similar to those in [45]) that ifm = O(sε−2 log n),

a randomly picked Φ (with elements drawn from proper distributions, e.g., Uniform{±1,±j}

[34, 46]) satisfies this isometry property with high probability.

In order to provide a concrete definition of geometry preservation in our setting, we

consider a discretized version of the problem, when spatial frequencies are restricted to

an oversampled DFT grid G of size R = O(N2
t,1D). The condition (4.14) reduces to a

2K-isometry property of the measurement matrix A relative to the basis X, where X

is the N2
t,1D × R matrix with its columns given by {xt (ω) : ω ∈ G}. We can now

apply the preceding isometry property to conclude that, when the number of unique

transmitter beacons scales as M = O (Kε−2 logR) = O (Kε−2 logNt,1D), then the 2K-

pairwise isometry criterion w.r.t the basis X is met by the randomly picked sounding

matrix A (it can be shown that C = M for our choice of scale), thereby ensuring that

the geometry of the spatial frequency estimation problem is preserved.

While the preceding calculations give order estimates for the number of measurements

M required, in order to provide numerical values for our protocol design, we employ simu-

lations. We consider the example of the 32×32 transmitter array and plot the maximum

and minimum values of (1/M) ‖AXu‖2/‖Xu‖2 from 5 × 106 random realizations of a

2K = 8-sparse u (which represent different realizations of K = 4 paths and their cor-

responding potential estimates) in Figure 4.1 using the 64-times oversampled DFT grid

as the choice of basis X. We see that this ratio is within [−5, 3] dB when M ≥ 30.

This illustrates that for estimating K = 4 paths using a 32 × 32 array, measuring the

response corresponding to M = 30 random beacons approximates the effect of measuring

all 32× 32 = 1024 antenna elements individually.
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Figure 4.1: Maximum and minimum values of ‖AXu‖2
/

(M ‖Xu‖2) for different

values of M , the number of transmitter beacons, across 5 × 106 random realizations
of 8-sparse u. The basis X corresponds to the responses for a 32× 32 array evaluated
uniformly over a R = 64× 322-sized grid

4.5.2 Number of compressive receive measurements

While we do not track {ωr
k, k = 1, . . . , K}, the spatial frequencies at the receiver,

we need to ensure that the set of measurements made at the receiver have sufficient

information to estimate transmitter spatial frequencies. Suppose that ‖Bxr (ωr
k)‖ ≈ 0,

it follows from hk,l = gk
√
Peb

T
l xr (ωr

k) that all L measurements {yl, 1 ≤ l ≤ L} will have

very small contributions from the k-th path. i.e., |hk,l| ≈ 0, 1 ≤ l ≤ L. To see this

observe that:

L∑
l=1

|hk,l|2 = Pe |gk|2
L∑
l=1

∣∣bTl xr (ωr
k)
∣∣2 = Pe |gk|2 ‖Bxr (ωr

k)‖
2 . (4.15)
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Figure 4.2: Maximum SNR degradation minω ‖Bxr(ω)‖2
/

(L ‖xr(ω)‖2) for the most

favorable realization (from 104 runs) of an L×N2
r,1D matrix B with Nr,1D = 4

Again, restricting the receive spatial frequencies to an oversampled DFT grid G of size

R = O(N2
r,1D), it can be shown that for L = O (logR) = O (logNr,1D), ‖Bxr (ω)‖2 ≈

L ‖xr (ω)‖2 = LN2
r,1D w.h.p. This ensures that

L∑
l=1

|hk,l|2 ≈ PeLN
2
r,1D |gk|

2 w.h.p,

thereby capturing power along the k-th path. We perform computations for the maximum

power lost across spatial frequencies when using a 4 × 4 array and plot the results in

Figure 4.2. This shows that around 5 carefully chosen projections (we pick the best

measurement matrix from 104 random instances) suffice to ensure that SNR degradation

(relative to the nominal value of L) is no greater than 3dB for a 4× 4 receive array.
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4.5.3 SNR for successful estimation
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Figure 4.3: ZZB threshold SNR SNRth for estimating the frequency of a Nt,1D ×Nt,1D

sinusoid as a function of Nt,1D

The preceding criteria delineate the regime in which the geometry of the estima-

tion problem is preserved approximately. We now turn to another factor which affects

estimation performance, namely the SNR. Consider measurements of the form

ym,n = ej(ω1m+ω2n+φ) + zm,n, 0 ≤ m,n ≤ Nt,1D − 1, (4.16)

where zm,n are i.i.d. CN (0, σ2) and spatial frequencies ω1, ω2 and phase φ are parameters

to be estimated. The Cramér Rao Bound[47] (CRB) for estimating ω1 from measurements

