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Abstract—Convolutional deep neural nets have emerged as a
highly effective approach for machine vision, but there are a
number of open issues regarding training (e.g., a large number
of model parameters to be learned, and a number of manually
tuned algorithm parameters) and interpretation (e.g., geometric
interpretations of neurons at various levels of the hierarchy).
In this paper, our goal is to explore alternative convolutional
architectures which are easier to interpret and simpler to imple-
ment. In particular, we investigate a framework that combines a
front end based on the known neuroscientific findings about the
visual pathway, together with unsupervised feature extraction
based on clustering. Supervised classification, using a generic
radial basis function (RBF) support vector machine (SVM), is
applied at the end. We obtain competitive classification results
on standard image databases, beating the state of the art for
NORB (uniform-normalized) and approaching it for MNIST.

I. INTRODUCTION

Neuro-inspiration has played a key role in machine learn-
ing over the years. In particular, the recent impressive
advances in machine vision are based on multilayer (or
“deep”) convolutional nets [1], [2], [3], [4], which loosely
mimic the natural hierarchy of visual processing. Neuro-
inspired operations such as local contrast normalization [5],
[6], rectification [7] and sparse autoencoding [8] have been
found to be central to improving performance [6]. Most
of the best performing nets today are trained in supervised
fashion [3], [4], [9]. Despite the state of the art classification
accuracy achieved by this approach, there are a number
of disconcerting features: a huge number of parameters to
be trained, which leads to long training times [3] and the
requirement of large amounts of labeled data [10]; lack of
a systematic framework for understanding commonly used
“tricks” such as DropOut/DropConnect [9]; the requirement
for manual tuning of parameters such as learning rate, weight
decay and momentum [3]; and the difficulty in interpreting
the information being extracted at various hidden layers of
the network [11].
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In this paper, we ask whether we can simplify both imple-
mentation and understanding of convolutional architectures,
based on combining several key observations. First, while
we have at best a coarse understanding of the higher layers
of the visual cortex, we should be able to leverage the
fairly detailed picture available for the front end of the
visual system, including retinal ganglion cells (RGCs) and
the lateral geniculate nucleus (LGN), along with the simple
cells in V1. Thus, it should be possible to engineer machine
learning front ends to be faithfully neuro-mimetic rather
than merely neuro-inspired. Second, we would like to build
on the intuition that our visual system extracts a set of
“universal” features for any object being viewed, irrespective
of whether a classification task is to be performed. Research
in the field of transfer learning [12], where parameters of a
neural net trained with a dataset have been found to work
reasonably well with other datasets, seems to support this
assumption. This implies that a system which focuses most
of its effort on unsupervised learning for feature extraction,
and takes on supervised classification at the end, should have
a reasonable chance of success. Indeed, such an approach has
been shown to work reasonably well by a few researchers, but
further effort is needed to provide classification performance
competitive with supervised nets tuned for the purpose of
classification. Third, if we shift the focus to unsupervised
learning, then the task becomes one of clustering, for which
there are simple, well-established algorithms with little need
for parameter tuning.

Based on the preceding concepts, we propose and evaluate
a convolutional architecture that attains classification perfor-
mance comparable to the state of the art (beating the state of
the art for the NORB image database, and coming close to
it for the MNIST handwritten digit database), while lending
itself to relatively straightforward interpretation. Our design
approach and contributions are summarized as follows:
1) As the first part of our neuro-mimetic front end, we
build retinal ganglion cells (RGCs) with center-surround
characteristics, with center-on cells responding when the
center is brighter than the surround, and the center-off cells
responding in the reverse situation. The number of such cells
and the receptive cell size are matched to the resolution of
the images being processed based on the known parameters
of the fovea, the center of the retinal field with the greatest



