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a b s t r a c t 

In this paper, we develop a theoretical framework for short-range millimeter (mm) wave radar imag- 

ing using a sparse array of monostatic elements, and validate it via experiments. The framework is a 

significant departure from classical radar, which largely focuses on long-range settings in which targets 

are well modeled as point scatterers. For sparse arrays, the point scatterer target model leads to grating 

lobes, and our central contribution is to demonstrate that a patch-based target model, suitably optimized 

for the sensor and scene geometry, suppresses such grating lobes. Key results include the following: (a) 

Characterizing the number of degrees of freedom ( DoF ) as a function of geometry, and showing that spa- 

tial undersampling (number of elements smaller than DoF ) leads to grating lobes with the point target 

model; (b) showing that spatial aggregation via a patch-based dictionary suppresses grating lobes, and 

that patch size can be optimized based on estimation-theoretic criteria; (c) providing examples of the 

application, and adaptation, of patch-based dictionaries for sparse reconstruction. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper, we consider the problem of short-range radar

maging, motivated by the emergence of compact, low-cost radar

ensors in the millimeter (mm) wave band [1,2] , together with ap-

lications such as vehicular situational awareness [3] and gesture

ecognition [4] . Given a constraint on the form factor, we wish to

esign an array with a minimal number of sensors, and a minimal

evel of coordination among the sensors. We therefore consider a

parse array of monostatic sensors which are not synchronized in

hase or frequency, and are loosely synchronized in time to the

xtent needed to avoid inter-sensor interference. 

Classical radar theory and algorithms have been developed for

ong-range applications, in which targets are well modeled by

oint scatterers. For the sparse arrays considered here, the point

arget model leads to grating lobes. The central thesis of this paper

s that a patch target model, suitably optimized for the sensor and

cene geometry, suppresses such grating lobes. We establish this

hesis by geometric and estimation-theoretic computations, and il-

ustrate its application for sparse reconstruction techniques applied

o experimental data acquired using a testbed in which a quasi-

onostatic transceiver at 60 GHz (wavelength of λ = 0 . 5 cm) is
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sed to emulate (for static scenes) a two-dimensional (2D) array

sing a movable platform. These contributions are organized as fol-

ows. 

.1. Contributions 

(1) Using a Fresnel approximation, we show in Section 2 that

the number of spatial degrees of freedom ( DoF ) available

for imaging are limited by the spatial extent of the array

and the scene. The result is analogous to the number of

time-frequency degrees of freedom in a bandlimited chan-

nel [5,6] , or the number of spatial degrees of freedom for

Line-of-Sight MIMO communication [7] . Increasing the num-

ber of sensors beyond DoF can improve signal-to-noise ratio

( SNR ), but does not improve normalized measures of target

discrimination. 

(2) In Section 3 , we introduce the patch-based target model. We

consider sparse arrays with number of elements smaller than

DoF , for which conventional processing using a point target

model is well known to lead to grating lobes; that is, point

scatterers in spatially separated locations have highly corre-

lated array responses. We note that at short ranges, targets

are better modeled as a continuum of points, and introduce

a dictionary in which each atom corresponds to a “patch,” or

a continuum of point scatterers whose reflectivity is approx-

imated as constant. We show that both grating lobes and

side lobes are attenuated by such “spatial aggregation.”

https://doi.org/10.1016/j.sigpro.2019.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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Fig. 1. Geometry of One-dimensional monostatic imaging. 
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(3) Experimental results demonstrating the effectiveness of

matched filtering with respect to the patch basis functions

for suppressing grating lobes are presented in Section 4 , and

are contrasted with standard imaging by matched filtering

against point target basis functions. 

(4) In Section 5 , we describe an estimation theoretic approach

for tuning the patch size. The size of the grating lobes rel-

ative to the main lobe is related to the SNR threshold at

which the Ziv-Zakai bound (ZZB) converges to the Cramér-

Rao bound (CRB), and we choose the patch size based on

when the SNR threshold for the sparse array matches that

for an array with DoF elements. 

(5) In Section 6 , we show that the patch model, in addition

to helping with standard “matched filter” style imaging,

also provides an effective basis for sparse representation of

simple scenes. Specifically, if the scene reflectivity is low-

pass, then patch-based basis functions are able to provide

a parsimonious representation of the information in the

scene. 

1.2. Related work 

The focus of this paper is to extract information from a static

scene by reconstructing the spatial configuration of the objects

and creating an image of the scene. This is quite different from

the scenario in which the desired information resides in the tem-

poral changes of the received signal, e.g., for recognizing motion

gestures of a human hand [4,8] . Our patch model and sparse re-

construction approach falls within the framework of synthesis-

based sparse signal representation, in which dictionary construc-

tion and image formation explicitly incorporate prior information

about the sensing mechanism and the scene [9–11] . The patch

primitive, for example, assumes that scene reflectivity is low-

pass (i.e, it varies slowly in space), and the choice of patch size

depends on the array and scene geometry, and the number of

sensors. 

Our approach for finding the maximally sparse representation

of the scene in the dictionary of spatially extended objects falls

within a general “sparse reconstruction” framework [12–14] , which

makes it possible to employ general-purpose � 1 −regularized con-

vex optimization methods [15] . However, we find that an ex-

tension of the Newtonized Orthogonal Matching Pursuit (NOMP)

algorithm developed in [16,17] , adapted here for sparse estima-

tion in the dictionary of spatially extended objects, is more ef-

fective. Since our main goal here is to illustrate the efficacy

of the patch model in suppressing grating lobes, detailed com-

parison between various sparse reconstruction algorithms is be-

yond our present scope; see [16] for extensive comparisons of

performance and computational complexity in a more generic

setting. 

