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Abstract—Recent progress in millimeter wave (mmWave) sili-
con technologies has given rise to a new possibility: digital beam-
forming for truly massive multiuser (MU-) MIMO. However,
there are two key challenges in scaling: packaging a vast array
of antennas with the corresponding radio frequency integrated
circuits (RFICs), and controlling the complexity of digital signal
processing (DSP) for MU detection. In this paper, we show
that modular tiled architectures, which simplify the task of RF
packaging, also enable significant reduction of the communication
and computational burden of DSP for MU-MIMO by utilizing
beamspace techniques that take advantage of the sparsity of
the mmWave channel. Specifically, we propose and investigate
Linear Minimum Mean Squared Error (LMMSE) adaptive MU
detection via novel tiled beamspace architectures in which the
bulk of the DSP occurs in-place at each tile. The dimensionality
reduction and parallelization enabled by such architectures not
only reduce the computational burden of inference and training
relative to a traditional “full array” baseline, but also significantly
reduce the length of the required training period. We consider
three different training strategies with differing requirements for
computation and inter-tile communication: independent training
for each tile, coordinated training across tiles, and hierarchical
training based on independent training as a first stage. Simulation
results show that these approaches can actually outperform the
full array baseline when we limit the length of the training period.

Index Terms—Beamspace processing, Tiled architecture,
mmWave, MU-MIMO, Linear MMSE

I. INTRODUCTION

MmWave communication [1] and massive MU-MIMO [2]
are key enablers of vastly increased data rates and network
capacity in next-generation wireless communication systems.
While the first generation of mmWave RFICs [3] utilize
RF beamforming, recent work suggests that large-scale fully
digital beamforming in these bands, using tiled architectures to
alleviate packaging difficulties [4], is on the cusp of feasibility.
In this paper, we show that such tiled architectures also
alleviate the computational bottleneck of scaling DSP for
MU-MIMO to a massive number of antennas and users, by
parallelizing computation and exploiting the sparsity of the
mmWave channel.

It is well known that increasing the number of base station
(BS) antenna elements positioned at higher locations leads
to a narrower angular spread and improved spatial resolution
within the beamspace domain [5]. Larger losses due to scat-
tering and blockage in mmWave channels further increases
the sparsity, leading to well-defined channels characterized
by a small number of dominant paths [1]. Channel matrices
of this nature are sparse in the “beamspace” domain. For a

linear array, taking an FFT across the antennas concentrates the
signal energy of any given user into a small number of angular
frequency bins, and recent work has utilized dimensionality
reduction in beamspace to reduce the complexity of MU-
MIMO [6]–[8].

In the tiled beamspace architectures considered here, we
exploit the benefits of dimensionality reduction in beamspace
while utilizing in-place computation at each tile and minimiz-
ing inter-tile communication. We consider adaptive LMMSE
multiuser detection, which enables parallelization of compu-
tation across users as well. Our key contributions are summa-
rized as follows:

• We model tiled uniform linear array (ULA) architectures
for a mmWave MU-MIMO uplink, and show how to
subdivide multiuser detection processing across tiles to
achieve lightweight parallel computation within each tile
with minimal inter-tile communication overhead. Sparsity
in beamspace is utilized in each tile by using a small
window of observations for each user, thus reducing both
the complexity of multiuser detection and the required
training overhead. Inference using LMMSE detection is
parallelized across users and across tiles, and requires
minimal inter-tile communication.

• We introduce and evaluate three innovative approaches
for LMMSE adaptation for our tiled windowed
beamspace architecture with different requirements for
computation and inter-tile communication: independent,
coordinated, and hierarchical training. We provide nu-
merical results illustrating the tradeoffs between training
complexity and BER performance for these schemes,
all of which have exactly the same (low) inference
complexity.

• Our numerical results illustrate the efficacy of dimension-
ality reduction on reducing training overhead, and show
that our tiled windowed beamspace schemes significantly
outperform a conventional full-array LMMSE detector
when we limit the number of training symbols.

