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Abstract—In this work, a spatial-domain technique is intro-
duced to mitigate grating lobes in sparse monostatic arrays tar-
geting applications such as low-cost real-time mm-wave imaging
systems. Standard algorithms, such as synthetic aperture radar
(SAR) techniques, are susceptible to grating lobes and result in
images with significantly degraded quality. In order to suppress
artifacts due to the grating lobes, a new spatial aggregation
technique is introduced, which replaces point-scatterer based
basis function by a new set of spatially extended basis functions.
The efficacy of the proposed method is demonstrated using
experimental data. Our hardware testbed is a 60 GHz continuous-
wave radar transceiver, equipped with a movable mechanical
platform to emulate a 2-dimensional array of sensors.

I. INTRODUCTION

There is growing interest in the development of high reso-
lution real-time mm-wave imaging systems with commercial,
medical, and security screening applications [1], [2], [3], [4].
In order to achieve real-time operation, data collection via
mechanical raster scan must be replaced by an actual array
of antenna elements. However, due to complexity, weight
and cost considerations, the number of elements in such
arrays should be reduced to the extent possible. This results
in sparse arrays [1], [5] producing spatially undersampled
signals, resulting in imaging characteristics that are quite
different from those of a dense array in the same physical
aperture. In particular, when the data collected by a sparse
array is processed using conventional SAR-like algorithms,
the imaging performance deteriorates significantly because of
grating lobes. A multistatic architecture, where the elements
are synchronized across the array, provides a dense effective
aperture that removes grating lobes [2]. However, synchroniz-
ing spatially dispersed array elements at mm-wave frequencies
is challenging and leads to a significant increase in the cost
and complexity of the design. In this paper, therefore, we
restrict attention to a monostatic architecture, and show that it
is possible to alleviate grating lobes by rethinking the target
models, and the associated imaging algorithms.

Existing approaches to grating lobe suppression include the
use of shaped waveforms, aperture diversity, pulse diversity,
frequency diversity (wideband), and digital spotlighting [6],
[7], [8]. However, to our knowledge, there is little prior
work on improving the scene/target model to handle spa-
tial undersampling. In fact, almost all imaging techniques

have been developed based on a point scatterer target model
[9]. This includes popular variants of SAR-based imaging
algorithms in both the spatial-temporal domain (e.g., time-
domain correlation or exact matched-filtering) and the spatial-
frequency domain (e.g., wavenumber or ω-k algorithm)[6].
In this paper, we show that grating lobes can be suppressed
by modifying the point scatterer target model, replacing it
with “patches” formed by spatial aggregation of points. We
illustrate our results for a sparse monostatic array for short-
range (sub-meter) continuous-wave imaging. We modify the
matched-filtering SAR technique for the new patch-based basis
functions, and demonstrate the gains in imaging performance
through experimental data collected using a 60 GHz prototype.

Fig. 1. Geometry of 1-dimensional monostatic imaging configuration.

II. PROBLEM STATEMENT

A typical imaging configuration with 1-D array for data
collection is depicted in Fig. 1. Let L1, L2, and D denote the
size of the aperture, the size of the scene, and the distance
between the aperture and the scene, respectively. We consider
the nominal values L1 = L2 = 15cm and D = 30cm in
our simulations. The inter-element spacing of a uniform linear
array comprised of N elements is given by d = L1/(N − 1).
Assume Ψ to be a set that contains the locations of all the point
scatterers in the scene, and Γ(x′) denote the complex reflection
coefficient corresponding to the point scatterer at location x′

(primed coordinate indicates location of the target). The scene
response collected at the aperture is an N -dimensional vector
denoted by r ∈ CN , for which the nth entry corresponds to
the monostatic transceiver located at xn, and is given by,

r[n] =

∫
x′∈Ψ

Γ(x′)e−j2kR(x′,xn)dx′, (1)



where k = 2π/λ is the wavenumber, and R(x′, xn) =√
D2 + (x′ − xn)2 is the path length from the transceiver

location to the point scatterer at location x′. Using a first
order Taylor approximation, the path length is calculated as,
R(x′, xn) ≈ D + (x′−xn)2

2D . Therefore,

r[n] ≈ e−j2kD
∫
x′∈Ψ

Γ(x′)e−j
k
D (x′−xn)2dx′. (2)

The grating lobes appear when two distinct point scatterers in
the scene generate highly correlated responses. In SAR imag-
ing, a (virtual) testing point is moved over the entire imaging
domain and the response at the aperture for each hypothesized
position is calculated. An image of the scene is constructed
by correlating this dictionary of template responses with the
measured response. Now, consider a fixed point scatterer (i.e.,
target) located at x′1 and a testing point x′2, with the responses
denoted by r1 and r2, respectively. The correlation between
the two responses is calculated as,

rH1 r2 =

N∑
n=1

Γ∗1Γ2 e
j k
D (x′

1−xn)2e−j
k
D (x′

2−xn)2

= Γ∗1Γ2e
j k
D (x′2

1−x
′2
2)

