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Abstract—As communication systems scale up in speed and
bandwidth, the cost and power consumption of high-precision
(e.g., 8-12 bits) analog-to-digital conversion (ADC) becomes the
limiting factor in modern transceiver architectures based on
digital signal processing. In this work, we explore the impact
of lowering the precision of the ADC on the performance of the
communication link. Specifically, we evaluate the communication
limits imposed by low-precision ADC (e.g., 1-3 bits) for transmis-
sion over the real discrete-time Additive White Gaussian Noise
(AWGN) channel, under an average power constraint on the input.
For an ADC with K quantization bins (i.e., a precision of log2 K
bits), we show that the input distribution need not have any more
than K+1 mass points to achieve the channel capacity. For 2-bin
(1-bit) symmetric quantization, this result is tightened to show
that binary antipodal signaling is optimum for any signal-to-
noise ratio (SNR). For multi-bit quantization, a dual formulation
of the channel capacity problem is used to obtain tight upper
bounds on the capacity. The cutting-plane algorithm is employed
to compute the capacity numerically, and the results obtained are
used to make the following encouraging observations : (a) up to a
moderately high SNR of 20 dB, 2-3 bit quantization results in only
10-20% reduction of spectral efficiency compared to unquantized
observations, (b) standard equiprobable pulse amplitude modu-
lated input with quantizer thresholds set to implement maximum
likelihood hard decisions is asymptotically optimum at high SNR,
and works well at low to moderate SNRs as well.

Index Terms—Channel Capacity, Optimum Input Distribution,
AWGN Channel, Analog to Digital Converter, Quantization.

I. INTRODUCTION

Digital signal processing (DSP) forms the core of mod-
ern digital communication receiver implementations, with the
analog baseband signal being converted to digital form us-
ing analog-to-digital converters (ADCs) which typically have
fairly high (e.g., 8-12 bits) precision. Operations such as
synchronization, equalization and demodulation are then per-
formed in the digital domain, greatly enhancing the flexibility
available to the designer. The continuing exponential advances
in digital electronics, often summarized by Moore’s “law” [1],
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imply that integrated circuit implementations of such DSP-
centric architectures can be expected to continue scaling up
in speed and down in cost. However, as the bandwidth of
a communication system increases, accurate conversion of
the analog received signal into digital form requires high-
precision, high-speed ADC, which is costly and power-hungry
[2]. One possible approach for designing such high-speed
systems is to drastically reduce the number of bits of ADC
precision (e.g., to 1-3 bits) as sampling rates scale up. Such
a design choice has significant implications for all aspects of
receiver design, including carrier and timing synchronization,
equalization, demodulation and decoding. However, before
embarking on a comprehensive rethinking of communication
system design, it is important to understand the fundamen-
tal limits on communication performance imposed by low-
precision ADC. In this paper, we take a first step in this
direction, investigating Shannon-theoretic performance limits
for the following idealized model : linear modulation over
a real baseband Additive White Gaussian Noise (AWGN)
channel, with symbol rate Nyquist samples quantized by a
low-precision ADC at the receiver. This induces a discrete-
time memoryless AWGN-Quantized Output channel, which is
depicted in Figure 1. Under an average power constraint on
the input, we obtain the following results:

1) For K-bin (i.e., log2 K bits) output quantization, we
prove that the input distribution need not have any
more than K + 1 mass points to achieve the channel
capacity. (Numerical computation of optimal input
distributions reveals that K mass points are sufficient.)
An intermediate result of interest is that, when the
AWGN channel output is quantized with finite-precision,
an average power constraint on the input leads to an
implicit peak power constraint, in the sense that an
optimal input distribution must have bounded support.

2) For 1-bit symmetric quantization, the preceding result
is tightened analytically to show that binary antipodal
signaling is optimal for any signal-to-noise ratio (SNR).

3) For multi-bit quantizers, tight upper bounds on capacity
are obtained using a dual formulation of the channel
capacity problem. Near-optimal input distributions
that approach these bounds are computed using the
cutting-plane algorithm [3].

4) While the preceding results optimize the input
distribution for a fixed quantizer, comparison with
an unquantized system requires optimization over the
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Fig. 1. Y = Q(X +N) : The AWGN-Quantized Ouput channel induced by
the output quantizer Q.

choice of the quantizer as well. We numerically obtain
optimal 2-bit and 3-bit symmetric quantizers.

5) From our numerical results, we infer that the use of low-
precision ADC incurs a relatively small loss in spectral
efficiency compared to unquantized observations. For
example, at 0 dB SNR, a receiver with 2-bit ADC
achieves 95% of the spectral efficiency attained with
unquantized observations. Even at a moderately high
SNR of 20 dB, a receiver with 3-bit ADC achieves
85% of the spectral efficiency attained with unquantized
observations. This indicates that DSP-centric design
based on low-precision ADC is indeed attractive as
communication bandwidths scale up, since the small loss
in spectral efficiency should be acceptable in this regime.
Furthermore, we observe that a “sensible” choice of
standard equiprobable pulse amplitude modulated
(PAM) input with ADC thresholds set to implement
maximum likelihood (ML) hard decisions achieves per-
formance which is quite close to that obtained by numer-
ical optimization of the quantizer and input distribution.