Throughout the paper, lowercase and uppercase boldface
letters refer to column vectors and matrices, respectively. ∗,
·*, ·⊤, and ·H are the convolution, conjugate, transpose, and
conjugate transpose operators, respectively. a[r1 : r2] is a
vector consisting of the r1-th through the r2-th elements of
a.
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Fig. 1: Conventional full array antenna space architecture (left)
and tiled beamspace architecture (right) for a mmWave MU-
MIMO uplink with a tiled ULA at the base station.

II. SYSTEM MODEL

We consider a massive MU-MIMO uplink as depicted in
Fig. 1. The BS is equipped with an N -antenna ULA with inter-
element spacing d, and communicates simultaneously with K
users. We consider a narrowband symbol-synchronous model
with singlecarrier modulation in order to focus on fundamental
aspects of the comparison between standard architectures and
tiled beamspace architecture. The received signal y at the BS
is represented as

y[n] =
K
∑

k=1

(bk ∗ hk) [n] + n[n], (1)

where {bk[n]} and hk[n] represent the symbol stream and
vector channel response, respectively, for user k, and n[n] is
a complex AWGN process with independent and identically
distributed CN (0, 2σ2) entries across space and time.

Typical mmWave channels consist of a dominant path,
normally the Line of Sight (LoS) path, along with a few
numbers of weaker paths which get further attenuated when
beamforming along the dominant path [1]. Here, we consider
L paths arriving in the far field from each user. The vector
channel for user k, 1 ≤ k ≤ K is given by

hk[n] =
L
∑

l=1

hk,l[n]δ(n− τk,l), (2)

hk,l[n] = αk,la(Ωk,l), (3)

a(Ωk,l) = [ej0Ωk,l ej1Ωk,l ej2Ωk,l · · · ej(N−1)Ωk,l ]⊤. (4)

where αk,l is the path gain, Ωk,l =
2πd sin θk,l

λ
is the spatial

frequency, θk,l is the Angle of Arrival (AoA), and τk,l is
the delay for the lth path, quantized to the nearest sample to
avoid detailed modeling of transmit and receive filters. Here
λ denotes the carrier wavelength, and we set the inter-element
spacing d = λ/2 in our numerical results.
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Fig. 2: Energy of a mmWave channel in (a) antenna space and
(b) beamspace for 256 BS antennas and 16 users. The channel
is generated at 28 GHz, incorporating 3 paths per user. The
channel matrix in beamspace is sparse.

A. Beamspace Representation

To convert from antenna space to beamspace, we utilize the
Discrete Fourier Transform (DFT) at the BS. Denoting the N -
point DFT matrix by DN , the beamspace representation for a
user’s channel is given by

h̃k[n] = DNhk[n]. (5)

Fig. 2 highlights the sparsity of the beamspace channels.
The energy of each user’s channel vector is concentrated
within a limited number of bins concentrated around its spatial
frequency.

B. Tiled Architecture

We now consider the tiled architecture depicted in Fig. 1,
where the array is partitioned into T tiles, each with NT

antennas at λ/2 spacing. Each tile has local RF chains
and an FFT block responsible for transforming signals into
beamspace. Such an architecture offers several advantages.
From a DSP perspective, it allows for the distribution of
high-complexity computations across multiple tiles, with the
flexibility for different levels of inter-tile coordination. From
a RF hardware design perspective, it alleviates packaging
challenges associated with scaling array size at the traditional
λ/2 pitch, while accommodating the associated electronics for
controlling the array. From a systems perspective, it allows
flexible design of antenna geometries to utilize the entire
available aperture in order to optimize spatial resolution and
reuse.

The received signal for tile t, 1 ≤ t ≤ T , can be written as

y(t) =
K
∑

k=1

bk ∗ h
(t)
k + n(t). (6)

In this paper, we focus on comparing tiled DSP with DSP for
the full array, and assume that the antennas for the tiles are
simply a partition of an N = NTT element λ/2-spaced linear
array into T contiguous NT -element arrays. In this case, the
channels for k-th user and l-th path across tiles are related as
follows:

h
(t)
k,l[n] = ejΩk,lNT (t−1)h

(1)
k,l [n] (7)
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where h
(1)
k,l [n] = [ej0Ωk,l ej1Ωk,l ej2Ωk,l · · · ej(NT−1)Ωk,l ]⊤.