(4.16) is given by C(σ2) = 6
/(

SNR
(
N2
t,1D − 1

))
, where SNR = ‖xt(ω)‖2/σ2 = N2

t,1D

/
σ2

(same expression holds for ω2). Assuming an uniform prior over [0, 2π)3 for the param-

eters (ω1, ω2, φ), the Ziv Zakai Bound (ZZB) with periodic distortion[48] for estimating
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ω1 evaluates to:

Z(SNR) =

∫ π

0

Q

(√
SNR

(
1−

∣∣∣∣ sin (Nt,1Dh/2)

Nt,1D sin (h/2)

∣∣∣∣)
)
hdh.

An indicator of the SNR needed for successful estimation is the convergence of the ZZB

to the CRB[34]. We use the SNR beyond which the ZZB is within 0.1dB of the CRB as

a measure of this convergence. We plot this ZZB threshold SNR for different values of

Nt,1D in Figure 4.3. e.g, SNRth = 16.04dB for an 8 × 8 array and SNRth = 16.13dB for a

32× 32 array.

The total energy Etot corresponding to the k-th path collected across the ML mea-

surements {yl, 1 ≤ l ≤ L} is given by:

Etot =
∥∥Axt

(
ωt
k

)∥∥2 ×
L∑
l=1

|hk,l|2 .

Using (4.15) in the above, we have that

Etot =
∥∥Axt

(
ωt
k

)∥∥2 ‖Bxr (ωr
k)‖

2 Pe |gk|2

≈MLN2
t,1DN

2
r,1DPe |gk|

2

= MLPN2
r,1D |gk|

2 ,

where P = N2
t,1DPe is the total transmit power supplied to the Nt,1D × Nt,1D antenna

array. The above approximation holds when M and L satisfy the preceding geometry

preservation criteria in Sections 4.5.1 and 4.5.2 respectively. The effective SNR of the

i-th path is given by SNReff = Etot/σ
2 . It is important to note that the per-measurement

noise variance σ2 is given by σ2 = N2
r,1Dσ

2
e , where σ2

e is the noise variance per antenna

element. Assuming no interference (which we account for in Section 4.6.4), σ2
e = N0Ws
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with Ws denoting the sounding bandwidth and N0 the thermal noise floor. The reason

for the scale factor N2
r,1D in the expression for σ2 is the following: Our measurement

process consists of multiplying the received signal at each antenna (of which there are

N2
r,1D) by phasors b(m,n, l) ∈ {±1,±j} and adding the resultant signal (as per (4.2)).

Since thermal noise seen by the N2
r,1D isolated receive antennas are independent random

variables, we have that σ2 = N2
r,1D × (N0Ws). Therefore, the effective SNR of the i-th

sinusoid is given by:

SNReff = MLP |gk|2
/

N0Ws .

This must exceed the ZZB threshold SNRth for successful estimation. Noting that ML/Ws

is the time taken for channel sounding, the ZZB threshold SNRth gives us the means to

evaluate the minimum overhead in time to estimate the channel for a given path gain

|gk|2:

Time taken = ML/Ws ≥ SNRth N0

/
P |gk|2 (4.17)

The size of the picocell gives us a lower bound on |gk|2 and we later use this to guide us

in choosing the sounding bandwidth Ws using (4.17).

4.5.4 Sounding rate

We round off the discussion on choice of protocol parameters by giving a rule of

thumb for the rate/frequency fB at which the spatial channel {ωk} needs to be reesti-

mated. We use the estimated spatial frequency ω̂ for beamforming purposes in the time

period between two channel sounding rounds (communication phase sandwiched between

consecutive sounding phases; see Figure 4.5). Following the discussion in Section 4.4.3,

we have that if ‖ω(t)− ω̂‖∞ < π/Nt,1D throughout the communication phase, where

ω(t) denotes the true spatial frequency and ω̂ the estimate from the prior sounding
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round, then the loss in SNR, given by ‖xt(ω(t))‖2/〈xt (ω̂),xt (ω(t))〉 , is smaller than

3dB. If we assume that the closest user to the basestation array is at a distance R me-

ters and that the maximum speed of a user in the picocell is given by vmax meters per

second, then the maximum change (in terms of the `∞-norm) in spatial frequency ∆ω

between consecutive sounding phases, spaced 1/fB apart, is given by 2πdvmax/fBRλ .