Related Work: For a discrete memoryless channel (DMC),
Gallager first showed that the number of input points with
nonzero probability mass need not exceed the cardinality
of the output [4, p. 96, Corollary 3]. In our setting, the
input alphabet is not a priori discrete, and there is a power
constraint, so that the result in [4] does not apply. Our key
result on the achievability of the capacity by a discrete input
is actually inspired by Witsenhausen’s result in [5], where
Dubins’ theorem [6] was used to show that the capacity of
a discrete-time memoryless channel with output cardinality
K, under a peak power constraint is achievable by a discrete
input with at most K points. The key to our proof is to show
that under output quantization, an average power constraint
automatically induces a peak power constraint, after which
we can use Dubins’ theorem in a manner similar to the
development in [5] to show that K + 1 mass points suffice
to achieve the average power constrained capacity.

Prior work on the effect of reduced ADC precision on
channel capacity with fixed input distribution includes [7], [8],
[9]. However, other than our own results reported earlier in
[10], [11], [12], we are not aware of an information-theoretic
investigation with low-precision ADC that includes optimiza-
tion of the input distribution. Another related class of problems
that deserves mention relates to the impact of finite-precision
quantization on the information-theoretic measure of channel
cut-off rate rather than channel capacity (see, e.g. [13], [14]).

Given the encouraging results here, it becomes important to
explore the impact of low-precision ADC on receiver tasks
such as synchronization and equalization, which we have
ignored in our idealized model (essentially assuming that these
tasks have somehow already been accomplished). Related
work on estimation using low-precision samples which may be
relevant for this purpose includes the use of dither for signal
reconstruction [15], [16], [17], frequency estimation using 1-
bit ADC [18], [19], choice of quantization threshold for signal
amplitude estimation [20], and signal parameter estimation
using 1-bit dithered quantization [21], [22].

Organization of the Paper: The rest of the paper is
organized as follows. In Section II, we describe the channel
model and present results concerning the structure of the
optimal input distributions. In Section III, we discuss capacity
computation, including duality-based upper bounds on capac-
ity. Numerical results are provided in Section IV, followed by
the conclusions in Section V.

II. CHANNEL MODEL AND STRUCTURE OF OPTIMAL
INPUT DISTRIBUTIONS

We consider linear modulation over a real AWGN channel,
with symbol rate Nyquist samples quantized by a K-bin quan-
tizer Q at the receiver. This induces the following discrete-time
memoryless AWGN-Quantized Output (AWGN-QO) channel

Y = Q (X + N) . (1)

Here X ∈ R is the channel input with cumulative distribution
function F (x), Y ∈ {y1, · · · , yK} is the (discrete) channel
output, and N is N (0, σ2) (the Gaussian random variable with
mean 0 and variance σ2). Q maps the real valued input X +
N to one of the K bins, producing a discrete output Y . In
this work, we only consider quantizers for which each bin is
an interval of the real line. The quantizer Q with K bins is
therefore characterized by the set of its (K − 1) thresholds
qqq := [q1, q2, · · · , qK−1] ∈ RK−1, such that −∞ := q0 <
q1 < q2 < · · · < qK−1 < qK := ∞. The output Y is assigned
the value yi when the quantizer input (X + N) falls in the
ith bin, which is given by the interval (qi−1, qi]. The resulting
transition probability functions are

Wi(x) = P(Y = yi|X = x)

= Q

(
qi−1 − x

σ

)
−Q

(
qi − x

σ

)
, 1 ≤ i ≤ K,

(2)

where Q(·) is the complementary Gaussian distribution func-
tion,

Q(z) =
1√
2π

∫ ∞

z

exp(−t2/2)dt . (3)

The Probability Mass Function (PMF) of the output Y , corre-
sponding to the input distribution F is

R(yi;F ) =
∫ ∞

−∞
Wi(x)dF (x), 1 ≤ i ≤ K, (4)
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and the input-output mutual information I(X; Y ), expressed
explicitly as a function of F is

I(F ) =
∫ ∞

−∞

K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )
dF (x) .1 (5)

Under an average power constraint P , we wish to find the
capacity of the channel (1), given by

C = sup
F∈F

I(F ), (6)

where F =
{

F : E[X2] =
∫∞
−∞ x2dF (x) ≤ P

}
, i.e., the set

of all average power constrained distributions on R.

Structural Properties of Optimal Inputs: We begin by em-
ploying the Karush-Kuhn-Tucker (KKT) optimality condition
to show that, even though we have not imposed a peak power
constraint on the input, it is automatically induced by the
average power constraint. Specifically, a capacity achieving
distribution for the AWGN-QO channel (1) must have bounded
support. 2

A. An Implicit Peak Power Constraint

Using convex optimization principles, the following
necessary and sufficient KKT optimality condition can
be derived for our problem, in a manner similar to the
development in [25], [26]. An input distribution F ∗ achieves
the capacity C in (6) if and only if there exists γ ≥ 0 such that

K∑

i=1

Wi(x) log
Wi(x)

R(yi; F ∗)
+ γ(P − x2) ≤ C (7)

for all x, with equality if x is in the support 3 of F ∗, where
the transition probability function Wi(x), and the output prob-
ability R(yi; F ∗) are as specified in (2) and (4), respectively.