It is interesting to compare our system model to that em-

ployed in compressive sensing. Compressive sensing employs pseu-

dorandom projections from a high-dimensional ambient space to

a lower-dimensional observation space. In our setting, we have a

low-dimensional measurement space by the physical use of fewer

sensors, and consider a uniform rather than a random configura-

tion. In each case, however, sparsity can be exploited for signal

reconstruction or parameter estimation using a number of mea-

surements which is much smaller than the ambient dimension,

and similar algorithms can be employed, including the NOMP algo-

rithm [16] that we adapt here. Thus, continuing advances in sparse

reconstruction algorithms motivated by compressive sensing (e.g.,

[18–20] ) could potentially be leveraged for further improving im-

age reconstruction in our setting. This is beyond our present scope,

but, as discussed in the conclusions, is an interesting topic for fu-

ture work. 
This work builds on our prior conference papers [21–23] , where

e introduced some of the underlying concepts and provided some

xperimental results. We provide here a more complete theoret-

cal treatment of designing patch-based dictionaries, and of us-

ng estimation-theoretic bounds for tuning the parameters of these

odels. We also present experimental results to demonstrate the

pplicability of the proposed object models for wideband three-

imensional imaging using a sparse array of antennas. Finally, we

llustrate how the proposed patch-based dictionary can be com-

ined with sparsity-aware image reconstruction schemes based on

onvex optimization and greedy pursuit, which aim to approximate

he scene response by a linear combination of a few atoms from

he dictionary of spatially extended objects. 

. Imaging geometry for the point scatterer model 

We first identify the number of degrees of freedom ( DoF ) as a

unction of array and scene geometry, and then discuss how grat-

ng lobes occur when the number of elements is smaller than DoF .

.1. Degrees of freedom 

Fig. 1 depicts a one-dimensional aperture of length L 1 imaging

 one-dimensional scene of length L 2 , with D denoting the distance

etween the aperture and the scene. (The DoF in a 2D system is a

roduct of the DoF along each axis.) Consider the limit where there

s a continuum of elements in the array, with x denoting the loca-

ion of an arbitrary element. Let �( x ′ ) denote the complex reflec-

ion coefficient for a point scatterer at location x ′ . The response at

he aperture is governed by the Helmholtz wave equation (simpli-

ed by dropping space attenuation factors) [24] , with the response

t an element at location x given by 

(x ) = 

∫ L 2 / 2 

−L 2 / 2 

�(x ′ ) ξ (x ′ , x ) dx ′ , (1)

here 

(x ′ , x ) = e − j2 kR (x ′ ,x ) , (2)

enotes the space-variant impulse response of the system, k =
 π/λ is the wavenumber, and R (x ′ , x ) = 

√ 

D 

2 + (x ′ − x ) 2 is the

ath length from the transceiver location x to the point scatterer

t location x ′ . For D � L 1 , L 2 , we can use a Fresnel approximation

25] (i.e., a first-order Taylor approximation) for the path length

etween the element at x and the scatterer at x ′ , to obtain 

 (x ′ , x ) ≈ D + 

(x ′ − x ) 2 

2 D 

. (3)

e note that the preceding approximation can be refined

26] when D is comparable to L 1 and L 2 , as it is for the nominal

alues in our simulations and experiments: L 1 = L 2 = 15 cm and

 = 30 cm in our simulations. However, the Fresnel approximation
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Fig. 2. Grating lobes for a sparse monostatic array. We do not have grating lobes 

for N = 31 = DoF, but grating lobes appear for a sparse array with N = 15 < DoF . 
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uffices for our present purpose of deriving high-level sparse array

esign principles. Plugging (3) into (1) , we obtain 

(x ) ≈ e − j2 kD 

∫ L 2 / 2 

−L 2 / 2 

�(x ′ ) e − j k D (x ′ −x ) 2 dx ′ , (4)

or −L 1 / 2 ≤ x ≤ L 1 / 2 . The integral kernel here has the same form

s that investigated by Slepian et al. [5,6] for timelimited and ban-

limited functions (slightly adjusted by Fresnel quadratic phase

asks [27] ). The eigenfunctions are known to be prolate spheroidal

ave functions. The eigenvalues remain approximately equal until

 critical transition point ( ≈ 2 
L 1 L 2 
Dλ

), after which they rapidly decay

o zero. Thus, we may define DoF as this critical number of nonzero

igenvalues: 

oF ≈ 2 

L 1 L 2 
Dλ

+ 1 . (5)

n our context, DoF is the maximum number of linearly indepen-

ent measurements of the scene �(x ′ ) , −L 2 / 2 ≤ x ′ ≤ L 2 / 2 , that can

e achieved by an array of monostatic elements spanning an aper-

ure of length L 1 . Increasing the number of elements beyond DoF

an therefore only improve the SNR, not gather new information

bout the scene. 

Similar arguments building on the work of Slepian et al. have

een applied to determine DoF in various contexts, including

iffraction-limited optics [28] and line-of-sight MIMO [7] . It is in-

eresting to note that, compared to the MIMO communication sys-

em in [7] , we gain a factor of two in DoF for a similar geome-

ry due to the round-trip phase in a radar system. We next discuss

ow DoF determines the minimum number of elements in a sparse

onostatic array required to avoid grating lobes. 

.2. Grating lobes 

While we characterized DoF by considering an array with a con-

inuum of elements, let us now consider an array with N elements

ith a uniform inter-element spacing of d = L 1 / (N − 1) , denoting

y x n = nd, n = 0 , 1 , . . . , N − 1 , the location of the n th element. We

ow discuss when grating lobes arise for the point scatterer model,

here a grating lobe corresponds to two spatially separated point

catterers having very similar array responses. To this end, consider

wo point scatterers located at x ′ 
1 

and x ′ 
2 
, and denote by r 1 and

 2 the corresponding N × 1 array responses, respectively. Using the

resnel approximation in (3) , we obtain the response at n th ele-

ent, 

 i [ n ] ≈ e − j2 kD �i e 
− j k D (x ′ 

i 
−x n ) 

2 

, (6)

here n = 0 , 1 , . . . , N − 1 , and i = 1 , 2 . We now compute the corre-

ation between the two responses. We have 

 

H 
1 r 2 ≈

N−1 ∑ 

n =0 

�∗
1 �2 e j 

k 
D (x ′ 1 −x n ) 

2 

e − j k D (x ′ 2 −x n ) 
2 

= �∗
1 �2 e j 

k 
D ( x 

′ 2 
1 −x ′ 2 2 ) 