The worst-case geometry which achieves this bound is when the user is at a distance R

along the bore-sight of the array and heading in a direction aligned with the one of the

array axes. For this worst-case geometry (plotted in Figure 4.4), we have that:

∆ω ≤ (2πd/λ) sin ∆θ ≈ 2πdvmax

fBλR
.

Assuming that the estimate ω̂ from the previous sounding phase is accurate, if we ensure

that 2πdvmax/fBRλ ≤ π/Nt,1D , we have that the beamforming losses in the intervening

period are smaller than 3dB. This tells us that channel needs to be sounded often enough

so that

fB ≥ 2dvmaxNt,1D/Rλ . (4.18)

In the following discussions, we use the preceding in conjunction with (4.17) to deter-

mine the overhead incurred in estimating the channel using the compressive architecture

proposed herein.

4.6 System Design

We now discuss some key aspects of downlink system design related to our compressive

architecture. We start by choosing basestation transmit power based on rules set by

regulatory authorities, and then filling in the other details of the protocol according to

the prescriptions laid out in Section 4.5. Fixing the mobile array to be 4× 4 (Nr,1D = 4),
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Figure 4.4: Geometry corresponding to maximum change in ωz: The user moves
along the z axis at a speed of vmax in the time interval 1/fB between two consecutive
channel sounding rounds

we consider two different choices for the base station array size: 8 × 8 (Nt,1D = 8) and

32× 32 (Nt,1D = 32). All arrays are d = λ/2-spaced. The total available bandwidth for

communication and sounding is 2GHz.

4.6.1 Transmit power

We fix the effective isotropically radiated power (EIRP) to 40dBm, consistent with

Federal Communications Commission (FCC) regulations for 60 GHz unlicensed trans-

mission. Accounting for transmit beamforming gain using an Nt,1D × Nt,1D array, the

total transmit power

P = 40− 20 logNt,1D dBm (4.19)

which evaluates to 22dBm and 10dBm for Nt,1D = 8 and Nt,1D = 32 respectively. As-

suming that this power is evenly split among the N2
t,1D transmit elements, the power per

transmit element is given by Pe = P − 20 logNt,1D dBm = 40− 20 logNt,1D dBm, which

evaluates to 4dBm and −20dBm, respectively. Assuming that we design each element to

operate at a fixed power, this is also the power per element used in the beaconing phase,

even though the latter does not get the benefit of transmit beamforming.

72



Compressive channel estimation and tracking for large arrays in mm-wave picocells Chapter 4

4.6.2 Communication range

In order to ensure that the SNR for compressive estimation is adequate over a picocell,

we first determine the picocell size using a nominal communication link budget, and then

calculate the overhead required for successful estimation at that range. Standard link

budget calculations, assuming oxygen absorption of 16 dB/km, an EIRP of 40dBm and

a 4× 4 receive array providing directivity gains of 12 dBi, can be used to show that we

can attain a per-symbol SNR of 6dB at a link margin of 10dB for a symbol rate of 2GHz

at a range of 200m. For omnidirectional free space propagation, the power gain in dB as

a function of range r is given by

GdB(r) = −µr + 20 log10

λ

4πr
(dB)

where µ = 0.016dB/m to account for oxygen absorption. Note that µ can be increased

in order to account for rain. However, since our purpose is to ensure that channel

estimation is successful whenever communication is successful, the contribution due to

GdB(r) cancels out, as we show shortly. Thus, while the particular value of µ determines

picocell size, we shall see that it does not affect the overhead for channel estimation.

The SNR per symbol is given by

SNRc(dB) = EIRP (dBm) +GdB(r) + 20 log10Nr,1D (4.20)

− 10 log10 (N0Wc)− Lmargin(comm)

where Lmargin(comm) is the link margin (dB) for communication. Note that 10 log10N0 =

−174 +NF dBm over a bandwidth of 1 Hz, where NF denotes the receiver noise figure

in dB. Plugging in Wc = 2GHz, Nr,1D = 4, and NF = 6dB, we obtain a per symbol SNR

of 7 dB at a range of r = 100 meters.
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4.6.3 Channel sounding protocol

Our channel sounding protocol is specified by four parameters: (i) bandwidth used

by each basestation when sounding the channel, which we denote by Ws (ii) number of

transmit beacons (or virtual transmit antennas) M (iii) number of receive measurements

per transmit beacon (or virtual receive antennas) L and (iv) sounding rate fB which

determines how often the channel is sounded. The parameters M,L and Ws together

determine the effective sounding SNR. This must exceed the ZZB threshold SNR for

successful channel estimation. This gives rise to the condition in 4.17. Imposing an

estimation link margin Lmargin(est) (dB) and going to the dB domain, we have

10 log10 (ML/Ws ) ≥ SNRth + Lmargin(est) (4.21)