The summation on the left-hand side (LHS) of (7) is the
Kullback-Leibler divergence (or the relative entropy) between
the transition PMF {Wi(x), i = 1, . . . , K} and the output
PMF {R(yi; F ), i = 1, . . . , K}. For convenience, let us denote
this divergence function by d(x; F ), that is,

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )
. (8)

We begin by studying the behavior of this function in the
limit as x →∞.

Lemma 1: For the AWGN-QO channel (1), the divergence
function d(x;F ) satisfies the following properties
(a) lim

x→∞
d(x;F ) = − log R(yK ; F ).

(b) There exists a finite constant A0 such that
for x > A0, d(x; F ) < − log R(yK ;F ).4

1The logarithm is base 2 throughout the paper, so the mutual information
is measured in bits.

2That there exists a capacity achieving distribution follows by standard
function analytic arguments [23]. For details, see our technical report [24].

3The support of a distribution F (or the set of increase points of F ) is the
set SX(F ) = {x : F (x + ε)− F (x− ε) > 0, ∀ε > 0}.

4The constant A0 depends on the choice of the input F . For notational
simplicity, we do not explicitly show this dependence.

Proof: We have

d(x;F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi; F )

=
K∑

i=1

Wi(x) log Wi(x)−
K∑

i=1

Wi(x) log R(yi;F ) .

As x → ∞, the PMF {Wi(x), i = 1, . . . , K} → 1(i = K),
where 1(·) is the indicator function. This observation,
combined with the fact that the entropy of a finite alphabet
random variable is a continuous function of its probability law,
gives lim

x→∞
d(x;F ) = 0− log R(yK ;F ) = − log R(yK ; F ).

Next we prove part (b). For x > qK−1, Wi(x) is a strictly
decreasing function of x for i ≤ K− 1 and strictly increasing
function of x for i = K. Since {Wi(x)} → 1(i = K) as
x → ∞, it follows that there is a constant A0 such that
Wi(A0) < R(yi;F ) for i ≤ K−1 and WK(A0) > R(yK ;F ).
Therefore, it follows that for x > A0,

d(x; F ) =
K∑

i=1

Wi(x) log
Wi(x)

R(yi;F )

< WK(x) log
WK(x)

R(yK ;F )
< − log R(yK ;F ).

The saturating nature of the divergence function for the
AWGN-QO channel, as stated above, coupled with the KKT
condition, is now used to prove that a capacity achieving
distribution must have bounded support.

Proposition 1: For the average power constrained AWGN-
QO channel (1), an optimal input distribution must have
bounded support.

Proof: Let F ∗ be an optimal input, so that there exists
γ ≥ 0 such that (7) is satisfied with equality at every point
in the support of F ∗. We exploit this necessary condition to
show that the support of F ∗ is upper bounded. Specifically,
we prove that there exists a finite constant A2

∗ such that it is
not possible to attain equality in (7) for any x > A2

∗.
From Lemma 1, we get lim

x→∞
d(x;F ∗)=− log R(yK ; F ∗)=:L.

Also, there exists a finite constant A0 such that for
x > A0, d(x; F ∗) < L.

We consider two possible cases.
• Case 1: γ > 0.

For x > A0, we have d(x; F ∗) < L.
For x >

√
max{0, (L− C + γP )/γ} =: Ã, we have

γ(P − x2) < C − L.
Defining A∗2 = max{A0, Ã}, we get the desired result.

• Case 2: γ = 0.
Since γ = 0, the KKT condition (7) reduces to

d(x;F ∗) ≤ C , ∀x.

Taking limit x →∞ on both sides, we get
L = lim

x→∞
d(x;F ∗) ≤ C.

Hence, choosing A∗2 = A0, for x > A∗2 we get,
d(x; F ∗) < L ≤ C, that is, d(x; F ∗) + γ(P − x2) < C.

Combining the two cases, we have shown that the support
of the distribution F ∗ has a finite upper bound A2

∗. Using
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similar arguments, it can easily be shown that the support of
F ∗ has a finite lower bound A1

∗ as well, which implies that
F ∗ has bounded support.

B. Achievability of Capacity by a Discrete Input

In [5], Witsenhausen considered a stationary discrete-time
memoryless channel, with a continuous input X taking
values on the bounded interval [A1, A2] ⊂ R, and a discrete
output Y of finite cardinality K. Using Dubins’ theorem
[6], it was shown that if the transition probability functions
are continuous (i.e., Wi(x) is continuous in x, for each
i = 1, · · · ,K), then the capacity is achievable by a discrete
input distribution with at most K mass points. As stated
in Proposition 2 below (proved in Appendix A), this result
can be extended to show that, if an additional average
power constraint is imposed on the input, the capacity is then
achievable by a discrete input with at most K +1 mass points.

