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Abstract—As modern communication transceivers scale to
multi-Gbps speeds, the power consumption and cost of high-
resolution, high-speed analog-to-digital converters (ADCs) be-
come a crucial bottleneck in realizing “mostly digital” receiver
architectures that leverage Moore’s law. This bottleneck could
potentially be alleviated by designing analog front ends for
the more specific goal of analog-to-information conversion (i.e.,
preserving the digital information residing in the received signal).
As one possible approach towards this goal, we consider a gener-
alization of the standard flash ADC: instead of implementing n
bit quantization of a sample by passing it through 2n − 1 slicers
as in a standard ADC, the slicers are dispersed in time as well
as space (i.e., amplitude). Considering BPSK over a dispersive
channel, we first show, using ideas similar to those underlying
compressive sensing, that randomly dispersing enough one-bit
slicers over space and time does provide information sufficient
for reliable demodulation over a dispersive channel. We then
propose an iterative algorithm for optimizing the design of the
sampling times and amplitude thresholds, and provide numerical
results showing that the number of slicers can be significantly
reduced relative to a conventional flash ADC with comparable
bit error rate (BER). These system-level results motivate further
investigation, in terms of both circuit and system design, into
looking beyond conventional ADC architectures when designing
analog front-ends for high-speed communication.

I. INTRODUCTION

Modern communication transceivers are based on “mostly
digital” architectures leveraging the low-cost digital computa-
tion enabled by Moore’s law to implement sophisticated algo-
rithms in digital signal processing (DSP). A crucial component
enabling this is the analog-to-digital converter (ADC), which
enables translation of the analog received waveform into a
digital signal. However, as link speeds and bandwidths scale
up to 10s of Gbps, the cost and power consumption of high-
resolution ADCs become prohibitive [1]. It is natural to ask,
therefore, whether it is possible to relax the ADC requirement
to one of analog-to-information (A/I) conversion tailored to
the communications application, focusing on reliable recovery
of the transmitted data, rather than accurate reproduction of
the received signal. Specifically, we consider communication
over dispersive channels (focusing on the simplest possible
setting of BPSK over a wireline channel), and ask whether it
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is possible to design analog front ends that are more efficient
than conventional ADC architectures.

Consider the flash ADC, typically the architecture of choice
as we push up the sampling rate. An n-bit flash ADC consists
of 2n − 1 comparators sampling synchronously. Each sample
is compared in parallel against 2n − 1 amplitude thresholds,
and these 2n − 1 bits thus obtained are encoded into a more
compact n-bit representation indexing the quantization bin
that the sample falls into. However, instead of distributing
slicers over space (i.e., amplitude) alone, we ask whether
it is fruitful to disperse slicers over time as well as space.
Each slicer in such a design produces a single bit, and these
bits are fed directly to the digital backend implementing the
channel equalizer, thus also eliminating the 2n − 1 bit to n
bit digital encoder required per sample for the flash ADC.
We show through our numerical results that opening up the
design space in this fashion, generalizing from a flash ADC
to a space-time slicer architecture, allows us to reduce the
number of slicers required to attain a given link performance.

Summary of results: Our technical contributions can be
summarized as follows:
(a) We first show that, if slicers are randomly dispersed in time
and space, then, with sufficiently many slicers, we can preserve
the L1 norms of the pairwise differences between waveforms
corresponding to a particular bit taking values 0 or 1. While
the performance of optimal channel equalization in AWGN is
characterized by the L2 norms of these differences, our result
does imply that, if there is no error floor with unquantized
observations, then there is no error floor in using generalized
space-time slicers. While this provides a sound theoretical un-
derpinning for our proposed architecture, the number of slicers
actually required to provide good equalization performance is
significantly smaller than estimates from the theory.
(b) We propose an algorithm for optimally selecting the spatio-
temporal locations of slicers, and show that this generalized
structure leads to a more efficient utilization of slicers relative
to a flash ADC, in that fewer slicers are required for a
comparable BER. The reduction in the number of slicers
(which reduces power consumption of not just the ADC but
also the variable gain amplifier that precedes it), and the
elimination of the 2n − 1 bit to n bit encoder in a traditional
ADC (since the bits at the slicer outputs are fed directly to



the equalizer DSP), opens up the possibility for significant
power savings. Of course, as discussed in the conclusions,
much further work in terms of detailed power estimation is
required to evaluate the extent to which the potential power
savings can be realized.