+ 10 log10N0 − P −GdB(r)

Adding (4.21) and (4.20) and simplifying, we obtain

10 log10 (ML/Ws ) ≥ SNRth − SNRc + Lmargin(est)

− Lmargin(comm) + 20 log10Nt,1D

+ 20 log10Nr,1D − 10 log10Wc

The key take-away is that ML/Ws must be large enough to compensate for the fact that

we do not have the benefit of beamforming during the sounding phase. Notice that the

range r (i.e., the dependence on picocell size) has cancelled out. Setting Lmargin(est) =

16dB (we use a higher link margin for channel sounding to account for power losses due
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to randomness of A and B), we obtain

Time taken =
ML

Ws

≥


16.34 µs Nt,1D = 8

0.2669 ms Nt,1D = 32.

(4.22)

We choose the number of transmitter beacons for the 8 × 8 and 32 × 32 transmitter

arrays based on the geometry preservation criterion for the transmitter’s spatial channel

estimation problem discussed in Section 4.5.1. We use M = 24 for Nt,1D = 8 and

M = 30 for Nt,1D = 32 by numerically evaluating the worst-case distortion of pairwise

distances relevant for the channel estimation problem (in Figure 4.1 we plot the worst-

case distortion as a function of L for a random instance of A and Nt,1D = 32). Using

the receive energy preservation criterion given in Section 4.5.2, we choose the number of

receive weights for the 4× 4 receive array as L = 6. Using these values for M and L in

(4.22), we obtain that the channel sounding bandwidth must satisfy

Ws ≤


8.8124 MHz Nt,1D = 8

674.34 KHz Nt,1D = 32.

Our specification of the channel sounding protocol will be complete when we give

fB, the rate at which we sound the channel (see Figure 4.5) which must satisfy (4.18).

Assuming that the closest user is at a distance of R = 20m and that the maximum speed

of a user in the picocell vmax is 45 miles per hour (20 m/s), we have that: fB ≥ 8 Hz

for Nt,1D = 8 and fB ≥ 32 Hz for Nt,1D = 32. Choosing the minimum value for fB, we

have that the overhead for our channel sounding protocol is MLfB/Ws = 0.0131% for

Nt,1D = 8 and 0.8542% for Nt,1D = 32.
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Figure 4.5: Channel sounding and communication phases of the proposed system

4.6.4 Reuse analysis for channel sounding

We investigate how a sequence of basestations employed in an urban canyon en-

vironment can share resources when estimating the spatial channel to users in their

respective cells. The envisioned mm-wave system involves alternating between channel

estimation and communication phases as shown in Figure 4.5. We assume that chan-

nel sounding rounds across basestations are aligned in time. We now characterize how

the 2GHz spectrum is to be shared in space so as to limit the effect of interference

from neighboring picocells on channel estimation performance. Such interference man-

agement is essential in the sounding phase; unlike the highly directive beams used in

the communication phase, compressive sounding beacons are essentially omnidirectional.

To see this, consider the average transmit power along any direction ω. This is given

by Pe ‖Axt(ω)‖2/L ≈ Pe ‖xt(ω)‖2 = PeN
2
t,1D = P , the total transmit power. The ap-

proximation ‖Axt(ω)‖2/L ≈ ‖xt(ω)‖2 holds when the number of beacons L is large

enough. Therefore, the average energy per-measurement received by an antenna at a

distance r from a transmitter sending compressive beacons is given by PG(r), where

G(r) = 10GdB(r)/10 = λ2/(16π2r2) e−νr (ν = (µ/10) ln 10) is the omnidirectional power

gain at range r. We assume that basestations are deployed regularly as shown in Fig-

ure 4.6 and that the inter-basestation separation (along the street) is given by S. Suppose

that the reuse factor is R (i.e, every Rth basestation uses the same slice of the frequency

spectrum to estimate downlink spatial channels). We assume that for narrow urban
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canyons, the distance between a user and all interfering basestations (those that are al-

located the same sounding BW) are well approximated by {kRfS, k ∈ Z \ {0}}. Thus,

the interference power seen by a single antenna is given by

I = 2×
∞∑
k=1

∑
paths

PG(kRfS) = 8P
∞∑
k=1

G(kRfS),

where we have assumed that there are 4 viable paths between the interfering basestation

and user, each introducing the same amount of interference as the LoS path. This is

a pessimistic assumption, since NLOS paths are attenuated by larger path lengths and

reflection losses. Plugging in the expression for G(r), we have that

I =
(
Pλ2

/
2π2R2

fS
2
) ∞∑
k=1

e−νRfSk
/
k2

=
(
Pλ2

/
2π2R2

fS
2
)

Li2
(
e−νRfS

)
,

where Li2(z) =
∑∞

k=1 z
k
/
k2 is the dilogarithm function. The interference seen per an-

tenna adds to thermal noise to give an effective per-element noise level of σ2
e = N0Ws+I.