Proposition 2: Consider a stationary discrete-time memo-
ryless channel with a continuous input X that takes val-
ues in the bounded interval [A1, A2], and a discrete output
Y ∈ {y1, y2, · · · , yK}. Let the channel transition probability
function Wi(x) = P(Y = yi|X = x) be continuous in x for
each i, where 1 ≤ i ≤ K. The capacity of this channel, under
an average power constraint on the input, is achievable by a
discrete input distribution with at most K + 1 mass points.

Proof: See Appendix A.
Proposition 2, coupled with the implicit peak power con-

straint derived in the previous subsection (Proposition 1), gives
us the following result.

Theorem 1: The capacity of the average power constrained
AWGN-QO channel (1) is achievable by a discrete input
distribution with at most K + 1 points of support.

Proof: From Proposition 1, we know that an optimal
input F ∗ has bounded support [A1

∗, A2
∗]. Hence, to obtain

the capacity in (6), we can maximize I(F ) over only those
average power constrained distributions that have support in
[A1

∗, A2
∗]. Since the transition functions Wi(x) are continu-

ous, Proposition 2 guarantees that this maximum is achievable
by a discrete input with at most K + 1 points.

C. Symmetric Inputs for Symmetric Quantization

For our capacity computations ahead, we assume that the
quantizer Q employed in (1) is symmetric, i.e., its threshold
vector qqq is symmetric about the origin. Given the symmetric
nature of the AWGN noise and the power constraint, it seems
intuitively plausible that restriction to symmetric quantizers
should not be suboptimal from the point of view of optimizing
over the quantizer choice in (1), although a proof of this
conjecture has eluded us. However, once we assume that the
quantizer in (1) is symmetric, we can restrict attention to only
symmetric inputs without loss of optimality, as stated in the
following Lemma.5

Lemma 2: If the quantizer in (1) is symmetric, then, without
loss of optimality, we can consider only symmetric inputs for
the capacity computation in (6).

5A random variable X (with distribution F) is symmetric if X and −X
have the same distribution, that is, F (x) = 1− F (−x), ∀ x ∈ R.

Proof: Suppose we are given an input random variable X (with
distribution F ) that is not necessarily symmetric. Denote the
distribution of −X by G (so that G(x) = 1− F (−x), ∀ x ∈
R). Due to the symmetric nature of the noise N and the
quantizer Q, it is easy to see that X and −X result in the
same input-output mutual information, that is, I(F ) = I(G).
Consider now the following symmetric mixture distribution

F̃ (x) =
F (x) + G(x)

2
.

Since the mutual information is concave in the input distri-
bution, we get I(F̃ ) ≥ I(F )+I(G)

2 = I(F ), which proves the
desired result.

III. CAPACITY COMPUTATION

In this section, we consider capacity computation for the
AWGN-QO channel. We first provide an explicit capacity
formula for the extreme scenario of 1-bit symmetric quanti-
zation, and then discuss numerical computations for multi-bit
quantization.

A. 1-bit Symmetric Quantization : Binary Antipodal Signaling
is Optimal

With 1-bit symmetric quantization, the channel is

Y = sign(X + N). (9)

Theorem 1 (Section II-B) guarantees that the capacity of this
channel, under an average power constraint, is achievable by
a discrete input distribution with at most 3 points. This result
is further tightened by the following theorem that shows the
optimality of binary antipodal signaling for all SNRs.

Theorem 2: For the 1-bit symmetric quantized channel
model (9), the capacity is achieved by binary antipodal sig-
naling and is given by

C = 1− h
(
Q

(√
SNR

))
, SNR =

P

σ2
,

where h(·) is the binary entropy function,

h(p) = −p log(p)− (1− p) log(1− p) , 0 ≤ p ≤ 1 ,

and Q(·) is the complementary Gaussian distribution function
shown in (3).

Proof: Since Y is binary it is easy to see that

H(Y |X) = E
[
h

(
Q

(
X

σ

))]
,

where E denotes the expectation operator. Therefore

I(X, Y ) = H(Y )− E
[
h

(
Q

(
X

σ

))]
,

which we wish to maximize over all input distributions
satisfying E[X2] ≤ P . Since the quantizer is symmetric, we
can restrict attention to symmetric input distributions without
loss of optimality (cf. Lemma 2). On doing so, we obtain
that the PMF of the output Y is also symmetric (since the
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quantizer and the noise are already symmetric). Therefore,
H(Y ) = 1 bit, and we get

C = 1− min
X symmetric
E[X2]≤P

E
[
h

(
Q

(
X

σ

))]
.

Since h(Q(z)) is an even function, we get that

H(Y |X) = E
[
h

(
Q

(
X

σ

))]
= E

[
h

(
Q

( |X|
σ

))]
.

In [24], we show that the function h(Q(
√

z)) is convex in z.
Jensen’s inequality [27] thus implies

H(Y |X) ≥ h
(
Q

(√
SNR

))

with equality iff X2 = P . Coupled with the symmetry
condition on X , this implies that binary antipodal signaling
achieves capacity and the capacity is

C = 1− h
(
Q

(√
SNR

))
.