Related work: The effect of heavily quantized measurements
on communication systems design and performance has re-
ceived significant attention recently. For non-dispersive chan-
nels, the effect of coarse quantization has been studied for the
ideal AWGN channel [2], carrier-asynchronous systems [3],
[4], and fading channels [5]. Reference [6] discusses channel
estimation with coarsely quantized samples. A number of
recent papers [7] [8] [9] consider the problem of equalization
with low-precision analog front ends, and propose methods for
designing ADC quantizer levels. The emphasis in all of these
papers remains on designing multiple slicer thresholds for a
given sample, rather than dispersing the slicers over time as we
allow. The authors in [7] use (bounds on) the information rate
between the transmitted symbols and the quantized samples
as a criterion for designing quantizer levels. They focus on
non-contiguous and vector quantization for symbol spaced
sampling, and employ the information bottleneck algorithm to
approximately maximize the mutual information. We propose
a different metric (more sensitive to the uncoded BER) and
an iterative algorithm for optimizing our space-time slicer,
choosing both sampling times and amplitude thresholds. The
advantage of non-uniform thresholds for equalization has
been reported in [8][9]. We arrive at similar conclusions, as
discussed in Section IV of the paper, but our results are more
general with designs involving non-uniform thresholds spread
across time. The DSP algorithms used in these references
are simple DFE equalizers: 5 feedback taps and a single
feedforward tap in [8], which is only applicable to channels
with limited precursor intersymbol interference (ISI), and 2-
3 feedforward taps with 2 feedback taps in [9]. Further, the
numerical evaluations in [8][9] focus on a high SNR regime
with very low BERs (∼ 10−12). Since we are interested in
understanding how far we can push simplification of the analog
front end, we consider lower SNR regimes with uncoded BER
of the order of 10−3−10−4 (which can be still be cleaned up
easily with a lightweight channel code), and use optimal BCJR
decoding based on the outputs from our space-time slicers.

The proof of our theoretical result on L1 norm preserva-
tion is analogous to that of the Johnson-Lindenstrauss (JL)
lemma [10] which provides a theoretical basis for compressed
sensing. The result itself appears at first glance to be similar
to the bit-conservation principle articulated in [11], but the
details and implications are completely different. The result
in [11] considers signal reconstruction, and can be roughly
paraphrased as saying that n 1-bit observations are equivalent
to n/k k-bit measurements. In contrast, our result says that
n 1-bit measurements are equivalent to n infinite-precision
measurements in terms of guaranteeing the feasibility of
reliable data recovery in the low-noise regime (albeit with a
smaller error exponent).

II. SYSTEM DESCRIPTION

Let h(t) denote the continuous valued channel impulse
response (CIR), the combined response of the channel and the
analog preprocessing, just before the analog-to-digital conver-
sion block. Then the continuous valued received waveform is
given by

x(t) =

∞∑
i=0

bih(t− iTs) + w(t) (1)

where bi’s are the transmitted bits taking values {+1,−1},
Ts is the symbol period and w(t) the AWGN process.
For a channel of length L symbols, the support of h(t)
lies in [0, LTs]. We denote the corresponding discrete-
time response, sampled at the symbol rate, by h =
[h1, h2, ....., hL]

T . The channels used in this paper for
simulations are 20 inch FR4 high-ISI backplane channel
[.0949, .2539, .1552, .0793, .0435, .0356] [9] and a “fatter”
channel [.227, .46, .688, .46, .227] [12].
Information rate: Samples of the continuous received signal
x(t) are used to decode the transmitted bit sequence b. Let
xji denote the vector of samples (these may or may not be
quantized) obtained during the interval [iTs, jTs]. For the
special case of symbol spaced sampling, the length of xji is
j− i+1 (the length for general space-time slicers depends on
the specific pattern of sampling times used). The information
rate between the transmitted bits and the received samples is
given by