Assuming a worst-case geometry for the user of interest (distance of S from the basesta-

tion) and proceeding as in Section 4.5.3, we see that effective Signal to Interference and

Noise Ratio SINReff is given by

SINReff = MLPG(S)
/
σ2
e .

This can be rewritten as

1/SINReff = 1/SNReff + 1/SIReff ,
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where SNReff = MLPG(S)/N0Ws and the Signal to Interference Ratio SIReff = MLPG(S)/I =

MLR2
fe
−µS/8Li2

(
e−µRfS

)
. We need to ensure that SINReff exceeds the ZZB SNR thresh-

old for successful estimation. We choose the reuse factor Rf so that we are in the noise-

limited regime by setting

1/SIReff < 0.1× (1/SNRth ) ≈ −10− 16 dB.

Assuming that protocol parameters are chosen so that SNReff exceeds SNRth, we can ignore

interference in SINReff calculations when

SIReff > SNRth + 10 ≈ 26dB for Nt,1D = 8, 32.

In Figure 4.7, we plot achievable effective SIRs as a function of frequency reuse factor

Rf for two example systems in Section 4.6.3: i.e, 8 × 8 and 32 × 32 arrays with total

number of measurements given by ML = 24 × 6 and ML = 30 × 6 respectively. As

the picocell size S grows, exponential attenuation due to oxygen absorption (the e−νS

term in the expression for SIReff) helps in attenuating interference and improving SIR

for same reuse factor Rf . To illustrate this we plot SIR as a function of Rf for three cell

sizes S = 50, 100, 200m in Figure 4.7. We observe that, in order to ensure SIReff > 26dB,

a reuse factor of Rf = 4 is needed for S = 50m, while Rf = 3 suffices for S = 200m.

Plugging in the per-basestation sounding bandwidth Ws calculations in Section 4.6.3, we

see that the overall system-level channel sounding bandwidth Ws × Rf for a S = 50m

picocell is as small as 8.8124MHz × 4 = 35.2MHz and 674.34KHz × 4 = 2.7MHz for

Nt,1D = 8, 32, respectively, which is dwarfed by the total available bandwidth (2GHz).
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Figure 4.6: Reuse of frequency resources for reuse factor Rf = 3

4.7 Simulation Results

We perform simulations for the two example systems considered in Section 4.6 (8× 8

and 32×32 transmit arrays). We report results for the algorithm proposed in Section 4.4

and two feedback strategies: (i) ‘full’: users feedback the measured virtual channel matrix

Y (M ×L matrix; L = 6 for both systems) and (ii) ‘svd’: users feedback the 2 dominant

left singular vectors of Y, scaled by their corresponding singular values (M × 2 matrix;

one-third feedback overhead).

We consider 6 mobile users moving in the urban canyon at speeds of 20, 3, 15, 1.5,

2.1 and 10 meters per second (covering both vehicular and pedestrian settings). The

height at which each mobile device is held is in the 1.3 − 1.4m range. The basestation

is mounted on a lamppost on the pavement (7 meters from a canyon wall), at a height

of 6 meters. The basestation antenna array is tilted by about 7.5◦ in both the azimuth

and elevation directions so that the boresight of the array points towards middle of the

corresponding cell. This helps in more accurate spatial frequency estimation: since a

change in direction near the boresight of the array results in larger changes in spatial

frequencies than far away from the boresight, resolving paths is easier when the array

points towards a direction in which we are likely to see more paths. We do not model
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Figure 4.7: Effective Signal to Interference Ratio SIReff for ML = 24 × 6 (8 × 8
scenario) and ML = 30×6 (32×32 scenario; dashed) as a function of reuse factor Rf

blockage in these simulations, assuming that the LoS path and the three first order

reflections are all available. Our goal is to estimate and track the K = 4 paths to all 6

users.