B. Multi-Bit Quantization

We now consider K-bin symmetric quantization for K > 2.
Every choice of the quantizer results in a unique channel
model (1). In this section, we discuss capacity computation
assuming a fixed quantizer only. Optimization over the quan-
tizer choice is performed in Section IV.

1) Capacity computation using cutting-plane algorithm:
Contrary to the 1-bit case, closed form expressions for optimal
input and capacity appear unlikely for multi-bit quantization,
due to the complicated expression for mutual information.
We therefore resort to the cutting-plane algorithm [3, Sec IV-
A] to generate optimal inputs numerically. For channels with
continuous input alphabets, the cutting-plane algorithm can,
in general, be used to generate nearly optimal discrete input
distributions. It is therefore well matched to our problem, for
which we already know that the capacity is achievable by a
discrete input distribution.

For our simulations, we fix the noise variance σ2 = 1, and
vary the power P to obtain capacity at different SNRs. To
apply the cutting-plane algorithm, we take a fine quantized
discrete grid on the interval [−10

√
P , 10

√
P ], and optimize

the input distribution over this grid. Note that Proposition 1
(Section II-A) tells us that an optimal input distribution for
our problem must have bounded support, but it does not give
explicit values that we can use directly in our simulations.
However, on employing the cutting-plane algorithm over the
interval [−10

√
P , 10

√
P ], we find that the resulting input dis-

tributions have support sets well within this interval. Moreover,
increasing the interval length further does not change these
results.

While the cutting-plane algorithm optimizes the distribution
of the channel input, a dual formulation of the channel capacity
problem, involving an optimization over the output distribu-
tion, can alternately be used to obtain easily computable tight
upper bounds on the capacity. We discuss these duality-based
upper bounds next.
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Fig. 2. Probability mass function of the optimal input generated by the
cutting-plane algorithm [3] at various SNRs, for the 2-bit symmetric quantizer
with thresholds {−2, 0, 2}. (noise variance σ2 = 1.)

2) Duality-based upper bound on channel capacity:
In the dual formulation of the channel capacity problem, we
focus on the distribution of the output, rather than that of the
input. Specifically, assume a channel with input alphabet X ,
transition law W (y|x), and an average power constraint P .
Then, for every choice of the output distribution R(y), we
have the following upper bound on the channel capacity C

C ≤ U(R) = min
γ≥0

sup
x∈X

[D(W (·|x)||R(·))+γ(P −x2)] , (10)

where γ is a Lagrange parameter, and D(W (·|x)||R(·)) is
the divergence between the transition and output distributions.
While [28] provides this bound for a discrete channel, its
extension to continuous alphabet channels has been established
in [29]. For a more detailed perspective on duality-based upper
bounds, see [30].

For an arbitrary choice of R(y), the bound (10) might be
quite loose. Therefore, to obtain a tight upper bound, we may
need to evaluate (10) for a large number of output distributions
and pick the minimum of the resulting upper bounds. This
could be tedious in general, especially if the output alphabet
is continuous. However, for the channel model we consider,
the output alphabet is discrete with small cardinality. For
example, for 2-bit quantization, the space of all symmetric
output distributions is characterized by a single parameter
α ∈ (0, 0.5). This makes the dual formulation attractive, since
we can easily obtain a tight upper bound on capacity by
evaluating the upper bound in (10) for different choices of α.

It remains to specify how to compute the upper bound
(10) for a given output distribution R. The structure of the
divergence function D(W (·|x)||R(·)) for our problem can be
exploited to develop a systematic procedure for this purpose.
We refer the reader to [24] for details of this procedure, and
proceed directly to the numerical results.

3) Numerical example: We compare results obtained
using the cutting-plane algorithm with capacity upper bounds
obtained using the dual formulation. We consider 2-bit
quantization, and provide results for the specific choice of
quantizer having thresholds at {−2, 0, 2}.

The input distributions generated by the cutting-plane algo-
rithm at various SNRs (setting σ2 = 1) are shown in Figure 2,
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SNR(dB) −5 0 5 10 15 20
Upper Bound 0.163 0.406 0.867 1.386 1.513 1.515

MI 0.155 0.405 0.867 1.379 1.484 1.484

TABLE I
DUALITY-BASED UPPER BOUNDS ON CHANNEL CAPACITY, COMPARED

WITH THE MUTUAL INFORMATION (MI) ACHIEVED BY THE
DISTRIBUTIONS GENERATED USING THE CUTTING-PLANE ALGORITHM.

and the mutual information achieved by them is given in Table
I. As predicted by Theorem 1 (Section II-B), the support set
of the input distribution (at each SNR) has cardinality ≤ 5.

For upper bound computations, we evaluate (10) for differ-
ent symmetric output distributions. For 2-bit quantization, the
set of symmetric outputs is characterized by just one parameter
α ∈ (0, 0.5), with the probability distribution on the output
being {0.5−α, α, α, 0.5−α}. We vary α over a fine discrete
grid on (0, 0.5), and compute the upper bound for each value
of α. The least upper bound achieved thus, at a number of
different SNRs, is shown in Table I. The small gap between the
upper bound and the mutual information (at every SNR) shows
the tightness of the obtained upper bounds, and also confirms
the near-optimality of the input distributions generated by the
cutting-plane algorithm.