I(b;x) = lim
n→∞

1

N
I(bN1 ;xN1 ) =

1

N
lim
n→∞

N∑
i=1

I(bi;x
N
i |bi−1i−L+1)

≥ 1

N
lim
n→∞

N∑
i=1

I(bi;x
i+f
i |bi−1i−L+1) (2)

Inequality (2), derived in [7], states that the information rate is
lower bounded by the average (over the past bits) of the mutual
information between the current bit and the measurements
over the next few symbols (f ), conditioned on the past bits.
Numerical results in [7] show that this lower bound becomes
a fairly tight approximation for f = L future symbols, where
L denotes the length of the CIR.

III. ONE-BIT MEASUREMENTS WITH RANDOM
THRESHOLDS

In this section we consider the special case of 1-bit mea-
surements. In order to make decisions on the ith transmitted
bit bi (the discussion that follows holds for any bit, hence
we drop the index i where convenient), we restrict attention
to measurements in the interval [iTs, (L + i)Ts] affected by
this bit. This choice of observation interval is sensible but
arbitrary, and our approach applies to other choices as well.
The measurements in this interval are also affected by L− 1
“past” ISI bits (bi−L+1, ..., bi−1) and L − 1 “future” ISI bits
(bi+1, ..., bi+L−1). Denote the noiseless received waveform in
this interval by s(t), suppressing the dependence on the desired
bit bi and the ISI bits from the notation. Without loss of
generality, we normalize h(t) so that s(t) lies in [−1, 1]. The



main result in this section can be paraphrased as follows: for
n one-bit measurements, uniformly spaced in time but with
thresholds chosen randomly over [−1, 1], if n is large enough,
then it is possible (at high SNR) to reliably distinguish between
bi = +1 and bi = −1 with one-bit measurements, as long as
it is possible to do so with unquantized measurements.

Let xi+Li denote the vector of continuous-valued samples
obtained by sampling s(t) uniformly, n times, over the ob-
servation interval. Fixing the past ISI bits, we partition the
noiseless waveforms corresponding to all possible realizations
of the future bits into two sets, each of cardinality 2L−1,
corresponding to the two possible values of the “tagged bit”
bi: S0 = {s(t) s.t. bi = −1} and S1 = {s(t) s.t. bi = +1}
for the continuous-time waveforms s(t), and X0 and X1 for
the corresponding sampled vectors xi+Li . In order to focus
on whether we can reliably demodulate bi in the face of ISI,
we set the noise level to zero . The lower bound (2) on the
information rate equals one (implying that the information
rate equals one) at this infinite SNR as long as the set of
observations generated by the two different values of the
desired bit are mutually exclusive; that is, X0 ∩ X1 = ∅.
This always holds for unquantized measurements, as long as a
sample is obtained in the first symbol period ([0, Ts]) and the
corresponding CIR h(t) value is nonzero. This follows from
the fact that, since the past bits are fixed, and future ISI bits do
not affect the waveform in the interval [iTs, (i+1)Ts], bi = −1
and bi = +1 result in different samples in the first entry of
xi+Li . This result is also discussed in [13], where the author
considers symbol spaced samples and shows that the lower
bound (and hence the information rate) goes to one as SNR
increases as long as the first element of the discrete time CIR
is nonzero. In general, such guarantees cannot be provided for
quantized measurements. However, we show that as long as n
is large, using randomized thresholds for one-bit quantization
results in similar behavior as for unquantized observations.