Estimation error: Let T = {ωm : m = 1, . . . , K} denote the true spatial frequencies

and P = {ω̂n : n = 1, . . . , K̂} denote the set of estimated spatial frequencies. When

the base station uses one of the estimates in P , say ω̂, to form a beam, we do not

realize the full 20 logNt,1D dB beamforming gain. A measure of the sub-optimality is

the estimation error ‖ω − ω̂‖2, which we normalize by the DFT spacing of 2π/Nt,1D to

define the following error metric:

∆ω(m) = min
n
‖ωm − ω̂n‖2

/
(2π/Nt,1D ) . (4.23)

When no true spatial frequency exists near an estimate ω̂, i.e, when ω̂ is a “phantom

estimate”, we will quickly be able to discard it when we beamform in the direction of ω̂
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Figure 4.8: Six users in the urban canyon moving over the duration of the 7 second
simulation interval. Their positions at time t = 0 is marked using a ���-symbol

and find that the mobile does not receive power commensurate to what it expects with

the 20 logNt,1D beamforming gain.

We plot the Complementary Cumulative Distribution Function (CCDF) of estimation

errors (4.23) for the two systems (Nt,1D = 8, 32) in Figure 4.9 and the Probability Dis-

tribution Function (PDF) of the number of paths estimated K̂ (correct value is K = 4)

in Figure 4.10. We have set Pfa = 10−3 to arrive at τ used in the stopping criterion

(4.13). From Figure 4.9 and 4.10, we see that feedback of dominant singular vectors is an

efficient feedback strategy which performs just as well as feeding back the entire matrix

Y, while using only a third of uplink resources.

Next, in order to evaluate the effect of errors in spatial frequency estimation on beam-

forming performance, we simulate a simple scenario in which the transmitter beamforms

toward the strongest estimated path. Figure 4.11 shows the CDF of the achievable beam-

forming gain for an 8 × 8 array. While ideal beamforming requires adjustment of both

gains and phases, suboptimal approaches for RF beamsteering with severely quantized

phase-only control (four phases) have been studied in our earlier conference paper [31].

We see from Figure 4.11 that if ideal beamforming were performed with our estimates,
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Figure 4.9: CCDF of frequency estimation errors with new stopping criterion for
Nt,1D = 8 (left) and Nt,1D = 32 (right). Two feedback strategies considered: (i) M×6
matrix Y (‘full’) and (ii) top two dominant singular vectors (one-third overhead).

then the SNR loss is less than 0.3 dB. If four-phase control is used based on our estimates,

then the SNR loss is less than 1 dB. The results for 32 × 32 arrays are entirely similar,

and are therefore not plotted here.

Thus far, we have not said anything about channel frequency selectivity. Our proposed

algorithm uses a small segment of the band to estimate the spatial channel, and the

problem of channel dispersion is not addressed. However, we note that beamforming

using a large array should reduce the effect of undesired paths, which simplifies the task

of equalization. Figure 4.12 shows the channel impulse responses for the 32 × 32 and

8 × 8 antenna arrays for a typical snapshot, when the transmitter beamforms towards

the strongest estimated path. In our simulated setting, the LoS and ground reflection are

close to each other in terms of both delays and angles of departure. We see that 8×8 array

fails to resolve them, with both paths falling into the antenna’s main lobe, while the 32×

32 antenna array, which has smaller beamwidth (4◦ half power beamwidth), attenuates

the undesired tap down to one-ninth of the desired path. Of course, it is possible to utilize

the channel estimates far more intelligently, potentially with nulls directed both at strong
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Figure 4.10: PDF of # of estimated paths K̂ (K = 4) with new stopping criterion for
Nt,1D = 8 (left) and Nt,1D = 32 (right). Two feedback strategies considered: (i) M×6
matrix Y (‘full’) and (ii) top two dominant singular vectors (one-third overhead).

undesired paths for the mobile of interest, and at the dominant paths for other nearby

mobiles. The latter can be particularly useful for combating intra-cell interference when

a base station face has multiple antenna arrays, each communicating with a different

mobile.
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Figure 4.12: Channel impulse response with quantized beamforming towards esti-
mated strongest path for the 8× 8 (left) and 32× 32 (right) scenarios
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Chapter 5

Conclusions and Future Work

In the preceding chapters we have established that 60GHz outdoor picocells are indeed a

feasible approach for delivering the orders of magnitude increase required in network ca-

pacity. Moreover, the mm-wave picocellular architecture proposed here could be exploited

for other purposes i.e., vehicular sensing and communication as well as localization. How-

ever, there are significant design challenges in realizing our proposed architecture. We

end by discussing a few of these open issues and other applications that could benefit

from it:

Picocellular networks: Our findings lead us to identify the need for new, novel

architectures and system designs such as picoclouds, opening up a rich new research

area on 60GHz outdoor network design and experimentation. The compressive approach

allows each base station to build up an inventory of viable paths to nearby mobiles,

but there is a huge design space to be explored on how base stations coordinate using

this information to alleviate the effects of blockage, to maintain the connectivity for

mobile users and to handle the channel dispersion. Furthermore, frequent switching

between basestations, together with rate adaptation switching between different paths,

requires careful coordination to support applications such as TCP. Such considerations,
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along with the large per-user rate, call for careful design that accounts for backhaul and

storage constraints.