N−1 ∑ 

n =0 

e j 
2 k 
D (x ′ 2 −x ′ 1 ) x n . (7) 

t is convenient to define the normalized distance between the two

oint scatterers as 

� 

2 k 

D 

(x ′ 2 − x ′ 1 ) d = 4 π
(x ′ 2 − x ′ 1 ) d 

λD 

. (8)

ote that | δ| ≤ 2 kdL 2 
D = 4 π L 2 d 

λD 
for a scene of extent L 2 . We can

ow compute the magnitude of the inner product between the re-

ponses as follows: 

 r H 1 r 2 | = | �1 || �2 | 
∣∣∣∣ sin (Nδ/ 2) 

sin (δ/ 2) 

∣∣∣∣ = | �1 || �2 | | Dir (δ) | , (9)
here Dir (δ) = 

sin (Nδ/ 2) 
sin (δ/ 2) 

is the well-known Dirichlet kernel. It is

lso easy to see that 

| r i || 2 = | �i | 2 N i = 1 , 2 . 

he normalized correlation between the two responses can now be

omputed to be 

= 

| r H 1 r 2 | 
|| r 1 || . || r 2 || = 

1 

N 

| Dir (δ) | . (10)

he preceding normalized correlation ρ = ρ(x ′ 
1 
, x ′ 

2 
) is also called

he ambiguity function. 

Number of array elements must be at least DoF to avoid grat-

ng lobes: The Dirichlet kernel is a periodic function with period

 π , hence the condition for avoiding aliasing, or grating lobes, cor-

esponds to constraining the range of δ to be less than 2 π , or
2 kdL 2 

D ≤ 2 π . This yields N ≥ 2 L 1 L 2 
Dλ

+ 1 or N ≥ DoF . That is, we avoid

rating lobes if the number of array elements exceeds the degrees

f freedom computed previously. For our nominal parameter val-

es, we obtain that N ≥ 31. 

Predicting grating lobes with spatial undersampling: Spatial un-

ersampling corresponds to N < DoF , and grating lobes can be eas-

ly predicted from the ambiguity function. Specifically, if we set

 = 15 < DoF = 31 , then we do expect to see a grating lobe when

he normalized distance δ equals a nonzero integer multiple of 2 π .

etting δ = ±2 π in (8) , we obtain that 

x = | x ′ 2 − x ′ 1 | = 

λD 

2 d 
≈ 7 . 5 cm for N = 15 . (11)

e illustrate the dependence of grating lobes on N in Fig. 2 , which

hows the magnitude of the normalized correlation for x ′ 
1 

= 2 cm

xed, and x ′ 
2 

varying in the interval (−7 . 5 , 7 . 5) cm, for N = 15 and

 = 31 . For N = 15 , we have a grating lobe at x gl ≈ −5 . 5 cm, which

s consistent with (11) . 

Increasing number of array elements beyond DoF does not improve

mbiguity function: We now examine the behavior of the ambiguity

unction as we increase the number of array elements beyond DoF .

he normalized distance is given by 

= 4 π
(x ′ 2 − x ′ 1 ) L 1 
(N − 1) λD 

, 

o that 

in (Nδ/ 2) → sin 

(
2 π

(x ′ 2 − x ′ 1 ) L 1 
λD 

)
, N → ∞ 

nd 

 sin δ/ 2 → 2 π
(x ′ 2 − x ′ 1 ) L 1 , N → ∞ 
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Fig. 3. (a) Magnitude of Dirichlet kernel ( N = 15 ), (b) Phase of the product of SA kernel and Dirichlet kernel H(x ′ 1 , x ′ 2 ) Dir (δ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Reduction of grating/side lobes by spatial aggregation. 

a  

 

o  

i  

e  

l

 

n  

i  

t  

s  

fi  

t  

m  

p  

m  

l  

w  

a  

r  

b  

a  

b

4

 

m  

b  
which implies that 

ρ(x ′ 1 , x ′ 2 ) = 

∣∣∣∣ sin (Nδ/ 2) 

N sin (δ/ 2) 

∣∣∣∣ → 

∣∣∣∣sinc 

(
2 

(x ′ 2 − x ′ 1 ) L 1 
λD 

)∣∣∣∣
= 

∣∣∣∣sinc 

(
DoF 

(x ′ 2 − x ′ 1 ) 
L 2 

)∣∣∣∣, N → ∞ (12)

where sinc (x ) � 

sin (πx ) 
πx . We note that the argument of the sinc

function depends on DoF , but not on N . Thus, increasing the num-

ber of array elements beyond DoF does not improve the ambiguity

function for locating a point scatterer in the scene. It only leads

to an increase in effective SNR : the response energies || r i || 
2 scale

by N . 

3. The patch model 

We now show that grating lobes can be significantly attenuated

by using a new patch primitive for scene reconstruction: a patch is

a continuous collection of point scatterers adjacent to each other,

with roughly constant reflection coefficient. This is well matched

to scenes in which the reflectivity function is spatially lowpass. 

Let us start with two arbitrary collections of point scatterers,


1 and 
2 . Denote the corresponding array responses by ˜ r 1 and

˜ r 2 , respectively. The correlation between the two responses can be

computed as follows: 

˜ r 
H 
1 ̃  r 2 = 

N−1 ∑ 

n =0 

∫ 
x ′ 

1 
∈ 
1 

�∗(x ′ 1 ) ξ ∗(x ′ 1 , x n ) dx ′ 1 
∫ 

x ′ 
2 
∈ 
2 

�(x ′ 2 ) ξ (x ′ 2 , x n ) dx ′ 2 

≈
∫ ∫ 

x ′ 1 ∈ 
1 

x ′ 2 ∈ 
2 

�∗(x ′ 1 )�(x ′ 2 ) e j 
k 
D ( x 

′ 2 
1 −x ′ 2 2 ) 