concentration of RGCs. The RGC outputs can be viewed as
being directly transported to the lateral geniculate nucleus
(LGN), with a one-to-one mapping between RGCs and LGN
neurons. Thus, we may view this part of the model as
applying to the cascade of the RGC and LGN. We perform
local contrast normalization on the RGC/LGN outputs, with
the neighborhood used determined by reported experimental
parameters. We then rectify these outputs before feeding them
to the next layer.
2) Our second front end stage is a model for V1 simple
cells layered on top of RGC/LGN. These are edge detectors
constructed using the rough parameters determined by the
classical experiments of Hubel and Wiesel [13], [14]. We
quantize the edge orientations into bins of width π/8 (the
actual binning in visual cortex may be finer-grained, but we
choose a relatively coarse bin size to limit complexity). We
use several different kinds of edge detectors, so that there
are 48 edge detectors centered at each spatial location. We
perform local contrast normalization and rectification on the
simple cell outputs. The front end is fixed, with the only
tunable parameter being the “viewing distance,” as discussed
in Section II-C.
3) Beyond simple cells, neuroscientific guidance sufficient for
constructing a complete model of the next layer is no longer
available. We therefore use clustering based on k-means for
unsupervised learning henceforth. We first use k-means clus-
tering of outputs from simple cells to obtain centroids (each
of which can be interpreted as a neuron). Feature vectors are
given by soft assignments to these centroids (which can be
viewed as thresholded neuron outputs), and feature vectors
from adjacent regions are pooled to obtain the final feature
vector. A similar procedure (k-means, soft assignments, and
pooling) can be used to build successive layers on top of this.
Note that the structure remains convolutional (the same set
of centroids slides across the image), but we are zooming out
(creating feature vectors for larger segments of the image) as
we go up in the hierarchy.
4) After the fixed front end and the unsupervised learning
we finally perform classification via supervised learning of
a standard support vector machine (SVM) [15] with a radial
basis function (RBF) kernel. The best error rates we achieve
are: 0.66% on MNIST [1], which is comparable to the best
rates reported on this dataset without data augmentation and
2.52% on NORB (uniform-normalized [16]), which improves
on the state of the art for this dataset.

Related work: The relevant papers in experimental and
computational neuroscience which our front end model is
based on are mentioned in Section II. The importance of
carefully designing the pre-processing layer has been noted
in the machine learning literature. It was shown in [17]
that optimizing the various parameters of a single layer
convolutional architecture, followed by simple non-linear
clustering using k-means, results in performance even better
than several deep architectures. In [4], it was found that
adding a pre-processing contrast-extraction layer to the deep

CNN architecture improves recognition performance with the
NORB dataset.

There are several references [18], [19], [20], [21], [22]
that have employed layers of unsupervised feature extraction
prior to supervised classification, an approach adopted in this
work as well. Most of these papers use some form of re-
construction error combined with a sparsity constraint as the
cost function for training the unsupervised layers. This differs
from our use of k-means clustering to learn the weights of
the unsupervised layers, an approach which is much simpler
to implement computationally. A few references that have
used k-means clustering for vision include [17], [23]. In these
papers the clustering step is used directly on the raw images
and their implementation of k-means differs significantly
from ours, especially for the higher layers. We use much
fewer number of centroids and get better error performance
on the dataset common amongst their work and ours (NORB,
[17]).

II. THE FRONT END MODEL

Our model consists of two layers of neurons, the first
corresponding to the RGC/LGN cascade, and the second to
V1 simple cells, along the primate visual pathway. We model
the fovea, the small part of the visual field around the center
of gaze where the visual acuity is highest [24]. The fovea
is responsible for tasks that require high-resolution spatial
detail such as reading. The diameter of the fovea is reported
to be between 4.17◦ and 5.21◦ [25], [24]. The average of
these estimates is 4.69◦, and we model our “digital fovea”
as a 4.16◦-by-4.16◦ square patch having the same area as a
disk with 4.69◦ diameter.
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Fig. 1. (a) Cross marks show cell centers which are arranged on the
vertices of a regular grid. In each row (or column) there are 219 RGCs.
Each RGC cell applies a difference-of-Gaussian (DoG) filter, which defines
the receptive field of the cell. Receptive fields of neighboring cells heavily
overlap. (b) Difference of Gaussian filter along a single dimension. X-axis
indices correspond to number of RGC cells.

A. RGC/LGN processing

The number of RGCs in the fovea is estimated around
120, 000 [26], [27]. Among many types of RGCs [28], midget
RGCs (sustained response cells or P-cells) carry the high-
acuity information [25] and comprise 80% of all the RGCs in
the retina [29]. About half of these cells are ON-center-OFF-
surround and the other half are OFF-center-ON-surround
[24]. Based on this evidence, we create two parallel visual



pathways, one for ON-center cells and the other for OFF-
center cells. Each pathway contains approximately 48000
cells. The cell centers are located on the vertices of a square
regular grid (Fig. 1(a)). The front end also includes two
mechanisms that are critical for operation over the wide
dynamic range exhibited by natural stimuli: local luminance
gain control (LGC) and contrast gain control (CGC) [30],
[5].