In general (at any SNR), the performance depends on the
amount of overlap/separability between the sets X0 and X1.
For the purpose of our proof, we employ the normalized L1

norm between each pair of elements x0 ∈ X0, x1 ∈ X1,
defined as follows:

‖x0 − x1‖1 =

n∑
i=1

δ |s0(iδ)− s1(iδ)| (3)

where s0(t) and s1(t) are the corresponding continuous time
waveforms from sets S0 and S1 respectively and δ is the sam-
pling interval (for uniform sampling as assumed in this section,
nδ = LTs). The scale factor δ is included for the normalized
L1 norm ‖x0 − x1‖1 to approximate the continuous time L1

norm ||s0−s1||1 (area between the waveforms) as n gets large.
We define the minimum normalized L1 distance between the
two sets as follows:

d = min
x0∈X0;x1∈X1

‖x0 − x1‖1 (4)

For unquantized observations, as noted earlier, X0 ∩ X1 = ∅,
and hence d > 0.

Let us now consider what happens when we pass the
unquantized sampled vector x through a series of one-bit
quantizers, with the ith sample compared to threshold ti. The
vector of thresholds is denoted as T = [t1, t2, ....., tn]

T , and
defines a quantization function q as follows:

q(x) = (2δ)y

y(i) =

{
1 if x(i) ≥ ti
0 if x(i) < ti

i = 1, ....., n (5)

Thus, q(x) is a scaled version of the binary vector y, where
the scaling by δ facilitates comparison of norms before and
after quantization.

The following theorem states that, with a sufficient number
of samples n, quantized with random thresholds, the quantiza-
tion function q(·) approximately preserves the L1 norm of the
unquantized differences ‖x0 − x1‖1. This result bears some
similarity to the JL-lemma in which random projections pre-
serve the norm for embeddings to lower dimension subspaces
[14].

Fig. 1. One-bit Measurements with Varying Thresholds

Theorem. If each entry of the threshold array T is picked
uniformly and independently from [−1, 1], then for any con-
stants ε, β ≥ 0, with probability at least 1 − L−β , for all
x0 ∈ X0 ; x1 ∈ X1 we have

(1−ε) ‖x0 − x1‖1 ≤ ‖q(x0)− q(x1)‖1 ≤ (1+ε) ‖x0 − x1‖1
(6)

if n satisfies

n ≥ 4Ts
dε2

(
2ln2 · L2 + βLlnL

)
(7)

where d is the minimum L1 distance defined in (4).

Proof:
Consider a particular pair of sampled measurements x0 ∈

X0 ; x1 ∈ X1 (corresponding to s0(t) ∈ S0 ; s1(t) ∈ S1).
Define

z = |q(x0)− q(x1)| (8)

Note that the entries of z are either 0 or 2δ:

z[i] =

{
2δ if ti ∈ [min (s1(iδ), s0(iδ)) ,max (s1(iδ), s0(iδ))]
0 otherwise

Thus, an entry is nonzero if the corresponding threshold lies
between the two unquantized values. Since ti is uniformly
picked from [−1, 1], z[i] is a Bernoulli random variable with
parameter pi = 1

2 |s0(iδ)− s1(iδ)| and mean 2δpi. The L1

norm of z, given by



‖z‖1 =

n∑
i=1

z[i] (9)

has expectation

E (‖z‖1) = E

(
n∑
i=1

z[i]

)
=
∑
i

E(z[i]) =

2δ
∑
i

|s0(iδ)− s1(iδ)|
2

= ‖x0 − x1‖1 (10)

which follows from Eq. (3). Thus, the quantization function
q(·) preserves the norms of the differences in expectation. In
order to complete the proof, we derive a Chernoff bound to
show that the probability of deviation from the expectation
goes to zero for large enough n. To simplify notation, we use
the shorthand u = ‖z‖1 and µ = ‖x0 − x1‖1 in the following.