It is insightful to verify that the preceding near-optimal
input distributions satisfy the KKT condition (7). For instance,
consider an SNR of 5 dB, for which the input distribution
generated by the cutting-plane algorithm has support set
{−2.86,−0.52, 0.52, 2.86}. Figure 3 plots, as a function of
x, the LHS of (7) for this input distribution. (The value of γ
used in the plot was obtained by equating the LHS of (7) to
the capacity value of 0.867, at x = 0.52 .) The KKT condition
is seen to be satisfied (up to the numerical precision of our
computations), as the LHS of (7) equals the capacity at points
in the support set of the input, and is less than the capacity
everywhere else. Note that we show the plot for x ≥ 0 only
because it is symmetric in x.

IV. QUANTIZER OPTIMIZATION AND NUMERICAL
RESULTS

Until now, we have addressed the problem of optimizing the
input distribution for a fixed output quantizer. In this section,
we optimize over the choice of the quantizer, and present
numerical results for 2-bit and 3-bit symmetric quantization.

A Simple Benchmark Input-Quantizer Pair: While an op-
timal quantizer, along with a corresponding optimal input
distribution, provides the absolute communication limits for
our model, we do not have a simple analytical characteriza-
tion of their dependence on SNR. From a system designer’s
perspective, therefore, it is of interest to also examine subop-
timal choices that are easy to adapt as a function of SNR,
as long as the penalty relative to the optimal solution is
not excessive. Specifically, we take the following input and
quantizer pair to be our benchmark strategy : for a K-bin
quantizer, consider equiprobable, equispaced K-PAM (pulse
amplitude modulated) input, with quantizer thresholds chosen
to be the mid-points of the input mass point locations. That
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Fig. 3. The left-hand side of the KKT condition (7) for the input distribution
generated by the cutting-plane algorithm (SNR = 5 dB). The KKT condition
is seen to be satisfied (up to the numerical precision of our computations).

is, the quantizer thresholds correspond to the ML (maximum
likelihood) hard decision boundaries. Both the input mass
points and the quantizer thresholds have a simple, well-defined
dependence on SNR, and can therefore be adapted easily at
the receiver based on the measured SNR. With our K-point
uniform PAM input, we have the entropy H(X) = log2 K
bits for any SNR. Also, it is easy to see that as SNR → ∞,
H(X|Y ) → 0 for the benchmark input-quantizer pair. This
implies that the benchmark scheme is near-optimal if we
operate at high SNR. The issue to investigate therefore is how
much gain an optimal quantizer and input pair provides over
this benchmark at low to moderate SNR. Note that, for 1-bit
symmetric quantization, the benchmark input corresponds to
binary antipodal signaling, which has already been shown to
be optimal for all SNRs.

As before, we set the noise variance σ2 = 1 for conve-
nience. Of course, the results are scale-invariant, in the sense
that if both P and σ2 are scaled by the same factor R (thus
keeping the SNR unchanged), then there is an equivalent
quantizer (obtained by scaling the thresholds by

√
R) that

gives identical performance.

A. 2-Bit Symmetric Quantization

A 2-bit symmetric quantizer is characterized by a single
parameter q, with the quantizer thresholds being {−q, 0, q}.
We therefore employ a brute force search over q to find an
optimal 2-bit symmetric quantizer. In Figure 4, we plot the
variation of the channel capacity (computed using the cutting-
plane algorithm) as a function of the parameter q at various
SNRs. Based on our simulations, we make the following
observations:
• For any SNR, there is an optimal choice of q which

maximizes capacity. For the benchmark quantizer (which
is optimal at high SNR), q scales as

√
SNR, hence it is not

surprising to note that the optimal value of q we obtain
increases monotonically with SNR at high SNR.
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Fig. 4. 2-bit symmetric quantization : channel capacity (in bits per channel
use) as a function of the quantizer threshold q. (noise variance σ2 = 1.)

• For low SNRs, the variation in the capacity as a function
of q is quite small, whereas the variation becomes appre-
ciable as the SNR increases. A practical implication of
this observation is that imperfections in Automatic Gain
Control (AGC) have more severe consequences at higher
SNRs.

• For any SNR, as q → 0 or q →∞, we approach the same
capacity as with 1-bit symmetric quantization (not shown
for q →∞ in the plots for 10 and 15 dB in Figure 4). This
conforms to intuition: q = 0 reduces the 2-bit quantizer
to a 1-bit quantizer, while q →∞ renders the thresholds
at −q and q ineffective in distinguishing between two
finite valued inputs, so that only the comparison with the
quantizer threshold at 0 yields useful information.