We first apply LGC as described by Carandini and Heeger
[5]. Denoting by x the input image, the luminance normal-
ized image c is given as

ci,j =
xi,j − xi,j

xi,j
(1)

where i, j denote a pixel and xi,j is a weighted average
around pixel i, j,

xi,j =
∑
p

∑
q

wp,qxi−p,j−q. (2)

where the weights w are given by the Gaussian surround
filter suggested in [31], normalized to sum to 1.

Computation of center-surround contrast is classically
modeled using the difference-of-Gaussian (DoG) model [32],
[33], [34] consisting of two components, center and surround,
each of which is a 2D Gaussian function. We set the
parameters of the center and surround Gaussian filters based
on the values given for the macaque retina [34] (details in
the appendix). Taking the difference between these gives
a DoG filter (Fig. 1(b)) whose radius covers about 7 cell
centers along a row. Convolving the luminance-normalized
image with the DoG filter, the ON-center cell responses
are governed by the positive part of the output, and the
OFF-center by the negative part (Fig. 2). We apply CGC
as follows. The output (spike rate) of a cell whose center is
at i, j set to [5] is given by

ri,j =

∑
p

∑
q vp,qci−p,j−q

β +
√∑

p

∑
qwp,qc2i−p,j−q

(3)

where v are the difference-of-Gaussian weights. The square-
root term in the denominator, called the local contrast, is
the weighted root mean square of the luminance normalized
intensity values within the whole receptive field. The area
defined by w is called the suppressive field. The parameter β
has been fit to neural data by Bonin et al [31], but this value is
for cells outside of the fovea, and hence is not directly usable
for our model. We therefore choose a value of β (= 0.1)
so that the cells in our model qualitatively match various
effects (step change in luminance, step change in contrast,
size and contrast tuning) described by Bonin et al. [31] (we
skip details due to lack of space).

Finally, the non-negative spike rate of the cell is obtained
via a rectification non-linearity [30]:

yONi,j = max(0, ri,j − TRGC) (4)

yOFFi,j = max(0,−ri,j − TRGC) (5)
where TRGC is the rectification threshold: we set TRGC = 0,
which corresponds to simply splitting responses into positive
and negative components. Such “polarity splitting” has been
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Fig. 2. RGC processing pipeline for a single RGC cell

used in several machine learning algorithms (e.g., [21]), and
preserves more information than absolute value rectification.
The overall flow of RGC processing is illustrated for a single
cell in Fig. 2.

While both luminance and contrast gain control are thought
to start at the retina, lateral geniculate nucleus (LGN) cells
strengthen CGC [30]. For this reason, we refer to this layer
as the RGC/LGN layer.

(a) (b) (c)

Fig. 3. A simple cell sums the output of RGC/LGN cells according to its
incoming weights, these are represented here in terms of the colors of the
circles. The darker the color of a cell, the more weight it has. Transparent
cells have zero weight. Weights of each simple cell are normalized to sum
to 1. For each simple cell, the weight connections to the midget-ON and
OFF RGCs are shown on the left and right sides respectively. (a) orientation
0◦, OFF-ON-OFF type connection to midget ON. (b) orientation 45◦, ON-
OFF-ON type connection to midget ON. (c) orientation 135◦, ON-OFF type
connection to midget ON.

B. V1 simple cells

The V1 layer consists of two populations of neurons:
simple cells and complex cells. While there is a strong
consensus on the computation performed by V1 simple cells
– they extract oriented edges – the picture is less clear about
the complex and hypercomplex cells. Hubel and Wiesel [13]
suggest that some complex cells are implementing an OR-
like (or MAX-like) operation, while there are recent studies
[35], [36] which suggest significant computational diversity
among complex cells. We therefore only include simple cells
in our front end model.

Simple cells have incoming connections from the
RGC/LGN layer. We create simple cell receptive fields based
on the size (0.25◦x0.25◦ [14]) and the shapes ([13, Fig. 2])
reported by Hubel and Wiesel for foveal simple cells. While
this seminal work that we draw upon is almost five decades
old, there are only a few other studies [37], [38] of primate
foveal V1 cells, and the detail they present are insufficient to
implement a complete simple cell population. Other models
for parafoveal neurons (5◦ − 6◦ degrees off-center) [39],
[40] are similar in concept, but different in size, from the
Hubel/Wiesel foveal model.