N−1 ∑ 

n =0 

e j 
2 k 
D (x ′ 2 −x ′ 1 ) x n d x ′ 2 d x ′ 1 , (13)

using the Fresnel approximation as before. For normalized distance

δ = δ(x ′ 
1 
, x ′ 

2 
) defined as in (8) , we see that this inner product can

be written as 

˜ r 
H 
1 ̃  r 2 = c 1 

∫ ∫ 
x ′ 1 ∈ 
1 

x ′ 2 ∈ 
2 

�∗(x ′ 1 )�(x ′ 2 ) H(x ′ 1 , x ′ 2 ) Dir (δ) d x ′ 2 d x ′ 1 , (14)

where c 1 is a unit magnitude constant. We term H(x ′ 1 , x ′ 2 ) �
e j 

k 
D 

( x ′ 2 1 −x ′ 2 2 ) the Spatial Aggregation (SA) kernel. The magnitude

| H(x ′ 
1 
, x ′ 

2 
) | is constant, while the phase is a nonlinear function of

x ′ 1 and x ′ 2 . While the Dirichlet kernel depends on N , the SA ker-

nel does not. Fig. 3 shows the magnitude of the Dirichlet kernel
s well as the phase of the product H(x ′ 
1 
, x ′ 

2 
) Dir (δ) for x ′ 

1 
, x ′ 

2 
∈

(−7 . 5 , 7 . 5) cm and N = 15 . The key observation is that the phase

f SA kernel is nearly constant across the main lobe, while exhibit-

ng rapid variations across the grating lobes. The resulting incoher-

nt integration in (14) results in significant suppression of grating

obes. 

We now illustrate the impact of spatial aggregation for a dictio-

ary of patches of width w cm for a 1D scene of length L 2 , spec-

fied as P w 

� { 
 = [ l − w/ 2 , l + w/ 2] : l ∈ (−L 2 / 2 , L 2 / 2) } . The dic-

ionary of point scatterers is obtained by letting w → 0. Fig. 4

hows, for N = 15 , the magnitude of normalized correlations for a

xed patch of width 2 cm, setting 
1 = [1 , 3] cm, against the dic-

ionary of 1 cm patches, choosing 
2 ∈ P 1 . We also plot the nor-

alized correlation of the response to 
1 against the dictionary of

oint scatterers P 0 for comparison. We see that SA produces three

ain effects: (1) suppressing the grating lobe, (2) reducing the side

obe level, and (3) widening the main lobe. It is worth noting that

idening of the main lobe is a natural consequence of a model

imed at representing an extended object with roughly constant

eflectivity. Note that the correlation between atoms in a patch-

ased dictionary depends on N only through the Dirichlet kernel,

nd therefore inherits the latter’s insensitivity to N when the num-

er of elements exceeds DoF . 

. Experimental results 

Our hardware testbed is a 60 GHz continuous-wave quasi-

onostatic (transmit and receive antennas are slightly separated,

ut approximately appear to be co-located as viewed from the
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Fig. 5. Experimental data collection using 60 GHz quasi-monostatic radar system. 
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arget) radar transceiver, equipped with dual high-gain horn an-

ennas [29] . We use a mechanical platform to move the imager

n a plane parallel to the scene, thereby emulating a 2D array of

ensors. The travel distance of the imager is of the order of the

orm factor of a portable handheld device (covering a 15 cm × 15

m area). 

.1. 2D Reconstruction in the spatial domain 

In this subsection, we consider two uniform planar array con-

gurations: (1) Dense array of 30 × 30 elements (i.e. d ≈ λ =
 . 5 cm), (2) sparse array of 15 × 15 elements (i.e. d ≈ 2 λ = 1 cm).

t each step of movement, the scene response is measured us-

ng a single frequency continuous-wave waveform at 60 GHz, and

tored in a vector. We consider a scene of copper strips, shown in

ig. 5 , that is placed parallel to the array at a distance D = 30 cm.

ig. 6 shows the emulated 2D array configurations, covering a

5 cm × 15 cm aperture. 

The first reconstruction method that we consider is standard

ynthetic Aperture Radar (SAR) processing, which may be viewed

s matched filtering (MF) with respect to a point scatterer based

ignal model [30] . The second approach is based on computing

he correlation of the measured response with the responses of

.5 cm × 1.5 cm square patches; that is, the collection of patches ob-

ained by sliding a 1.5 cm × 1.5 cm window over the entire scene.

e refer to this approach as patch-based MF. Fig. 7 shows the

esults of point-based MF. We see that grating lobes lead to

ignificant deterioration in image quality for the sparse array.

ig. 8 shows the result of patch-based MF. We see significant im-

rovement in the image quality, in terms of suppressing the grat-

ng lobes and increasing the dynamic range, e.g. the horizontal
Fig. 6. Emulated 2D array configurations (a) dense 30 × 30, and (b)
trip at the bottom of the scene becomes visible for the dense ar-

ay deployment. 

As we discussed in Section 2.2 , the first grating lobe appears at

istance 	x ≈ λD 
2 d 

from the true point location. This corresponds to

x ≈ 15 cm and 7.5 cm, for our nominal geometry with N = 30 and

 = 15 element arrays, respectively. The dependency of 	x on the

avelength λ, suggests that by incorporating a wideband signaling

cheme, one can potentially suppress the grating lobe effects, due

o the incoherency in the location of the grating lobes across dif-

erent frequencies [31] . Next, we investigate the potential of wide-

and signaling in suppressing the grating lobes using experimental

ata for 3D image reconstruction. 

.2. Wideband SFCW signaling and 3D reconstruction 

In this subsection, we investigate wideband Stepped-Frequency

ontinuous-Wave (SFCW) signaling using a 2D array of quasi-

onostatic elements, followed by 3D image reconstruction tech-

iques in the spatial domain. We consider two uniform planar ar-

ay configurations: (1) Dense array of 50 × 50 elements (i.e. d ≈
 . 6 λ = 0 . 3 cm), (2) sparse array of 17 × 17 elements (i.e. d ≈ 1 . 8 λ =
 . 9 cm). At each step of movement, the scene response is mea-

ured in discrete frequency steps, covering 55 to 60 GHz band in

 ω = 100 uniformly spaced intervals. The overall response of scene

s saved in a 3D matrix f (x, y ;ω) ∈ C 

N ×N ×N ω . We consider a scene

f a plastic glove (with four fingers) filled with salt water, that is

laced parallel to the array at a distance D ≈ 28 cm, as shown in

ig. 9 . 