Pr (u > (1 + ε)µ) ≤ E[eau]e−a(1+ε)µ ∀ a > 0 (11)

= e−a(1+ε)µ
n∏
i=1

E
(
eaz[i]

)
(12)

= e−a(1+ε)µ
n∏
i=1

(
pie

2aδ + (1− pi)
)

(13)

= e−a(1+ε)µ
n∏
i=1

(
1− pi(1− e2aδ)

)
(14)

≤ e−a(1+ε)µ
n∏
i=1

e−pi(1−e
2aδ) (15)

= e−a(1+ε)µe(e
2aδ−1)

∑
pi (16)

= e−a(1+ε)µe(e
2aδ−1) µ2δ (17)

= eµ(
1
2δ e

2aδ− 1
2δ−a(1+ε)) (18)

Equation (11) follows from the Markov inequality, (12) from
(9) and the independence of the thresholds, (15) from the
inequality 1 − x < e−x, and (17) from the expression for
pi and (3). Minimizing the right hand side of Eq. (18) to get
the Chernoff bound, we get a = 1

2δ ln(1+ε). Substituting back,
we obtain

Pr (u > (1 + ε)µ) ≤ e−
µ
2δ ((1+ε)ln(1+ε)−ε) ≤ e−

µnε2

4LTs (19)

The desired form in (19) is obtained by using the expansion
ln(1 + ε) = ε − 1

2ε
2 + 1

3ε
3 − ......, together with some

simplification after substituting δ = LTs
n . Proceeding along

similar lines, we obtain an analogous bound for the probability
of deviations below the expectation: Pr (u < (1− ε)µ) ≤
e−

µnε2

4LTs . Combining with (19) yields

Pr (u < (1− ε)µ or u > (1 + ε)µ) ≤ 2e−
µnε2

4LTs ≤ 2e−
dnε2

4LTs

(20)
Equation (20) follows from the definition of d (4). We now

note that there are 2L+1 pairs of distances given the past bits

(i.e. |X0| = |X1| = 2L), and varying the L past bits increases
the total number of pairs to be considered to 22L. In order to
obtain the final result we invoke the union bound, which for
all x0 ∈ X0 ; x1 ∈ X1 (u = ‖z‖1 and µ = ‖x0 − x1‖1) and
corresponding z (Eq. 8) gives

Pr (‖z‖1 ≤ (1− ε)µ or ‖z‖1 ≥ (1 + ε)µ)

≤ 22L · 2e−
dnε2

4LTs ≤ L−β (21)

which can be bounded as tightly as desired (21) by increasing
β and ensuring that n meets the condition (7).

Remarks: While we have considered uniform sampling for
simplicity, this is not required for the theorem to hold. Any
non-uniform sampling strategy that provides sufficient density
of samples to capture the separation of s0(t) and s1(t) in the
regions where the waveforms are apart suffices. The continuity
of the CIR ensures that the sizes (area) of these separability
regions are not insignificant, this property being implicitly
captured by the constant d. The independence of the thresholds
is a crucial requirement for ensuring that the expected value
of norm of the quantized vectors is equal to that of the
corresponding unquantized vectors corresponding to the same
sampling times.
Simulations: Due to the looseness of the union bound used
to prove the theorem, picking n based on the theorem is
excessively conservative. We now show via simulations that
moderate values of n suffice to provide good equalization
performance. Our choice of space-time slicers differs from the
set-up of the theorem in two respects:
(1) We pick the thresholds from a Gaussian distribution; this
performs far better for moderate values of n than the uniform
distribution assumed in the theorem. This is because, while
the received signal is scaled to lie in [−1, 1], the density of
values near zero is higher (as we vary the possible choices of
future ISI bits). For the simulations presented we have used a
value of 0.4 for the variance of the gaussian distribution.
(2) Instead of picking n random thresholds over the entire
duration of [0, LTs] corresponding to the span of the CIR, we
pick thresholds randomly over a single symbol period Ts. This
corresponds to an implementation of slicers operating at the
symbol rate with a fixed threshold set for each slicer. This
scheme reduces the amount of independence and hence aver-
aging (since the thresholds are now periodic with period equal
to the symbol interval), but it is simpler to implement, and
provides good BER performance for the channels considered
here with 10-20 slicers per symbol.