There are a total of 48 different types of simple cells in
our model. There are 8 orientations, starting at 0◦ (horizontal



edge) and increasing in increments of 22.5◦. For each orien-
tation, there are 6 kinds of simple cells: two ON-OFF-ON,
two OFF-ON-OFF and one each of the type ON-OFF and
OFF-ON. To understand the differences between these types
we illustrate three different simple cells in Figure 3. Each
simple cell is connected to both midget-ON and midget-OFF
RGCs (and thus obtains information from both the positive
and negative parts of the DoG outputs), and its shape is
characterized by the set of nonzero weights. Each simple cell
has a receptive field size of 7x7 RGC cells, but depending on
its shape and type (equivalently, the set of nonzero weights),
the number of incoming connections vary from 14 to 39
RGC/LGN cells. The unnormalized output of the simple cell
at location (i, j) with orientation θ and shape γ is the sum
of its afferent inputs:

s
(raw)
i,j,θ,γ =

∑
p,q

`ONp,q y
ON
i−p,j−q +

∑
p,q

`OFFp,q yOFFi−p,j−q (6)

where ` are the weights (e.g. as shown in Fig. 3) of the
incoming RGC/LGN cells. The superscripts ON and OFF
refer to the midget-ON and midget-OFF pathways. Similar
to the contrast gain control occurring at the previous layer,
cortical neurons are also locally normalized [30]. Carandini
and Heeger [5] propose several variations of the normaliza-
tion model. (Normalization has also been successfully used
in bio-inspired methods [6], [41], [42]. ) In our experiments,
we use a normalization similar to (3) used at the RGC/LGN
layer: local demeaning, followed by a divisive normalization
with root-mean-square of nearby outputs, a measure of local
contrast.

s
(norm)
i,j,θ,γ =

s
(raw)
i,j,θ,γ − s

(raw)
i,j,θ,γ

max

ε,√ ∑
p,q,θ,γ

wp,q

(
s
(raw)
i−p,j−q,θ,γ − s

(raw)
i,j,θ,γ

)2
(7)

where the summation is taken over the suppressive field w

across orientations and shapes, s
(raw)
i,j,θ,γ is a weighted local

average (using w as weights) of unnormalized V1 outputs for
θ, γ around i, j, and ε is a small positive constant to prevent
division by zero (we set it to 0.001). Finally, the normalized
simple cell output is rectified to yield a non-negative spike
rate

si,j,θ,γ = max(0, s
(norm)
i,j,θ,γ ). (8)

C. Viewing distance and foveal image resolution

Our model has a 4.16◦x4.16◦ visual field. For a typical
viewing distance of 50 cm, this field corresponds to a 3.6x3.6
cm2 patch. The smaller the viewing distance, the smaller the
image patch covered by the fovea, and vice versa.

In order to implement our model digitally, one has to
assume a size for the foveal image. One possibility is to
assume that the resolution is limited by the number of
photoreceptor cells. In the fovea, there are almost exclusively
cone photoreceptors. Based on the cone density at the fovea
[25], there are about 3 · 105 cells which would mean a

550x550 pixel resolution. Considering the typical viewing
distance example given above, 3.6 cm would correspond to
550 pixels resulting in a 152.8 pixels/cm density which is
too high compared to pixel densities of available displays
(≈ 40 − 100 pixels/cm). To close this gap, one either has
to increase the resolution of the input image or scale down
the foveal image size. We choose the latter for simplicity
and assume that the foveal image resolution is equivalent to
the RGC resolution, i.e. 219x219 (61 pixel/cm). That is, at
every pixel there is a RGC cell center. With these settings,
the radius of the center component for a midget-ON cell
is 1.27 pixels and the radius of the surround component is
5.53 pixels. An image from the MNIST dataset [1], which
is 28x28 pixels, would be seen by 28x28 midget-ON RGC
cells (and by the same number of midget-OFF cells); and
would cover approximately 0.5x0.5 cm2 area on a display
with 60 pixel/cm viewed at 50 cm distance. An image from
the NORB dataset [16] (96x96 pixels) would cover 1.6x1.6
cm2.

While one RGC center per pixel is a sensible design
choice, it is possible to tune the viewing distance parameter
in our model. For example, larger values would increase
the number of RGC centers per pixel, and require sub-
pixel computations. We do not experiment with the viewing
distance parameter in this paper, but note that it could be
of interest, for example, when comparing the performance
of our model with human performance on the same task in
psychophysics experiments.
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Fig. 4. Sample RGC and V1 output. First row is for an image from MNIST,
the second row is for NORB. The first column has the original images. The
second and third columns are midget-ON and midget-OFF outputs. The
last three columns are outputs of 4 simple cells at different orientations.
The midget-ON and OFF responses seem to light up the relevant regions
containing activity.