Note that each tile receives a superposition of signals from
all users while having fewer antennas than the full array. Thus,
coordination among tiles is required if we hope to approach
the interference suppression capability of the full array.

III. MULTIUSER DETECTION

We compare LMMSE detection across different receiver
architectures. We begin with a quick review of LMMSE re-
ception for a generic model, and then map each architecture to
this model. The D-dimensional received vector corresponding
to the nth symbol b[n] transmitted by a “desired” user k is
given by

r[n] = bk[n]uk + I\k[n] (8)

where uk denotes the “desired signal vector,” and I\k[n]
denotes the “interference vector” comprising noise and mul-
tiuser interference. Assuming that bk[n] and I\k[n] are each
stationary (or at least wide-sense stationary), the LMMSE
correlator c minimizes the MSE E[|cHr[n] − bk[n]|2], the
solution to which is well known:

cMMSE = R−1p (9)

where R = E[r[n]rH [n]] and p = E[b∗k[n]r[n]]. In least
squares adaptive implementations, these statistical averages are
replaced by empirical averages over a sequence of, say, Lt

training symbols, where it suffices to choose Lt to be a small
multiple of the dimension D [9]. If there are multiple users
being demodulated simultaneously based on the same received
vector, then the least squares estimate of R is common for
all users, while the estimates of p are separately computed
based on the training sequence for each user. These training
sequences are chosen to be orthogonal or quasi-orthogonal.

We investigate the performance of LMMSE reception for
the system (1) for four receiver architectures detailed in the
following subsections, where we define the received vector
r with an arbitrarily chosen symbol, dropping the symbol
number n, in order to map to the generic model (8). LMMSE
detection, which may be viewed as a compromise between
matched filtering and zero-forcing detection, typically yields
good performance when the dimension D of the underlying
signal space is larger than the number of strong interferers,
which makes it likely that projecting orthogonal to the sub-
space spanned by these interferers does not lead to significant
reduction in the energy of the desired signal. The tiled win-
dowed beamspace architectures considered here are effective
because they reduce dimension in a manner that preserves
most of the desired signal’s energy while reducing the number
of strong interferers. Such dimension reduction strategies
are particularly attractive for adaptive implementations: the
computation of the inverse in (9) scales as O(D3), while the
training overhead scales linearly with D.

A. Full Array Antenna Space Processing

We consider the baseline benchmark associated with the
full array in antenna space (D = N ), for which the received

vector is the N × 1 vector r = y. As we scale the number of
antennas N , both the computational complexity and overhead
for training becomes unattractive.

B. Tiled Windowed Beamspace (TWB) Processing

Fig. 3: Tiled windowed beamspace inference for each user
consists of linear correlation with the received signal in a
selected beamspace window in parallel for each tile. The final
decision statistic is a sum of the tile-level decision statistics.

Here, we perform separate NT -point DFTs on the tile-level
received signals to obtain ỹ(t) = DNT

y(t), 1 ≤ t ≤ T . For
each tile t, we create a window around the highest energy bin

i(t)k for user k to obtain W ×1 tile-level windowed beamspace
signals:

r(t) = ỹ(t)[i(t)k −W/2+1 : i(t)k +W/2] , 1 ≤ t ≤ T, for user k

We wish to perform linear correlation on these signals to
obtain a decision statistic Z for the symbol transmitted by user
k. The linear correlator operating on the selected beamspace
window for tile t is denoted by c(t), and the decision statistic
for user k’s symbol is given by

Z =
T
∑

t=1

(

c(t)
)H

r(t) = cHr (10)

where c, r are WT × 1 vectors obtained by concatenating
c(t), 1 ≤ t ≤ T , and r(t), 1 ≤ t ≤ T , respectively. Note that
the decision statistic Z is simply a sum of decision statistics

Z(t) =
(

c(t)
)H

r(t) that can be computed separately at each
tile, yielding a highly parallelized architecture for inference,
as depicted in Fig. 3.