We apply Matched Filter reconstruction technique across both

pace (aperture) and frequency (bandwidth) for any hypothesized

ocation in the scene [32] . Fig. 10 shows the output of MF algo-

ithm for the dictionary of point-scatterers, for both dense and

parse array configurations. The scene information is preserved for

he dense array and we are able to identify three fingers and the

alm of the hand in the image. The fourth finger, however, is not

isible in the reconstructed image. This is due to the beam pat-

ern of the horn antennas (low power illumination of the edges

f the scene), as well as the small radar-cross-section of the fin-

er, which lead to significant power loss for the backscattered elec-

romagnetic wave. For the sparse array configuration, as shown in

ig. 10 (b), point-based MF does not preserve the scene informa-

ion due to the grating lobes. This indicates that the frequency di-

ersity induced by wideband SFCW signaling is not sufficient for

liminating the grating lobes in the sparse monostatic array config-

ration. Next, we apply patch-based MF, which entails computing

he correlation of the overall received response across space and

requency, with the dictionary of 1.5 cm × 1.5 cm square patches at
 sparse 15 × 15 elements, covering a 15 cm × 15 cm aperture. 
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Fig. 7. Point-based MF (a) dense array, (b) sparse array. 

Fig. 8. Patch-based MF (a) dense array (b) sparse array. 

Fig. 9. Experimental data collection using SFCW radar system. 

Fig. 10. Point-based MF reconstruction of hand sample (a) dense array (b) sparse 

array. 

Fig. 11. Patch-based MF reconstruction of hand sample (a) dense array (b) sparse 

array. 
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ny hypothesized location in the scene. As shown in Fig. 11 , the

lgorithm reduces grating lobes and preserves information in both

ense and sparse array configurations. 

. Estimation-theoretic approach to choosing patch size 

When we use a sparse array (number of elements smaller than

oF ) with a patch-based dictionary, the choice of patch size trades

ff resolution (the main lobe is sharper with smaller patches)

gainst grating lobe suppression (better with spatial aggregation

ver larger patches). Estimation-theoretic insight into this tradeoff

an be obtained by considering the problem of locating a single

tom of the dictionary in the presence of additive white Gaussian
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Fig. 12. ZZB for the dictionary of point-scatterers. 
oise (AWGN). We can divide the error for maximum likelihood

ML) estimation (or an approximation thereof) in such a problem

nto two-categories. The first is coarse-grained error, in which the

stimated location is far away from the true location. In our con-

ext, this may be caused by a grating lobe or side lobe produc-

ng a larger peak than the main lobe in the presence of noise.

he second is fine-grained error when the estimated location is

lose to the true location. This depends on the width of the main

obe. As long as the grating and side lobes are smaller than the

ain lobe, with high probability, we only incur fine-grained er-

ors beyond some SNR threshold. However, for SNR smaller than

his threshold, we may see substantially higher estimation error

ue to coarse-grained errors. This behavior of the ML estimator is

ell captured by the Ziv–Zakai bound (ZZB), which is a Bayesian

ound (i.e., it assumes a prior distribution for the unknown pa-

ameter) on the mean squared error (MSE) of any estimator

33,34] . 

The ZZB captures the impact of both coarse- and fine-grained

rrors by relating the MSE in the estimation problem to the er-

or probability in a hypothesis testing problem. As the SNR gets

arger than a threshold, which we term the ZZB threshold, coarse-

rained errors become less likely. After this point, the ML esti-

ate, is close to the true parameter value [33] (i.e., it is in the

right bin”). Beyond the ZZB threshold, estimation performance is

imited by main lobe ambiguity (i.e., with high probability, neither

oise nor grating lobes can cause large estimation errors). In this

egime, the ZZB is close to the Bayesian Cramér–Rao Bound (CRB),

hich operates under the assumption that we are in the right bin,

nd the MSE decays linearly with SNR on a log-log scale. We now

ketch the derivation of the ZZB for our problem, and then dis-

uss how we use the ZZB threshold as a design criterion for patch

ize. 

.1. Ziv–Zakai bound 

Consider the problem of estimating the parameter θ ∈  ⊂ R 

K 

orm noisy observations given by 

 = s (θ ) + z , (15) 

here z ∼ CN (0 , σ 2 
I N ) is AWGN, and θ ∼ P θ . Let ˆ θ ( y ) be an es-

imate of θ . The corresponding MSE matrix M ( ̂  θ ) is defined by

 m,n ( ̂  θ ) � E y ,θ [( ̂  θm 

− θm 

)( ̂  θn − θn )] . ZZB provides a lower bound

n a T M a for any a ∈ R 

K , given by 

a T M a ≥ 1 

2 

∫ ∞ 

h =0 

max 
δ: a T δ= h {∫ 

φ∈ R K 
(P θ (φ) + P θ (φ + δ)) P min (φ, φ + δ) dφ

}
hdh, (16) 

here P min (θ1 , θ2 ) is the minimum probability of error obtained

rom likelihood ratio test for the following hypothesis testing prob-

em: 

 1 : y = s (θ1 ) + z , P r(H 1 ) = 

P θ (θ1 ) 

P θ (θ1 ) + P θ (θ2 ) 
, 

 2 : y = s (θ2 ) + z , P r(H 2 ) = 

P θ (θ2 ) 

P θ (θ1 ) + P θ (θ2 ) 
. (17) 

ssuming uniform prior distribution P θ , we have 

 min (θ1 , θ2 ) = Q 

( || s (θ1 ) − s (θ2 ) || 2 √ 

2 σ

)
, (18)

here Q ( · ) is the complementary cumulative distribution function

CCDF) of the standard Gaussian distribution N (0 , 1) . For our patch

or point) location estimation problem, the normalized measure-

ent model boils down to 

 = e jα ˜ r (l) + z , (19)
here α is an unknown phase parameter, and l denotes the loca-

ion of the center of the patch object. The patch responses ˜ r (l) �
˜ 
 (l) / || ̃ r (l) || 2 have been normalized to have unit energy values,

ence SNR = 1 /σ 2 . Let α and l be independent random variables,

niformly distributed over the intervals [0, 2 π ) and (−L 2 / 2 , L 2 / 2) ,

espectively. The parameter vector θ� ( α, l ). Setting a = [0 , 1] T 

ives us the ZZB bound on the MSE of the location estimation error

enoted by MSE l . It is easy to see that 

max 
δ: a T δ= h 

P min (φ, φ + δ) 