Figure (2) shows BER curves for two different channels,
with optimal Bayesian estimation using the BCJR algorithm
[15]. The SNR is defined as ‖h‖

2

σ2 , where h is the Nyquist
sampled CIR and σ2the variance per dimension of AWGN.
The BER curves vary slightly for different instances of slicer
thresholds, the general behavior remains the same for a fixed
number of slicers and we find that ∼ 15 slicers are needed to
avoid error floors for the first channel, while ∼ 20 slicers are
required for the “fatter” channel.



IV. OPTIMIZING SAMPLING PHASES AND THRESHOLDS

The previous section provides theoretical assurances and
simulations when all slicers operate at different sampling
instants. At the other extreme, we have a conventional
flash ADC, in which all slicers have the same sampling
phase. In this section, our goal is to optimize the space-time
slicer architecture when we have the freedom to choose
both the slicer sampling times and thresholds. We find that
such generalized designs perform much better than the two
constrained configurations. While we are not addressing
details of circuit design, we note that such an architecture
could be implemented by controlling the delays of the clock
signal driving the slicers (delays of the order of 10s of pico
seconds are realizable in current circuit implementations).
We constrain the slicers to be sampled at the the symbol
rate, which implies the thresholds to be optimized are
periodic. Before we present our proposed algorithm for
choosing the slicer placements, we discuss a few metrics that
could be used to evaluate and compare different slicer designs.

(a) The measure of performance ultimately of interest to us
is the optimal bit error rate (BER) corresponding to MAP
(maximum a posteriori) estimation of the transmitted bits. A
closed form expression for this BER is not available, hence it
must be evaluated numerically by running the BCJR algorithm.
The complexity per bit of BCJR grows exponentially with the
channel memory and thus it is practical only for short channels
(< 10). Moreover, since simulations over long sequences of
bits are required to accurately capture the BER up to the order
of 10−4 − 10−5, it is prohibitive to run it multiple times over
different configurations of slicers. This makes it difficult to
directly use the optimal BER as a criterion for optimizing
slicer locations.
(b) An alternative metric is the information rate, which is used
in [7] for designing non-contiguous quantization functions.
As with the optimal BER, its numerical evaluation involves
running Monte Carlo simulations using the BCJR algorithm
[16]. However, this mutual information based measure is not
sensitive to BER, and approaches the value of 1 (full capacity)
quickly at moderate to low SNRs with relatively high BERs
(see simulation plots in [7]). It therefore does not meet our goal
of optimizing in the regime of lightly coded systems with low
uncoded BERs.
(c) We propose a metric that is simpler to compute than
either of the preceding metrics, and is more sensitive to error
events than (b). Optimal MAP decoding (required for Monte
Carlo estimation of the optimal BER) is difficult because the
BCJR decoder must account for a long sequence of received
samples for computing posterior probabilities. One way of
cutting down on complexity is to cut off the memory required
by making hard decisions on past bits, as in the MMSE-
DFE. This motivates us to consider the class of sequential
equalizers, which make a hard decision on the current bit
i based on quantized measurements (denote by y) during
[iTs, (i + 1 + f)Ts] (i.e. over the current symbol period and

f future periods), assuming that reliable hard decisions are
available for the past bits (i.e., up to bit i− 1). While optimal
equalization in this class (which we could term the MAP-
DFE) is less complex than full BCJR equalization, simulation-
based evaluation of the BER as a building block for optimizing
thresholds is still too cumbersome. Instead, we define a metric
which measures the degree of statistical overlap between
the observations corresponding to the different values of the
current bit. We note that errors in decoding are made when bits
0 and 1 result in similar observations y, and define a metric
which computes the probability of this event:

average probability of overlap ∝∑
past bits

∑
y

p(y|b = 0; past bits) p(y|b = 1; past bits) (22)