III. HIGHER LAYER PROCESSING

Our front end implements 48 types of simple cells centered
around each input pixel, so that our front end outputs, for
each pixel, an f -dimensional feature (f = 48 for monocular
images as in MNIST, and f = 96 for NORB, which consists
of a set of binocular images). We employ k-means clustering
on this f -dimensional data, as a natural proxy for complex
cell modeling. Thus, the feature map for an N × N image
at our front end output is N × N × f , while that after the
first layer of clustering is N × N × k (to be cut down by
pooling). We consider two implementations: a single layer of
clustering followed by pooling and supervised classification,
or two layers of clustering (and pooling), and then using a



concatenation of layers 1 and 2 features for classification.
The second implementation is consistent with visual models
for higher layers, which predict connections from both layers
V1 and V2 into V3.

A. Layer 1 of clustering

We have denoted by si,j the activations of simple cells
centered at a particular spatial location i, j. To represent a
response in general, we drop spatial coordinates from the
notation and denote the activations by a = si,j , an f -
dimensional vector. We implement spherical k-means cluster-
ing [43] using an inner product similarity metric aT c, where
c denotes a cluster center. This is equivalent to clustering
using a standard Euclidean distance metric with a unit norm
constraint on the cluster centers. In our implementation, we
use the online clustering algorithm in [43], which has the
advantage of being less sensitive to initialization. We speed
up the algorithm by using mini-batches instead of iterating
over single data points.

Note that computation of the inner product of a data vector
with a cluster center is identical to weighted summations
in classical neural networks, hence we may interpret each
cluster center as a neuron. The subsequent nonlinearity,
however, is different from the sigmoidal nonlinearity in
standard neural networks. As described shortly, we use soft
assignments, which may be interpreted in terms of local
competition between the neurons.

In addition to using the standard inner product as a
similarity metric, we also consider a modified version that
takes into account the correlations in simple cell activations.
Given the weights connecting LGNs to the simple cells,
represented by L = [`1, .., `48], we compute the 48 × 48
correlation matrix as Cl = LTL and use the metric aTC−1l c

or (C
− 1

2

l a)T (C
− 1

2

l c) for k-means. This can be viewed as
doing whitening before clustering. For NORB, where f = 96
and simple cell outputs are concatenation of the left and
right channels, we do not have prior information about the
correlations among the two channels, and model them as
independent.

Given the centroids, the soft activations are evaluated by
f
(
[aTC−1c1, ......,a

TC−1cK1 ]
T
)
, where C = Cl or C = I

and K1 are the number of layer 1 cluster centers learned.
We use the soft threshold as the encoding function, i.e.
f(x) := max(0, x − T ). It is known that neurons fire only
when active above a certain threshold hence rectification
for the non-linearity is a natural choice. For choosing the
value of T we take the simple approach of setting it to
maintain a certain level of sparsity on average. For instance,
we can choose T for 80% sparsity (i.e., only 20% of the
neurons have non-zero activations on average). This design
rule gives us a direct and intuitive handle on controlling the
level of sparsity, as opposed to the regularization parameter
generally used in cost functions containing a sparsity term

[22], [18], [19]. The resulting design conforms to the intuition
that neural activity on average is expected to be low. The
final activation vector generated is of length K1 + 1: the
last coordinate is set to a non-zero value when all the K1

responses corresponding to the centroids turn out to be zero
after thresholding. This typically corresponds to patches with
no or negligible activity.

Features extracted by layer 1, as expected, correspond to
different kinds of edges, blobs etc. In order to visualize a
centroid, we backproject its receptive fields to the raw image
level and plot the patches closest to it. Since layer 1 centroids
are connected directly to the simple cell responses, their
receptive field size is same as that of the simple cells: 7× 7
RGCs or pixels in the image domain. In Figure 5, for the
MNIST dataset, we show visualizations for four centroids.

Fig. 5. Left side: layer 1 centroids. Right side: layer 2 centroids. Each row
plots patches closest to that centroid.