Compressive channel estimation and tracking: We have shown that it is possible

to super-resolve mm-wave spatial channels with a relatively small number of compressive

measurements, in a manner that is compatible with coarse phase-only control and RF

beamforming. This allows scaling to a very large number of antenna elements without

relying on channel reciprocity. While our discussion of system design issues such as

link budget and inter-cell beacon interference is tailored to outdoor 60 GHz picocellular

networks, the basic approach is broadly applicable (e.g., to other bands, and to indoor

environments).

We later conducted comprehensive experimental validation of our compressive ap-

proach. In [1] we proposed the noncoherent framework which enables immediate de-

ployment of compressive tracking with commodity IEEE 802.11ad hardware, since it

requires the same information (i.e., RSS) as conventional scan-based techniques. Using

this framework, we have provided the first experimental demonstration of compressive

mm-wave path estimation, showing that it provides accurate estimates at significantly

lower overhead than standard scanning.

Some natural next steps are as follows. First, it is of interest to extend the nonco-

herent framework for estimating multiple paths, and to understand it more deeply at

a theoretical level. Preliminary results combining compressive estimation with phase

retrieval are promosing [49]. A second avenue is to pursue the custom hardware and

protocol changes required for obtaining the performance advantage provided by coherent

compressive measurements, and evaluating experimentally whether the required phase

coherence across beacons, and the gains promised by theoretical studies such as [50], can

be attained despite the higher phase noise at mm-wave frequencies.
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A hardware enhancement to pure RF beamforming as considered here (where a single

RF chain serves all antenna elements) is to employ hybrid analog-digital beamforming,

with a number of RF chains smaller than the number of antenna elements. We may term

this an array of subarrays, with RF-level control for subarrays, and digital processing of

subarray outputs. Such an approach is used in [30, 51] for spatial channel estimation. Our

work has shown, however, that a single RF beamformed array suffices for this purpose.

In general hybrid/fully digital beamforming is not always ideally suited for practical 5G

applications due to increased cost, energy consumption and complicated integration in

mobile devices. However, arrays of subarrays are certainly required for more advanced

functionalities such as multiuser MIMO [52], spatial multiplexing [53, 54, 55, 56, 57], and

spatial diversity [55, 58, 59]. Moreover, beam squint1 is a well-known problem for analog

beamforming architectures using phase offsets. This is a serious drawback considering

current 5G plans to make use of large bandwidths in the mm-wave band and could

encourage migration to hybrid or fully digital architectures where digital control of the

RF chain enables optimization of the phases according to the frequency over a large band

[60]. Hence integrating the compressive approach proposed in this work within an array

of subarrays architecture is an interesting area for future work.

Vehicular communications: mm-wave band are strong candidates for future V2V

(Vehicle-to-Vehicle) and V2X (Vehicle-to-everything) links where current technologies

(i.e., 4G cellular or DSRC (Dedicated Short-Range Communications)) has proven to be

insufficient [61]. In vehicular scenarios, contextual awareness is a key factor. mm-wave

band offers the potential to expands each vehicles own-sensing with realtime information

retrieved from nearby vehicles. Such use of V2V mm-wave links to enable connected

intelligence can effectively help to address both blind area and bad weather problems

1The phase relation between different antenna elements is calculated with a certain carrier frequency
in mind. Now, if the antenna elements are fed with a signal of a slightly different frequency the actual
angle of the main lobe shifts by a certain angle.
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inherent to LiDAR and other sensing equipments [62]. In this context there are plenty of

open issues in realizing the new paradigm of V2X for sensing and cellular communication.

Localization: mm-wave systems offer huge potential for radio-based localization due

to their ultrawide bandwidths as well as directional antennas that enables accurate identi-

fication of multipath components in temporal and angular domains [63, 64, 65]. Localiza-

tion accuracy can be improved by providing a priori information on spatial characteristics

of urban environment, also termed REM (Radio Enviromental Mapping). One possible

future direction could be realizing REM via mm-wave localization which can later be

exploited to improve the localization accuracy.
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Appendix A

Stopping Criterion

In this section we derive the CFAR-based stopping criterion (4.13). In essence, we wish

to determine when the residual measurements, after subtracting out the contribution due

to the paths estimated thus far, can be explained well enough by noise, up to a nominal

false alarm probability of Pfa.