N∑
n=1

ej
2k
D (x′

2−x′
1)xn

= c1
sin(Nρ/2)

sin(ρ/2)
= c1 Dir(ρ), (3)

where c1 is a complex coefficient with |c1| = |Γ1||Γ2|, and
Dir(ρ) = sin(Nρ/2)

sin(ρ/2) is the well-known Dirichlet kernel with
ρ , 2k

D (x′2 − x′1)d. Note that ρ ∈ [0, 2kdL2/D], this means
that it takes values in an interval that depends on the signal
wavelength and the geometry of the imaging problem. On the
other hand, the Dirichlet kernel is a periodic function with
period 2π. Therefore, the condition for avoiding grating lobes
translates to constraining the visible range of ρ to be less than
2π (i.e., 2kdL2

D ≤ 2π), which yields 2L1L2

Dλ + 1 ≤ N . For our
nominal parameter values, this leads to N ≥ 31. We should
mention that 2L1L2

Dλ +1 is the total number of spatial degrees of
freedom imposed by the geometry of the imaging problem and
wavelength. Figure 2 shows the magnitude of the normalized
correlations for point scatterer being fixed at x′1 = 4cm, and
testing point at x′2 ∈ [−7.5, 7.5]cm, for N ∈ {15, 31}. It can
be seen that setting N = 15 leads to a grating lobe artifact at
x′gl ≈ −3.5cm. The separation between the true point location
and the grating lobe is calculated by setting ρ = 2mπ, for
m ∈ Z. It is easy to see that the first grating lobe is at distance
∆x = |xgl − x′1| ≈ λD

2d from the true point location (e.g.
∆x ≈ 7.5cm for N = 15).

III. GRATING LOBE SUPPRESSION VIA SPATIAL
AGGREGATION

The main contribution of this paper is in introducing a
new set of basis functions to suppress grating lobe artifacts
in a sparse monostatic array. The idea is to replace the point
scatterer as the basis function for explaining the scene, with
a collection of point scatterers, adjacent to one another and
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Fig. 2. Grating lobe artifact for sparse monostatic array.

having constant (appropriately weighted) reflection coefficient.
This is a natural model for explaining extended objects with
bounded variation in the reflectivity function Γ(x′) across
space; that is, for scenes where the reflectivity is a spatially
lowpass function. Let us consider two collection of point
scatterers Ψ1 and Ψ2, with their corresponding responses
denoted by rΨ1 and rΨ2 , respectively. The correlation between
the two responses is calculated as follows,

rHΨ1
rΨ2 =

N∑
n=1

∫
x′

1∈Ψ1

Γ∗(x′1)ej2kR(x′
1,xn)dx′1

∫
x′

2∈Ψ2

Γ(x′2)e−j2kR(x′
2,xn)dx′2

≈
∫∫

x′
1∈Ψ1

x′
2∈Ψ2

Γ∗(x′1)Γ(x′2)ej
k
D (x′2

1−x
′2
2)

N∑
n=1

ej
2k
D (x′

2−x′
1)xndx′2dx

′
1

= c2

∫∫
x′

1∈Ψ1

x′
2∈Ψ2

Γ∗(x′1)Γ(x′2)H(x′1, x
′
2)Dir(ρ)dx′2dx

′
1, (4)

where c2 is a constant, and H(x′1, x
′
2) , ej

k
D (x′2

1−x
′2
2) is the

Spatial Aggregation (SA) kernel. The magnitude of SA kernel
is constant, and the phase is a non-linear function of x′1 and
x′2. Figure 3 shows the magnitude of the Dirichlet kernel,
the phase of SA kernel, as well as the phase of the product
H(x′1, x

′
2)Dir( 2k

D (x′2 − x′1)d) for x′1, x
′
2 ∈ [−7.5, 7.5]cm. The

key observation is that the phase of SA kernel is nearly con-
stant across the main lobe, whereas it exhibits fast variations
across the grating lobes. Therefore, spatial aggregation signif-
icantly suppresses the grating lobes due to the incoherency
induced by the SA kernel.

In order to illustrate the effect of spatial aggregation, in a
case study, consider a fixed extended target Ψ1 = [3.5, 4.5]cm
at distance D from the array, and the collection of ba-
sis functions defined by Ψ2 = [α− 0.5, α+ 0.5]cm for all
α ∈ [−7.5, 7.5]cm. In other words, Ψ2 is a moving strip
(or 1D patch) of 1cm width and we generally call this new
basis as patch basis function. Figure 4 shows the normalized
correlations for the collections of 1cm patches along with that
of point scatterers for N = 15. The effect of SA is three-fold;



(a) (b) (c)

Fig. 3. (a) Magnitude of Dirichlet (N = 15), (b) Phase of SA kernel, (c) Phase of the product of SA kernel and Dirichlet kernel H(x′1, x
′
2)Dir(ρ).