B. Layer 2 of clustering

The idea with the second layer of clustering is to extract
more complex features: combination of simple edges like
corners, L-junctions etc. The expansion of receptive field
size or zooming out is achieved via local spatial pooling and
concatenation. Max-pooling over a small neighborhood also
results in local translation invariance. Pooling is generally
followed by subsampling, hence it results in reducing the
resolution of the feature maps. Denoting the max-pooled
activations at the spatial location i, j by bi,j , these are
then concatenated over a 2 × 2 neighborhood to generate
4(K1 +1)-dimensional input for the second layer of cluster-
ing, given by [bi,j ; bi,j+1; bi+1,j , bi+1,j+1]. These activations
now correspond to larger patches of the raw image. Cluster-
ing is performed using the similarity metric:

1∑
ii=0

1∑
jj=0

bTi+ii,j+jjwii,jj

‖bi+ii,j+jj‖ ‖wii,jj‖
(9)

where a second layer centroid is represented by c(2) =
[w0,0;w0,1;w1,0;w1,1]. Using this metric can be interpreted
as individually comparing the four quadrants of the larger
patch and computing an averaged matching score. This is
expected to group together shapes with similar arrangement
of edges, with the metric interpreted as stitching the edges



Sparsity level= 80% Sparsity level= 95%
(Layer 1) (Layer 1) (Layer 1+2) (Layer 1) (Layer 1) (Layer 1+2)
(K1=200) (K1=600) (K1=200) (K1=200) (K1=600) (K1=200)

(K2=600) (K2=600)
MNIST 0.73 0.72 0.66 0.78 0.78 0.68
NORB 3.96 3.71 2.94 2.58 2.52 2.90

TABLE I
MNIST AND NORB RESULTS: ERROR RATE (%) ON THE TEST SET.

together. The soft assignment encoding function is as in layer
1.

In order to understand how pooling, subsampling and
concatenation enlarges the receptive field size, consider a
simple 1D example. Suppose that layer 1 centroids/neurons
have a receptive field of size 7 (i.e. a neuron at location i
in layer 1 gets its inputs from layer 0 neurons indexed at
[i−3, i+3]). Now suppose we do pooling and subsampling,
both by a factor of 2. For pooling by a factor of 2, layer
1 neurons at i and i + 1 are pooled together to generate
a layer 2 neuron, so that the effective receptive field (with
respect to layer 0) for this new neuron is 8: [i − 3, i + 4].
Since we subsample by a factor of 2, the neighbor of this
new neuron is based on pooling layer 1 neurons at i + 2
and i+3. Now, when these two neighboring layer 2 neurons
are concatenated, their resulting receptive field size is 10 in
terms of layer 0: [i− 3, i+4]+ [i− 1, i+6] = [i− 3, i+6].

In our experiments with MNIST, after layer 1 clustering,
we perform 2 × 2 pooling, subsampling by 3 and 2 × 2
concatenation, followed by layer 2 clustering: hence layer
2 centroids correspond to 11× 11 sized raw image patches.
Figure 5 shows visualizations of a few layer 2 centroids using
these 11× 11 patches.

IV. EXPERIMENTS

In this section, we evaluate our model on two standard
image classification benchmarks, MNIST [1] and NORB
[16]. The only free parameter for the neuro-mimetic front end
is the viewing distance which we set to 50cm. For the higher
layers we experiment with number of centers K1 = 200
or 600 for layer 1, and K1 = 200 and K2 = 600 when
employing both layers 1 and 2. Thresholds are chosen to
keep the sparsity level at either 80% or 95% for both layers.
We use non-linear SVM with the radial basis function (RBF)
kernel [44] for supervised classification. RBF SVM has two
parameters: the cost parameter, which we fix to 100 as that
seemed to be a robust choice in our experiments, and the
scale parameter for the kernel, γ, which is set via a grid
search using cross-validation on a subset of the training set.
Several references have used data augmentation (via affine
distortions) to enlarge the training set in order to boost
classification performance, but we do not employ it here.

MNIST: MNIST consists of 28× 28 images of handwritten
digits. The dataset contains 60K training and 10K testing
images. The front end produces feature maps of size 28 ×
28×(K1+1). If only layer 1 is used for classification, spatial

average pooling over a 4× 4 grid followed by concatenation
provides a 1D vector of dimension 42 × (K1 +1) to be
fed into the RBF SVM. When layer 2 is also used, we fix
K1 = 200 and max-pool layer 1 activations over a 2×2 local
neighborhood. This is subsampled by a factor of 3, and edges
are cropped, giving feature maps of size 8×8×201. We then
concatenate neighboring responses over a 2× 2 grid, which
leads to a feature map size 7×7×804. The 804-length feature
vectors are clustered in layer 2 using K2 = 600 centroids,
producing feature maps of size 7 × 7 × 601. Finally, layer
2 features for classification are generated by pooling over
a 3 × 3 grid, coarser than layer 1 since the activations now
correspond to larger image patches (11×11, layer 1 centroids
represent 7×7). Concatenating layer 1 and 2 features results
in a total of 42 · 201 + 32 · 601 = 8625 features per image,
which is comparable to the length of layer 1 features alone
with K1 = 600 (9616). For MNIST, we find that using
whitening prior to layer 1 clustering, as discussed in section
III-A, yields better results, hence we only report those error
rates (Table I). We see that the best error rate 0.66% is
achieved using both layer 1 and 2 features and a sparsity
level of 80%. Increasing the sparsity appears to degrade the
performance, especially when using just layer 1. The state
of the art on MNIST (without distortions) is 0.39% [45],
which is achieved using a purely supervised net. Although
the error rate we get is higher than that, it is comparable to the
rates reported by several other references, 0.64% [18], 0.82%
[20], 0.59% [19], that use a combination of unsupervised and
supervised learning.