= max 
δ: a T δ= h 

Q 

( || s (φ) − s (φ + δ) || 2 √ 

2 σ

)

= max 
α∈ [0 , 2 π) 

Q 

( || ̃ r (l) − e jα ˜ r (l + h ) || 2 √ 

2 σ

)

= Q 

( √ 

1 − | ̃ r 
H (l) ̃ r (l + h ) | 

σ 2 

) 

. (20) 

herefore, the ZZB for estimating the locatio n of patch objects of

ertain width reduces to the following, 

SE l ≥
1 

L 2 
×

L 2 ∫ 
h =0 

L 2 / 2 −h ∫ 
−L 2 / 2 

Q 

( √ 

1 − | ̃ r 
H (l) ̃ r (l + h ) | 

σ 2 

) 

d lhd h. (21) 

e evaluate (21) numerically for different array architectures and

atch-based dictionaries P w 

. 

.2. Choosing patch size 

Given a sparse array (i.e., number of elements smaller than

oF ), our approach is to choose patch size so that the ZZB thresh-

ld does not exhibit significant deterioration relative to a system

ith as many array elements as the DoF . 

Fig. 12 plots the ZZB for estimating the location of a point scat-

erer for different values of N , the number of array elements. We

ee that the bounds are indistinguishable for N = 30 and N = 60 .

his is a consequence of our previous observation that the nor-

alized correlation function does not change much when we in-

rease N beyond DoF ≈ 31 elements (see Section 2 ). On the other

and, the grating lobes incurred when the number of elements is

ecreased to N = 15 are reflected in the corresponding ZZB curve:

he ZZB threshold is about 13 dB larger than that for the dense

rrays ( N = 30 and 60). This significant increase in the ZZB thresh-

ld is because the multi-modal structure of the correlation func-

ion leads to a fundamental ambiguity in estimating the location

f a single point scatterer. 
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Fig. 13. ZZB for estimating the location of a single patch in the dictionary of (a) patches of size w = 0 . 5 cm (b) patches of size w = 1 cm. 
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Now, consider the patch-based dictionary P w 

for patch width

w > 0. For each candidate w , we compute the ZZB for estimating

the location of a single patch given that the size of the patch is

known a priori . The gap between the ZZB thresholds correspond-

ing to the sparse array and a dense array is our metric for ro-

bustness against grating and side lobes. Fig. 13 shows that setting

w = 0 . 5 cm leads to a 6 dB gap between the ZZB thresholds for

N = 15 and N = 30 , whereas w = 1 cm eliminates this gap. Thus,

for this particular scene geometry, array form factor, and number

of elements ( N = 15 ), a patch width of 1 cm is a better choice. This

approach generalizes naturally to 2D arrays and more complicated

parameterized dictionaries of spatially extended atoms. 

In the next section, we investigate a new technique for im-

age reconstruction that leverages the “sparse representation” of the

scene in the dictionary of patches. 

6. Sparsity-driven imaging based on patch dictionaries 

Simple scenes usually admit a sparse representation in a dic-

tionary of spatially-extended objects. For example, each finger in

the image of the plastic glove in Section 4.2 can be approximated

by a few concatenated patches. Such sparse representations have

multiple potential advantages: (1) As pointed out in [9] , sparse

techniques for image formation can increase resolvability of tar-

gets, facilitate segmentation, and provide robustness to limitations

in data quality and quantity; (2) sparse representations provide a

framework for analyzing the scene at an “information rate” that is

potentially significantly lower than the Nyquist rate [35] , allowing

minimalistic encoding of scene information; and (3) they may pro-

vide a basis for developing efficient algorithms for detecting scene

changes via tracking the parameters of the estimated patches. 

We formulate image formation as sparse reconstruction [12] ,

assuming that we can approximate the scene response by a lin-

ear combination of a few atoms from a predefined dictionary. The

response of each atom in the dictionary is represented by an N -

dimensional vector r ∈ C 

N . For a dictionary of ζ atoms, we con-

struct a matrix R ∈ C 

N×ζ , whose columns are the responses of its

atoms. That is, R = [ r 1 r 2 . . . r ζ ] . The scene response is repre-

sented by 

y = R g + z , (22)

where g ∈ C 

ζ×1 includes the complex gains corresponding to each

atom, and z ∼ CN (0 , σ 2 
I N ) is the AWGN. Let || · || 0 denote the

counting function (also known as � 0 norm), which returns the

number of nonzero elements of its input vector. Sparsity-driven

imaging refers to the setting in which || g || 0 � ζ ; that is, the scene

admits a sparse representation in the constructed dictionary. 
Our goal in sparse reconstruction framework is to find the max-

mally sparse representation of the scene, while allowing for some

rror tolerance ε ≥ 0 due to noise and modeling errors, by solving

he following combinatorial optimization problem, 

inimize 
g 

|| g || 0 subject to || R g − y || 2 < ε. (23)

inding the exact solution of (23) without any constraints on the

atrix R is known to be NP-hard [12] . Therefore, we resort to com-

utationally tractable algorithms that generate approximate solu-

ions. Specifically, in order to illustrate the utility of the patch

odel for sparse reconstruction, we focus on Convex Relaxation

nd Greedy Pursuit , two of the most popular techniques used in

ractice, which also offer certain theoretical guarantees of their

erformance [36,37] . We adapt the greedy pursuit technique pre-

ented here from [16] , and refer the reader to the latter paper for a

etailed comparison of performance-complexity tradeoffs between

hese two approaches. 