Note that, while Fig. 3 depicts a general situation in which

the window centers i(t)k for user k can vary across tiles, in
our setting, since each tile has exactly the same geometry
with respect to user k, we would design the window selection

algorithm to select a common window center i(t)k across t.
While the correlator c in (10) operates over a signal space

of dimension D = WT , the effective dimension of the signal
space available for interference suppression depends on the
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strategy for adapting it. We now consider three options for the
latter, corresponding to different training complexity.

Coordinated training: Here we train based on the WT × 1
vector r obtained by concatenating across tiles, minimizing
the MSE E[|Z − bk|2], where b denotes a generic symbol for
a given user. Referring to the generic LMMSE solution (9),
D = WT , computation of R requires coordination across tiles,
while computation of p can be parallelized across tiles.

Independent training: Here we train the correlators c(t) for
each tile separately, minimizing the MSE E[|TZ(t) − bk|2]
for each tile t, where the factor T is inserted to account for
summation of tile-level decision statistics during inference.
Referring to the generic solution (9), we compute T LMMSE
solutions in parallel, with T entirely parallel computations of
W×W matrices R(t), and W×1 vectors p(t), in each tile. This
scheme is clearly suboptimal, since the tile-level correlators
operate in a lower-dimensional signal space of dimension
D = W , while seeing the same number of interfering users.

Hierarchical training: Here we use the tile-level correlators
based on independent training as a first stage of interference
suppression with signal space dimension D = W , and add a
second training stage to exploit the correlations between the
decision statistics produced by the tiles. In the second stage,
we have signal space dimension D = T , using the received
vector r = [Z(1), Z(2), ..., Z(T )] from the first stage. The inter-
tile communication overhead for training is as small as for
inference, since we only require that the decision statistics
produced by the tile-level correlators reach a centralized
location. Given the limited signal space dimension available in
the first stage, we regularize the LMMSE correlator to prevent
excessive noise enhancement by adding diagonal loading to
the correlation matrix prior to inversion. Specifically, in the
first stage, we compute the LMMSE correlator at each tile
as (R + γIW×W )−1

p for each tile. In our simulation results,
we find that γ = 0.1

∑

i Rii, which effectively introduces
“artificial noise” which is 10 dB weaker than the sum of the
signal plus noise powers falling in the window, works well
across the settings considered. Further improvements could
potentially be obtained by adapting γ to each setting.

IV. PERFORMANCE EVALUATION

For the system in Fig. 1, we set the number of BS antennas
to N = 256. The users’ AoAs are uniformly distributed in
[−π/3,π/3], while enforcing a minimum separation in spatial
frequency of 2.782

N
[10] between users (we assume that higher

layer resource allocation strategies would schedule users with
smaller spatial frequency separations in different slots). For
every channel realization, each user receives 3 paths, with the
first path always being a Line of Sight (LoS). The amplitude of
the second and third paths diminish exponentially as a function
of their respective path delays, measured in a symbol unit.
These path delays are uniformly distributed across a range
from 1 to 100.

We consider two configurations: (1) NT = 64, T = 4
serving K = 16 users; and (2) NT = 16, T = 16 serving
K = 8 users. For full array processing, the load factor is

TABLE I: Complexity of different architectures and trainings.

Full array
antenna space

Tiled
windowed beamspace

FFT 0 T NT log2(NT ) = N log2(NT )

Inference KN KTW

Training Independent Coordinated
Hierarchical

(1st stage, 2nd stage)

R N2Lt KTW 2Lt K(TW )2Lt KTW 2Lt1, KT 2Lt2

P KNLt KTWLt KTWLt KTWLt1, KTLt2

R−1 h(N) KT h(W ) K h(TW ) KT h(W ), K h(T )

C KN2 KTW 2 K(TW )2 KTW 2, KT 2

* Assuming LDL-based inversion, h(N) = 1

2
N3 + 1

2
N2 − 1

6
N .

1/16 for the first configuration and 1/32 for the second,
both of which are small enough to expect negligible noise
enhancement due to linear interference suppression. On the
other hand, the load factor per tile is higher, equaling 1/4 and
1/2 respectively. Our simulation results (Fig. 4) show that the
tiled beamspace algorithms work well even under these high
load factor environment. We set the window for beamspace
processing to W = 4 for each tile, since this captures
more than 90% of the desired signal energy. For all tiled
beamspace algorithms, we set the training sequence length to
Lt = 256 (divided into two segments of length Lt1 and Lt2

for hierarchical training). We note that the overhead can be
reduced even further with negligible impact on performance.
On the other hand, for full-array processing with dimension
N = 256, Lt = N = 256 is barely enough to obtain an
invertible correlation matrix, hence we also present results for
Lt = 2N = 512.