NORB: We use the normalized-uniform variant [16] of the
NORB dataset. Each of the training and test sets have 24300
binocular images of 5 classes of toys placed on a uniform
background. Each monocular image is 96 × 96. We pre-
process the images by cropping 8 pixels from all sides
reducing the image size to 80 × 80, in order to speed up
the processing of the dataset. This cropping discards some
of the uniform background and it does not affect the final
performance. The operations are mostly identical to those
for MNIST, hence we only mention the differences here.
Due to the larger image sizes, the final spatial pooling before
classification is done over a finer grid: 5× 5 for layer 1 and
4× 4 for layer 2. Another difference is that max pooling is
performed over 3× 3 neighborhoods after layer 1 clustering,
the layer 2 centroids represent 12 × 12 patches. As with
MNIST, the size of concatenated layer 1 and 2 features is
comparable to layer 1 features with K1 = 600 centers.
For NORB, unlike MNIST, omitting whitening at layer 1
clustering results in better performance. We believe this could
be due to the inability of the correlation matrix (Cl) to
model correlations between the left and right channels. The
current best result on the normalized-uniform NORB, to the
best of our knowledge, is the one reported in [4] and is
2.87% without data augmentation and 2.53% with translation
distortions. The best result obtained by us of 2.52% thus
improves upon the state of the art; it is even marginally better



than the previous best with distortions, even though we do
not employ distortions.

Discussion: While these classification results are encourag-
ing, there are several unanswered questions. Design choices
such as whitening and sparsity level appear to be dataset
dependent for optimizing the classification performance. It
might be the case that the optimal sparsity levels depend on
the noisiness of the dataset or hierarchy of the layer. The
impact of whitening before clustering is also not clear. In
[17], whitening using the empirical covariance matrix has
been found to improve performance, but it did not improve
our results. We generally expect higher layer features to im-
prove recognition performance, but in the NORB experiments
with 95% sparsity, we were surprised to find performance
degrading with the inclusion of layer 2 features. Clearly, our
understanding of how best to combine information generated
from different layers is far from complete. While our focus
has been on feature design via clustering, it is important
to explore multiple options for the supervised classification
layered on top of it (e.g., comparing multilayer neural nets
to the nonlinear SVM used here).

V. CONCLUSION

We have shown that an architecture based on neuro-
mimetic front end processing and clustering offers a promis-
ing approach for “universal” feature extraction for machine
vision. Layering a generic (but powerful) supervised clas-
sifier on top is shown to provide performance close to, or
exceeding, the state of the art for two well known image
databases. Key advantages of our approach are its simplicity,
the small number of tunable parameters, and the ability to
easily interpret the features being extracted at each layer.

We view this work as a first step towards bridging the gap
between computational neuroscience and machine learning:
machine vision algorithms are often neuro-inspired but rarely
implement computations that strictly follow neuro-scientific
findings, while psychophysical models that try to follow
physiological visual processing more closely are typically
applied to restricted problems with artificial inputs[46], [47].
The results in this paper show that leveraging neuro-scientific
findings more carefully can pay off in terms of machine
vision performance.

An obvious disadvantage of our approach, from the point
of view of machine learning, is that we are limited in our
front end design by the state of knowledge in neuroscience,
instead of learning purely from data. For example, our model
here is restricted here to grayscale images, because more
work is needed to put together the available experimental
evidence regarding color processing at the RGC/LGN layers,
which exhibits features such as red-green and blue-yellow
opponency [28]. However, we believe that this additional
effort in faithful modeling is well worth it because of the
potential benefits from leveraging evolution. In particular, we

would like to extend our approach (both in terms of neuro-
mimetic front end and layered clustering) to other kinds of
data, such as audio and video.