.1. Convex relaxation 

A popular approach for sparse reconstruction is to replace the

 0 norm in the optimization problem (23) , with � 1 norm, resulting

n a convex optimization program, 

inimize 
g 

|| g || 1 subject to || R g − y || 2 < ε. (24)

ote that the � 1 norm is the closest convex function to the � 0 func-

ion. It has been shown that under suitable conditions on the ma-

rix R , and when the optimal g is reasonably sparse, then this con-

ex relaxation leads to the exact solution of the original problem

n (23) [36] . One can also incorporate the � 2 −error constraint in

24) as part of the objective function, yielding a scalarized dual-

bjective optimization program, 

inimize 
g 

1 

2 

|| R g − y || 2 2 + λ|| g || 1 , (25)

here the regularization parameter λ> 0 balances the two ob-

ectives of minimizing the residual squared error ( � 2 term) and

parsity ( � 1 term). Increasing the value of λ typically leads to

parser solutions. Let λmax � || R H y || ∞ 

. Setting λ > λmax leads to

 = 0 as the solution of (25) . The formulation in (25) is also known

s least absolute shrinkage and selection operator (LASSO), which

as first introduced in the context of feature selection [15] . We

pply LASSO to reconstruct the scene of copper strips ( Fig. 5 ),

iven the sparse 15 × 15 element array configuration (described

n Section 4.1 ). Fig. 14 shows LASSO outputs for different val-

es of λ, when the matrix R is constructed based on the dictio-

ary of 1.5 cm × 1.5 cm square patches. The color of each patch
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Fig. 14. Sparse reconstruction of the scene of copper strips (shown in Fig. 5 ), using LASSO for different values of λ. 
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s proportional to its gain. We see that increasing λ leads to

parser solutions, while preserving most of the information in the

cene. However, due to the modeling errors in approximating the

cene by square patches of a fixed size (with constant reflec-

ivity across each patch), we see significant overlap of multiple

atches trying to explain the reflectivity of the actual scene. As

e show next, greedy approaches to sparse reconstruction work

etter. 

.2. Greedy pursuit 

Another approach for finding the maximally sparse represen-

ation of the scene in the dictionary of patches is based on

reedy Pursuit [12] . We adapt here a recently developed iterative

reedy algorithm named Newtonized Orthogonal Matching Pur-

uit (NOMP) [16,17] , which is a generalization of the well-known

rthogonal Matching Pursuit (OMP) [37,38] to a continuously

arametrized overcomplete basis using Newton refinements. Such

reedy iterative approaches (e.g., OMP and NOMP) are particularly

ttractive due to their low computational complexity and ease of

mplementation [12] . 

In the original presentation of the NOMP algorithm [16,17] ,

t is applied to estimation of frequencies in a mixture of sinu-

oids. However, we can apply the algorithm for sparse approxi-

ation in any continuously parametrized overcomplete dictionary.

e now present a description of how NOMP can be employed

or sparse recovery in our radar imaging problem. Let us first dis-

uss the estimation of a single patch, and then build upon it to

eneralize to the estimation of a scene containing a mixture of

atches. 
.2.1. Single patch 

For a single patch, the measurement model (22) reduces to 

 = g r (l, w ) + z , (26)

here r ( l, w ) denotes the response of a patch object of width

 with its center located at l . Note that in a realistic scenario

he patch object might not lie on the discrete grid identified by

he columns of R , i.e., r ( l, w ) �∈ col( R ), where col( R ) is the column

pace of R . This is known as “off-grid effect” or basis mismatch

39] which degrades the performance of reconstruction schemes

ignificantly. NOMP avoids the basis mismatch problem by search-

ng over the continuum using Newton-based update steps. The

aximum likelihood (ML) estimate of the gain g and patch pa-

ameters w, l are obtained by minimizing the residual power || y −
 r (l, w ) || 2 

2 
, or equivalently by maximizing the function 

(g, l, w ) = 2 �{ y H g r (l, w ) } − | g| 2 || r (l, w ) || 2 2 . (27)

n this section, we assume a fixed w , and try to optimize (27) for g

nd l . The extension of the algorithm for optimizing w is straight-

orward, and is briefly discussed in Section 6.3 . Directly optimiz-

ng (27) over all gains and locations is difficult. Therefore, NOMP

dopts a two step procedure: (i) coarse detection over the discrete

rid identified by the columns of R, (ii) iteratively refining the gain

nd location estimates. 

For any given location l , the gain that maximizes (27) is given

y ˆ g = ( r H (l, w ) y ) / || r (l, w ) || 2 2 . Substituting ˆ g in (27) yields the gen-

ralized likelihood ratio test (GLRT) cost function for estimating

he patch location by 

¯
 (l, w ) = | r H (l , w ) y | / || r (l , w ) || 2 2 . (28)
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Fig. 15. Image reconstruction using NOMP algorithm in the sparse array configura- 

tion. The patch sizes are fixed (1.5cm × 1.5cm), and we only refine the location of 

patches. 
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The GLRT estimate of l is derived by maximizing Ḡ (l, w ) . We

use this observation to find a coarse estimate of the patch loca-

tion over a predefined discrete grid, L c � {−L 2 / 2 + n ( 
L 2 

npoints -1 
) :

n = 0 , 1 , . . . , npoints − 1 } , namely, 

ˆ l c = arg max 
l∈L c 

Ḡ (l, w ) , (29)

along with the corresponding gain given by ˆ g c =
( r H ( ̂ l c , w ) y ) / || r ( ̂ l c , w ) || 2 2 . The refinement steps further enhances

these estimates by searching over the continuum. 

Refinement: The inputs to the refinement step are the current

estimates of the patch parameters, denoted by { ̂  g , ̂  l } . The Newton

step for location refinement is given by 

ˆ l ′ = 

ˆ l − ˙ G ( ̂  g , ̂  l , w ) / ̈G ( ̂  g , ̂  l , w ) , (30)

where 

˙ G ( ̂  g , ̂  l , w ) = �{ ( y − ˆ g r ( ̂ l , w )) H ˆ g (d r ( ̂ l , w ) /dl) } , (31)

G̈ ( ̂  g , ̂  l , w ) = �{ ( y − ˆ g r ( ̂ l , w )) H ˆ g (d 2 r ( ̂ l , w ) /dl 2 ) } 
− | ̂  g | 2 || d r ( ̂ l , w ) /dl|| 2 2 . (32)

Since we want to maximize the (generally non-concave) function

G(g, l, w ) , we apply the Newton refinement step only when the

function is locally concave, i.e., G̈ ( ̂  g , ̂  l , w ) < 0 . These refinement

steps provide the flexibility of searching for a patch object in the

“neighborhood” of our current estimated patch which can better

explain the observed measurements. Note that after refinement the

estimated patch may not lie on L c grid, thus avoiding the off-grid-

effect of discretizing the parameter space. 