Comparison with the Benchmark: In Table II, we compare
the performance of the preceding optimal solutions with the
benchmark scheme (see the relevant columns for 2-bit ADC).
The corresponding plots are shown in Figure 6. In addition to
being nearly optimal at high SNR, the benchmark scheme is
seen to perform fairly well at low to moderate SNR as well.
For instance, even at -10 dB SNR, which might correspond to a
wideband system designed for very low bandwidth efficiency,
it achieves 86% of the capacity achieved with optimal choice
of 2-bit quantizer and input distribution. On the other hand, for
SNR of 0 dB or above, the capacity is better than 95% of the
optimal. These results are encouraging from a practical stand-
point, given the ease of implementing the benchmark scheme.

Optimal Input Distributions: It is interesting to examine
the optimal input distributions (given by the cutting-plane
algorithm) corresponding to the optimal quantizers obtained
above. Figure 5 shows these distributions, along with optimal
quantizer thresholds, for different SNRs. The solid vertical
lines show the locations of the input distribution points and
their probabilities, while the quantizer thresholds are depicted
by the dashed vertical lines. As expected, binary signaling
is found to be optimal for low SNR, since it would be
difficult for the receiver to distinguish between multiple input
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Fig. 5. 2-bit symmetric quantization : optimal input distribution (solid vertical
lines) and quantizer thresholds (dashed vertical lines) at various SNRs.

points located close to each other. The number of mass points
increases as SNR is increased, with a new point emerging
at 0. On increasing SNR further, we see that the non zero
constellation points (and also the quantizer thresholds) move
farther apart, resulting in increased capacity. When the SNR
becomes enough that four input points can be disambiguated,
the point at 0 disappears, and we get two new points, resulting
in a 4-point constellation. The eventual convergence of this 4-
point constellation to uniform PAM with mid-point quantizer
thresholds (i.e., the benchmark scheme) is to be expected,
since the benchmark scheme approaches the capacity bound of
two bits at high SNR. It is worth noting that the optimal inputs
we obtained all have at most four points, even though Theorem
1 (Section II-B) is looser, guaranteeing the achievability of
capacity by at most five points.

B. 3-bit Symmetric Quantization

For 3-bit symmetric quantization, we need to optimize over
a space of 3 parameters : {0 < q1 < q2 < q3}, with the
quantizer thresholds being {0,±q1,±q2,±q3}. Since brute
force search is computationally complex, we investigate an
alternate iterative optimization procedure for joint optimization
of the input and the quantizer in this case. Specifically, we
begin with an initial quantizer choice Q1, and then iterate as
follows (starting at i = 1)
• For the quantizer Qi, find an optimal input. Call this input

Fi.
• For the input Fi, find a locally optimal quantizer, initial-

izing the search at Qi. Call the resulting quantizer Qi+1.
• Repeat the first two steps with i = i + 1.

We terminate the process when the capacity gain between
consecutive iterations becomes less than a small threshold ε.

Although the input-output mutual information is a concave
functional of the input distribution (for a fixed quantizer), it
is not guaranteed to be concave jointly over the input and the
quantizer. Hence, the iterative procedure is not guaranteed to
provide an optimal input-quantizer pair in general. A good
choice of the initial quantizer Q1 is crucial to enhance the
likelihood that it does converge to an optimal solution. We
discuss this next.
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SNR 1-bit ADC 2-bit ADC SNR 3-bit ADC Unquantized
(in dB) Optimal AQNM Optimal Benchmark AQNM (in dB) Optimal Benchmark AQNM

-20 0.005 0.007 0.006 0.005 0.007 -20 0.007 0.005 0.007 0.007
-10 0.045 0.067 0.061 0.053 0.068 -10 0.067 0.056 0.069 0.069
-5 0.135 0.185 0.179 0.166 0.195 -5 0.193 0.177 0.197 0.198
0 0.369 0.424 0.455 0.440 0.479 0 0.482 0.471 0.494 0.500
3 0.602 0.610 0.693 0.687 0.736 3 0.759 0.744 0.777 0.791
5 0.769 0.733 0.889 0.869 0.931 5 0.975 0.955 1.002 1.029
7 0.903 0.843 1.098 1.064 1.133 7 1.215 1.180 1.248 1.294
10 0.991 0.972 1.473 1.409 1.417 10 1.584 1.533 1.634 1.730
12 0.992 1.032 1.703 1.655 1.579 12 1.846 1.766 1.886 2.037
15 1.000 1.091 1.930 1.921 1.765 15 2.253 2.138 2.232 2.514
17 1.000 1.115 1.987 1.987 1.853 17 2.508 2.423 2.427 2.838
20 1.000 1.136 1.999 1.999 1.938 20 2.837 2.808 2.655 3.329

TABLE II
PERFORMANCE COMPARISON : FOR 1, 2, AND 3−BIT ADC, THE TABLE SHOWS THE MUTUAL INFORMATION (IN BITS PER CHANNEL USE) ACHIEVED BY

THE OPTIMAL SOLUTIONS, AS WELL AS THE BENCHMARK SOLUTIONS. ALSO SHOWN ARE THE CAPACITY ESTIMATES OBTAINED BY ASSUMING THE
ADDITIVE QUANTIZATION NOISE MODEL (AQNM). (NOTE THAT FOR 1-BIT ADC, THE BENCHMARK SOLUTION COINCIDES WITH THE OPTIMAL

SOLUTION, AND HENCE IS NOT SHOWN SEPARATELY.)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR (dB)

C
a

p
a

ci
ty

 (
b

its
/c

h
a

n
n

e
l u

se
)

1−bit ADC
(optimal)

2−bit ADC
(optimal and PAM / ML)

3−bit ADC
(optimal and PAM / ML)

Unquantized

Fig. 6. Capacity plots for different ADC precisions. For 2 and 3-bit ADC,
solid curves correspond to optimal solutions, while dashed curves show the
performance of the benchmark scheme (PAM input with ML quantization).