(1) suppressing the grating lobe, (2) reducing the side lobe
level (hence increasing the dynamic range of the image), and
(3) widening the main lobe. It is important to note that the
main lobe of patch correlations is representing an extended
object, therefore, its width should be analyzed with respect to
the width of the patch itself. In our specific example, we see
that −3dB width of the main lobe is approximately equal to
the size of the patch.
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Fig. 4. Reduction of grating/side lobes by spatial aggregating.

The proposed spatial aggregation method explicitly incorpo-
rate the information about the geometry of the imaging system
and the nature of the aperture in forming the image. Moreover,
the prior information regarding the nature of the targets (e.g.,
shape/size/type) can be used for choosing the proper basis
functions that are well-matched to the scene. We now focus on
2D cross-range imaging of a simple scene and demonstrate the
efficacy of spatial aggregation method in reducing the grating
lobes using experimental data.

IV. EXPERIMENTAL RESULTS

Our hardware testbed is a 60 GHz continuous-wave radar
transceiver, equipped with dual high-gain horn antennas [10].
A mechanical platform was used to move the antenna on a
plane parallel to the scene, hence emulating a 2-dimensional

array of sensors. The scanned area by the antenna is on the or-
der of the form factor of a portable handheld device (covering a
15cm×15cm area). Three uniform planner array configurations
were considered: (I) super-dense array of 75×75 elements (i.e.
d = 0.4 × λ = 0.2cm), (II) dense array of 30 × 30 elements
(i.e. d = λ = 0.5cm), (III) sparse array of 15 × 15 elements
(i.e. d = 2λ = 1cm). At each step of the movement, the
sample under test’s response (which is a complex number) is
measured and stored in a vector. The sample is built using
copper strips mounted on cardboard and placed parallel to the
array at a distance D = 30cm (Figure 5).

Fig. 5. Experimental data collection using 60 GHz radar system (figure is
not at scale).

The first image reconstruction algorithm that we use is
the standard SAR method, which works based on matched-
filtering (MF) with respect to a point scatterer model for
the scene [6]. The second method, is our proposed patch-
based SAR, which operates based on MF with respect to
a patch basis functions. For the experiments in this paper,
we use 1cm × 1cm square patches as the basis functions.
Future work will include criteria for choosing an appropriate
patch size as a function of the geometry of the imaging
problem, sparsity level of the array, and the nature of the
scene. Figure 6 shows the results of point and patch-based
MF for super-dense array architecture. The grating lobes do
not appear for either of point or patch based reconstruction
techniques. The patch MF, however, is able to reduce the
side lobe levels compared to the point-based approach, hence
producing a very clean image. Figures 7 and 8 correspond
to the dense and sparse array architectures, respectively. We



(a) (b)

Fig. 6. Super-dense array I (a) Point MF (b) Patch MF (1cm× 1cm).

(a) (b)

Fig. 7. Dense array II (a) Point MF (b) Patch MF (1cm× 1cm).

see that the grating lobes and side lobes exist for the point-
based SAR, with their effects being significantly destructive
for the sparse array. Note that the location of the grating
lobes is well approximated by ∆x ≈ λD

2d . For the patch-based
SAR method, a significant improvement can be seen in the
image quality, in terms of suppressing the grating lobes and
increasing the dynamic range (e.g., the horizontal strip at the
bottom of the scene remains visible). It should be mentioned
that the idea of spatial aggregation had been developed in
the spatial domain and it has differences with other ideas
developed in spatial-frequency domain (e.g., filtered back-
projection methods). After extending this framework to spatial-
frequency domain, a comparison with those methods can be
performed. Another important point is that the SA method
exploits the lowpass structure of typical scenes in the spatial-
frequency domain in order to mitigate the aliasing effects of
array sub-sampling. Therefore, the spatial-frequency content
of the scene imposes a limit on the minimum number of array
elements that we need to capture the desired information from
the scene. We should also mention that the SA technique
provides a general framework for designing basis functions
that allow for sparse representation of simple scenes. This
parsimonious representation, with appropriately designed es-
timation algorithms, allows us to “super-resolve” beyond the
limits of conventional radar theory. Future work will include
such extensions of the SA technique.

V. CONCLUSION

The grating lobe problem in continuous-wave monostatic
imaging was investigated and its effect on conventional spatial-
temporal domain SAR techniques was characterized. It was

(a) (b)

Fig. 8. Sparse array III (a) Point MF (b) Patch MF (1cm× 1cm).

shown that replacing point scatterer basis function with ap-
propriate basis functions can help significantly suppress grat-
ing/side lobes and consequently improve the image resolution,
quality, and dynamic range. For future work, we will work on
characterizing the optimum shape and size of the aggregating
regions (e.g., size and shape of the patches). Also, to achieve
a fast imaging method for real-time applications, extension of
the idea to the spatial-frequency domain will be investigated.
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