The metric (22) can be computed with complexity scaling
linearly with the number of slicers ns (in contrast to the
exponential complexity in ns of a single run of BER sim-
ulations of the MAP-DFE decoder). For the values of interest
(L, f ∼ 4−7) considered in this paper, the proposed metric can
be computed quickly enough to enable repeated evaluations
over a space-time grid. It forms the basis for the greedy
iterative algorithm discussed next. Due to space limitations, we
omit the details of the evaluation of (22) and the complexity
analysis.
Iterative Algorithm: The problem of choosing locations for a
given number (ns) of slicers can be broken down as follows:
suppose we have already placed k slicers, what is the best
spatio-temporal location for the (k+1)th slicer? To find that we
grid the amplitude-time space and for each grid cell compute
the metric (c) corresponding to the configuration produced
by placing the new slicer at that location. We pick the grid
cell that results in the lowest metric and iterate. For our
simulations, we have used a fine grid for the amplitude and a
coarse one for time (size Ts/10, which corresponds to 10 ps
for symbol rate of 10 Gbps). At some iterations there may be
more than one minimum with the same magnitude, in which
case we choose them all to place more than one slicers. Figure
(2) shows the final slicer structures obtained for a few different
values of ns and the corresponding BER plots. Note that
the configurations obtained are a mixture of the two extreme
structures of a flash ADC and 1-bit measurements. Also note
the higher concentration of the slicers near the zero threshold
(similar to the better performing non-uniform ADC thresholds
found in [9][8]). We observe that the generalized structure with
14 slicers results in 3-5dB SNR gains at the BER of 10−3

compared to a conventional 4-bit uniform ADC that uses 15
slicers. There are considerable savings in terms of the number
of slicers required to achieve a similar performance, we see
that 9-10 slicers achieve similar error rates at high SNRs (we
still see performance gains at low SNRs). The 1-bit structure
(slicers picked randomly as discussed in the previous section)
seems to perform marginally better at low SNR (due to a larger
number of independent measurements), but is the slowest to
attain BERs below 10−5. Thus, despite the suboptimal nature



of the optimization scheme used (our metric is only indirectly
related to the BER, and we employ a greedy algorithm), these
numerical results on BCJR performance show that carefully
designed space-time slicer architectures can lead to more effi-
cient extraction of digital information from the analog signals.
Remarks: Note that we have assumed independence of noise
across different time instants for designing the thresholds and
performing equalization. This has allowed us to extend the
unquantized BCJR algorithm in a straightforward manner for
the generalized architecture by treating the outputs of slicers
sampling at different times independently. However in an
actual system we expect the bandwidth of the frontend filter
to be only as wide as the symbol rate which will introduce
significant noise correlations across sub-nyquist samples. Sim-
ulating the system with correlated noise but using the BCJR
algorithm assuming independence results in BER curves for
the generalized structure (shown in gray for 14 slicers in Fig.
(2)) that are closer to the 4-bit ADC case, for which the BCJR
algorithm is still correct. Hence an important topic for future
work is to devise a modification of the BCJR that exploits
these noise correlations.
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Fig. 2. (a) BER plots for channel = (.0949 .2539 .1552 .0793 .0435 .0356)
(b) channel = (.227 .46 .688 .46 .227) (c,d) Generalized slicer locations
picked by the iterative algorithm (run at 10 dB) (Values inside the bracket in
the legend in subplots (a, b) denote the number of slicers (ns). Curve in gray
corresponds to 14 generalized slicers with correlated noise)

V. CONCLUSIONS AND FUTURE WORK

While a dispersive channel increases the dynamic range of
a communication signal, we have shown that the information
in the transmitted data can be recovered from one-bit slicers
dispersed over space and time. For a given BER performance,

optimization of this architecture results in a reduction in the
number of slicers, and hence potential power savings, relative
to a standard flash ADC. Of course, much further design
and analysis is required to determine whether the proposed
approach indeed results in improved overall performance. For
example, the effects of slicer metastability (i.e., uncertainty in
digital output when the sample value is close to the threshold)
and errors in sampling phases must be accounted for. It is also
important to devise low-complexity nonlinear equalizers, since
the complexity of the BCJR algorithm used in our results here
grows exponentially with channel memory and constellation
size.
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