A. Bit Error Rates

Fig. 4 shows BER plots for adaptive implementations of
the 4 multiuser detection strategies described in Section III
for 16QAM and QPSK modulation for the two tiled configura-
tions. As expected, adaptation of the full-array with Lt = N =
256 training symbols yields unacceptable performance, but
even the number of training symbols for full-array is doubled
to Lt = 2N = 512, it performs worse than coordinated
and hierarchical training using Lt = 256 symbols. The
performance of hierarchical training is competitive with that
of coordinated training despite its significantly lower training
complexity, but it does incur a larger error floor for 16QAM
due to residual interference. Both coordinated and hierarchical
training significantly outperform independent training: the re-
duced dimension available for interference suppression causes
residual interference which is large enough to incur error floors
even for the smaller QPSK constellation. It is interesting to
note, however, that there is one setting in which independent
training performs better: QPSK at low beamformed SNR in
configuration 2 (Fig. 4(d)), where noise averaging becomes
more important than interference suppression.

B. Computational Complexity

Table I shows the computational complexity in terms of the
number of multiply–accumulate (MAC) operations required
for each scheme to support K simultaneous users. Assuming
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Fig. 4: Uncoded Bit Error Rate (BER) plots. For tiled beamspace processing approaches, we use Lt = 256. For hierarchical
training, we use Lt1 = Lt2 = 128, and Lt1 = 32, Lt2 = 224 for config. (1) and (2), respectively. We can see that tiled
beamspace approaches have lower BER than the full array with longer Lt.

LDL decomposition-based inversion [11] - [12], h(·) can be
defined as follows, h(N) = 1

2N
3+ 1

2N
2− 1

6N , which is used
for inversion of R.

For inference, tiled windowed beamspace architectures di-
vide and parallelize the bulk of the processing across T tiles,
with reduced per-user correlator dimension W at the cost of
tile-level FFTs amortized across all users. Tiled windowed
beamspace inference therefore offers an advantage over full-
array processing when KN > KTW +N log2 NT ; this holds
if K scales faster than logNT , which is satisfied by the typical
linear scaling of K with N .

For training, tiled windowed beamspace yields dramatic
reductions in complexity over the full-array benchmark.
LMMSE adaptation requires computation of R, p, inversion
of R, and computing c, with the matrix inversion step ben-
efiting the most from the dimensionality reduction strategies
we apply. Coordinated training requires more communication
and computation overhead than independent and hierarchical
training. To sum up, hierarchical training strikes a favorable
balance between complexity and performance with minimal

inter-tile communication. With a computational complexity of
O(TW 3 + T 3) , hierarchical training is significantly lower in
complexity than coordinated training (O((TW )3)), and only
marginally higher in complexity than independent training
(O(TW 3)).

V. CONCLUSION

We have highlighted the promise of tiled beamspace archi-
tectures as a means of scaling massive MU-MIMO by exploit-
ing the sparsity of mmWave channels. By utilizing in-place
computation at the tiles, we parallelize computation while
minimizing the communication overhead for data movement.
For LMMSE interference suppression as considered here, the
dimensionality reduction provided by our tiled beamspace
approaches yield significant advantages in terms of both com-
putational complexity and training overhead. This is illustrated
in this initial investigation by considering a single λ/2-spaced
linear array partitioned into tiles in order to provide a direct
performance comparison with an antenna space benchmark. In
addition to the substantial gains in computational complexity,
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we show that our proposed approaches comprehensively out-
perform the antenna space benchmark when training overhead
is limited. An important topic for future work is to explore
the performance gains provided by the more flexible antenna
geometries permitted by tiling. Another promising area of
study involves leveraging the efficiencies inherent in tiled
architectures to develop more efficient hardware systems.
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