6.2.2. Multiple patches 

The response to a scene with K patches is modeled as 

y = 

K ∑ 

i =1 

g αi 
r αi 

+ z , (33)

where g αi 
∈ C denotes the complex gain for i th patch. Let � be the

set of detected patches. In each iteration of the algorithm, an atom

that yields the greatest improvement in the approximation quality

is identified and added to �. After that, a cyclic refinement step is

applied to all of the atoms in � (i.e., to all of the atoms that have

been estimated in the previous iteration), therefore giving them a

chance to re-evaluate their estimates to incorporate the effect of

the newly detected atom. We do not make a priori assumptions on

the number of patches. Rather, the stopping criterion is based on

the relative energy reduction of the residual signal (i.e., the por-

tion of the signal not explained by the currently estimated set of

patches). We stop looking for further patches when the relative

energy reduction of the residual goes below a threshold, denoted

by ε. The iterative sparse reconstruction algorithm is stated as fol-

lows: 

(1) Let q 0 = y , ε q 0 = || q 0 || 2 , and loop counter i ← 1. 

(2) Find λ = arg max β{ | q H 
i −1 

r β | 
|| q i −1 || . || r β || : r β ∈ R } . Set g λ = 

( r H 
λ

q i −1 ) 

|| r λ|| 2 ,

and update �← �∪ {( λ, g λ)}. 

(3) Cyclicly refine centers/gains for all patches in �. 

(4) Update all gains by least squares for best approximation of

y with the atoms chosen so far. 

(5) Find the new residual q i = y − ∑ 

λ∈ � g λr λ, and compute its

energy ε q i = || q i || 2 . 
(6) If | ε q i − ε q i −1 

| /ε q 0 > ε, then set i ← i + 1 , and go back to

Step 2, otherwise, declare � as the output of the program. 

Fig. 15 shows NOMP-based reconstruction of the same scene

of copper strips ( Fig. 5 ) in our earlier results, with a sparse
rray with only 15 × 15 equi-spaced emulated array elements.

e employ a dictionary R with 1.5 cm × 1.5 cm square patches.

espite the sparsity of the array, the NOMP-based reconstruc-

ion is able to detect the horizontal strip at the bottom of the

cene, which is a significant improvement over the MF process-

ng results in Figs. 7 (b) and 8 (b). Moreover, in comparison to

he LASSO output in Fig. 14 , we see that NOMP is more im-

une to the modeling errors, and is able to generate a sparse

pproximation of the scene with minimal overlap of the detected

atches. 

.3. Dynamically adapted dictionaries 

In our construction of patch-based dictionaries, we have explic-

tly incorporated prior information about the array geometry, as

ell as prior assumptions about scene characteristics (e.g., spa-

ially lowpass reflectivity). Such adaptation of the dictionary to

oth sensing geometry and scene characteristics can be general-

zed to other settings (e.g., for non-uniform arrays). One possible

pproach for scaling this approach to more complex scenes with-

ut using an excessively large number of atoms is to start with

parse reconstruction with a base dictionary, and then to adapt the

elected atoms on the fly. We report here on some experiments

ased on a natural extension of the NOMP algorithm for adapting

ictionary parameters. 

Consider the dictionary of fixed-size square patches employed

n Section 6.2 . We now augment it by allowing modification of

atch sizes to better approximate the response to a given scene.

his is easily accomplished by refining the width of patches along

ith their centers and gains in Step 3 of the NOMP algorithm.

ig. 16 shows the output of NOMP where we start with the dic-

ionary of 1.5 cm × 1.5 cm patches as the base, and then refine the

izes of the detected patches throughout the reconstruction pro-

ess. 

As another example, consider a dictionary of circular patches,

sing a collection of 1cm radius atoms as the base dictionary,

ut allowing for both center and radius refinements. An advan-

age of this circular dictionary is that the spatial size of the

toms is controlled by a single parameter (radius), hence dynamic

daptation is more computationally efficient than for a dictio-

ary of square patches. Fig. 17 illustrates that sparse reconstruc-

ion with this dynamic dictionary does capture the structure of

he scene, including the horizontal strip at the bottom of the

cene. 
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Fig. 16. Image reconstruction using NOMP algorithm in the sparse array configura- 

tion. We refine both the location and size of rectangular patches. 

Fig. 17. Image reconstruction using NOMP algorithm in the sparse array configura- 

tion. We refine both the location and size of circular patches. 
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. Conclusions 

We have shown that short-range radar imaging requires new

odels that account for scene and transceiver geometry, as well

s the number of transceiver elements. The number of degrees of

reedom, DoF , in this setting depends on sensor and scene geom-

try, and using a number of elements smaller than DoF leads to

rating lobes with the classical point scatterer model. The patch-

ased models introduced here suppress grating lobes, while being

ompatible with the spatially lowpass nature of typical scenes. The

atch primitive can be employed for spatial matched filtering, as

ell as for sparse reconstruction. 

While our preliminary results for sparse reconstruction are

romising, enhancing the reconstruction leveraging continuing al-

orithmic advances (typically motivated by compressive sensing) is

n interesting area for future research. In particular, it is of in-

erest to explore how to bridge the gap between the noisier, but

ontinuous, matched filter based reconstruction ( Fig. 8 (b)), and the

aps exhibited by the cleaner sparse reconstruction, even after dy-

amic adaptation ( Figs. 16 and 17 ). Potential enhancement in per-

ormance by changing the sensor configuration (e.g., from a uni-

orm to a random, or optimized, spacing) is also an interesting area

f investigation. It is worth mentioning that for the special case

here we construct the dictionary of patches by spatial transla-

ions of a single patch (that is fixed in shape and size), patch-based

F is equivalent to applying a low-pass filter (LPF) in the spatial-
requency domain. This opens up another important area for future

ork for understanding the fundamental imaging modes in short-

ange settings in the spatial-frequency domain (preliminary results

ppear in [40] ). Finally, from a practical standpoint, adding Doppler

nformation to scene reconstruction with a patch model is an im-

ortant area (see [41] for preliminary work with a point scatterer

odel). 
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