Under the noise-only hypothesis (i.e., assuming all existing paths have been detected

and subtracted), we have

vl(Pq) ≈ zl zl ∼ CN
(
0, σ2IM

)
l = 1, . . . , L

Recall that we use (4.9), maximized over an oversampled DFT grid, to detect a new

frequency. For our stopping criterion (4.13), we consider the maximum over a DFT grid

(this simplifies analysis and design), and stop if this is lower than a threshold, as follows:

max
ω∈DFT

1

||x(ω)||2
L∑
l=1

|〈x(ω),vl(Pq)〉|2 ≤ τ (A.1)

The false alarm rate is the probability that the threshold is exceeded under the noise-only
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hypothesis:

Pfa = Pr

{
max

ω∈DFT

1

||x(ω)||2
L∑
l=1

|〈x(ω), zl〉|2 > τ

}
(A.2)

The noise projections are i.i.d. CN (0, 1) across ω (due to the orthogonality of the DFT

basis) and i.i.d. across measurement time indices l. Thus,

νl,ω :=
〈x(ω), zl〉
σ||x(ω)||

∼ CN (0, 1)

and the sum of the squared magnitudes across projections is a Gamma random variable:

µω :=
L∑
l=1

|νl,ω|2 ∼ Gamma (L, 1)

We therefore obtain

Pfa = P

{
max

ω∈DFT
µω >

τ

σ2

}
= 1− P

{
µω0 <

τ

σ2

}N2
1D,t

= 1−
(
γ(L, τ

/
σ2 )
/

Γ(L)
)N2

1D,t

where γ(L, x) =
∫ x

0
tL−1e−t dt is the incomplete gamma function, and Γ(L) = γ(L,∞) is

the gamma function.

For a given Pfa, the threshold τ is now given by

τ = σ2γ−1
(
L,Γ(L)(1− Pfa)1/N2

1D,t

)
(A.3)

where γ−1(L, y) denotes the inverse of the incomplete gamma function with respect to

the integral limit x.

90



Appendix B

Complexity Analysis

We go over the computations that are needed to maintain the estimate of one user’s

channel over time and point out portions of the computation phase that can be reused

across users.

The first step involves computing responses to each of the R2N spatial frequency

grids (N = N2
1D,t as the number of transmitter antennas):

X = {x (ω) = Axt(ω) : ω ∈ Φ} .

This can be efficiently computed using the Fast Fourier Transform in O(MNR2 log(NR))

time and can be shared across users. Furthermore, the set of responses X can be stored

at the basestation and reused across sounding rounds. Thus, the cost of computing X is

amortized over users in the network and across sounding rounds.

The next step involves finding the strongest path using (4.9) and the corresponding

gains. This operation takes O(MLNR2) time. We then proceed to the refinement stage

which takes O(M(L+N)) time (O(MN) to compute ∂x(ω)/∂ωi and O(ML) for gradient

and Hessian computation).
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When multiple paths are present, each path is refined again for every subsequently

detected path. Therefore, the overall complexity when a new user joins the network

is O(K2) × refinement complexity + K × detection complexity = O(MK2(L + N) +

KMLNR2). In arriving at this scaling, we use the fact that our algorithm is residue

centric and therefore we keep track of {vl (Pq)}. As a result we can compute {vl(Pq \

(ω̂k, {ĥk,l}))} in O(LM) time as opposed to the O(qLM) time that would have been

needed if this computation were to be done directly from {yl}.

When we track the channel using estimates from prior rounds, we compute the gains

{ĥk,l} of the existing spatial frequency estimates from prior round given by {ω̂k} as

(XHX)−1XHY and this takes O(KM(L + N)) time. We then refine these estimates

using our refinement algorithm in O(KM(L+N)) time.

Paths that were viable in previous sounding rounds may be blocked in the current

sounding round. To prune out such paths, we test whether the residual measurements

after the deletion of the under question path satisfy our stopping criterion. This check

takes O(KM(L+N) +MLN) time for each path and path pruning complexity scales as

O(K2M(L+N)+KMLN). Checking whether a new path exists (stopping criterion) also

costs O(MLN) time. Therefore, the overall tracking complexity scales as O(KM(KL+

KN + LN)) = O(KMN(L+K)) (since N > K) time.
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