A fundamental challenge, as we aim to build additional
layers using clustering, is to develop a quantitative under-
standing of whether all of the relevant information is being
captured by our feature extractor. The only available metric
at present to evaluate the efficacy of our architecture is classi-
fication performance after inserting a supervised layer, which
is sensitive to the dataset and perhaps to the complexity of
the supervised layer. An important open question, therefore,
is if there are alternative metrics for evaluating the quality of
information being extracted by unsupervised learning models
such as ours. Of course, in parallel with this line of inquiry,
we would like to continue optimizing our architecture so that
it meets or surpasses classification performance on standard
databases.

APPENDIX A
DIFFERENCE OF GAUSSIAN PARAMETERS

We use the classical difference-of-Gaussians (DoG) model
([32], [33], [34]):

R(x, y) = Kce
− (x2+y2)

r2c −Kse
− (x2+y2)

r2s (10)
where Kc and rc are the contrast gain and radius of the
center component, respectively, and Ks, rs are the same for
the surround component. DoG parameter values for the foveal
RGCs are not directly available in published data. Croner and
Kaplan [34] report

• median values of rc = 0.03◦ and rs = 0.18◦, for cells
at 0◦ − 5◦ eccentricity1; and

• median values of rc = 0.05◦ and rs = 0.43◦ for cells
at 5◦ − 10◦ eccentricity.

rc, rs increase linearly with eccentricity [34]. Hence, we
fit a line to the values above (e.g. for rc, two points on the
line are (2.5◦, 0.03) and (7.5◦, 0.05) where we took 2.5◦ as
the representative eccentricity for the 0◦ − 5◦ interval, and
7.5◦ for the 5◦ − 10◦). We choose 1◦ as the representative
eccentricity for foveal RGCs, where the lines yield rc =
0.024◦ and rs = 0.105◦. The degree/pixel ratio for our model
is 4.16◦/219 pixels = 0.019 degree/pixel. Therefore, rc =
0.024/0.019 = 1.27 pixels and rs = 0.105/0.019 = 5.53
pixels. The values of Kc and Ks are inversely proportional
to the center and surround areas, respectively [34].
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[4] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “High-performance neural networks for visual object classifica-
tion,” arXiv preprint arXiv:1102.0183, 2011.

[5] M. Carandini and D. J. Heeger, “Normalization as a canonical neural
computation.,” Nature reviews. Neuroscience, vol. 13, pp. 51–62, Jan.
2012.

[6] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?,” in International
Conference on Computer Vision (ICCV), pp. 2146–2153, 2009.

[7] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pp. 807–814, 2010.

[8] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: a strategy employed by V1?,” Vision research, vol. 37,
pp. 3311–25, Dec. 1997.

[9] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), pp. 1058–
1066, 2013.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[11] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Computer Vision–ECCV 2014, pp. 818–833,
Springer, 2014.

[12] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” arXiv preprint arXiv:1310.1531, 2013.

[13] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
physiology, pp. 106–154, 1962.

[14] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture of monkey striate cortex,” The Journal of physiology,
pp. 215–243, 1968.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[16] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, vol. 2, pp. II–97, IEEE,
2004.

[17] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in International Conference on
Artificial Intelligence and Statistics, pp. 215–223, 2011.

[18] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Lecun, “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,” in CVPR, 2007.

[19] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-
performance digit recognition based on sparse coding.,” IEEE transac-
tions on neural networks / a publication of the IEEE Neural Networks
Council, vol. 19, pp. 1985–9, Nov. 2008.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 609–616, ACM, 2009.

[21] A. Coates and A. Y. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pp. 921–
928, 2011.

[22] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Computer Vision
(ICCV), 2011 IEEE International Conference on, pp. 2018–2025,
IEEE, 2011.

[23] A. Coates and A. Y. Ng, “Learning feature representations with
k-means,” in Neural Networks: Tricks of the Trade, pp. 561–580,
Springer, 2012.

[24] B. A. Wandell, Foundations of vision. Sinauer Associates, 1995.
Available from https://foundationsofvision.stanford.edu/.

[25] H. Kolb, E. Fernandez, and R. Nelson, eds., Webvision: The Or-
ganization of the Retina and Visual System. Salt Lake City (UT):

University of Utah Health Sciences Center, 1995. Available from
http://www.ncbi.nlm.nih.gov/books/NBK11530/.

[26] S. Filipe and L. a. Alexandre, “From the human visual system to
the computational models of visual attention: a survey,” Artificial
Intelligence Review, Jan. 2013.
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