High SNR Regime: For high SNRs, we know that uniform
PAM with mid-point quantizer thresholds (i.e., the benchmark
scheme) is nearly optimal. Hence, this quantizer is a good
choice for initialization at high SNRs. The results we obtain
indeed demonstrate that this initialization works well at high
SNRs. This is seen by comparing the results of the iterative
procedure with the results of a brute force search over the
quantizer choice (similar to the 2-bit case considered earlier),
as both of them provide almost identical capacity values.

Lower SNRs: For lower SNRs, one possibility is to
try different initializations Q1. However, on trying the

benchmark initialization at some lower SNRs as well, we find
that the iterative procedure still provides us with near-optimal
solutions (again verified by comparing with brute force
optimization results).

While our results show that the iterative procedure (with
benchmark initialization) has provided (near) optimal solutions
at different SNRs, we leave the question of whether it will
converge to an optimal solution in general as an open problem.

Comparison with the Benchmark: The efficacy of the
benchmark initialization at lower SNRs suggests that the
performance of the benchmark scheme should not be too far
from optimal at small SNRs as well. This is indeed the case,
as seen from the data values in Table II and the corresponding
plots in Figure 6. At 0 dB SNR, for instance, the benchmark
scheme achieves 98% of the capacity achievable with an
optimal input-quantizer pair.

Optimal Input Distributions: Although not depicted here, we
again observe (as for the 2-bit case) that the optimal inputs
obtained all have at most K points (K = 8 in this case),
while Theorem 1 guarantees the achievability of capacity by
at most K+1 points. Of course, Theorem 1 is applicable to any
quantizer choice (and not just optimal symmetric quantizers).
Thus, it is possible that there might exist a K-bin quantizer
for which the capacity is indeed achieved by exactly K + 1
points. We leave open, therefore, the question of whether or
not the result in Theorem 1 can be tightened to guarantee
the achievability of capacity with at most K points for the
AWGN-QO channel.

C. Comparison with Unquantized Observations

We now compare the capacity results for different quantizer
precisions against the capacity with unquantized observations.
Again, the plots are shown in Figure 6 and the data values are
given in Table II. We observe that at low SNR, the performance
degradation due to low-precision quantization is small. For
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Spectral Efficiency (bits per channel use)
0.25 0.5 1.0 1.73 2.5

1-bit ADC −2.04 1.79 − − −
2-bit ADC −3.32 0.59 6.13 12.30 −
3-bit ADC −3.67 0.23 5.19 11.04 16.90

Unquantized −3.83 0.00 4.77 10.00 14.91

TABLE III
SNR (IN DB) REQUIRED TO ACHIEVE A SPECIFIED SPECTRAL EFFICIENCY

WITH DIFFERENT ADC PRECISIONS.

instance, at -5 dB SNR, 1-bit receiver quantization achieves
68% of the capacity achievable without any quantization, while
with 2-bit quantization, we can get as much as 90% of the
unquantized capacity. Even at moderately high SNRs, the loss
due to low-precision quantization remains quite acceptable.
For example, 2-bit quantization achieves 85% of the capacity
attained using unquantized observations at 10 dB SNR, while
3-bit quantization achieves 85% of the unquantized capacity at
20 dB SNR. For the specific case of binary antipodal signaling,
[7] has earlier shown that a large fraction of the capacity can
be obtained by 2-bit quantization.

On the other hand, if we fix the spectral efficiency to that
attained by an unquantized system at 10 dB (which is 1.73
bits/channel use), then 2-bit quantization incurs a loss of 2.30
dB (see Table III). For wideband systems, this penalty in power
maybe more significant compared to the 15% loss in spectral
efficiency on using 2-bit quantization at 10 dB SNR. This
suggests, for example, that in order to weather the impact
of low-precision ADC, a moderate reduction in the spectral
efficiency might be a better design choice than an increase in
the transmit power.

D. Additive Quantization Noise Model (AQNM)

It is common to model the quantization noise as independent
additive noise [31, pp. 122]. Next, we compare this approx-
imation with our exact capacity calculations. In this model
Y = X + N + NQ, where the quantization noise NQ is
assumed to be uniformly distributed, and independent of X, N .
The signal to quantization noise ratio P

E(NQ
2)

is assumed to
be 6 log2 K dB for K-bin quantization [31, pp. 122]. As
SNR → 0, the distribution of N + NQ approaches that of
a Gaussian, and hence we expect

1
2

log
(

1 +
P

σ2 + E(NQ
2)

)

to be a good approximation of the capacity at low SNR. Table
II shows that this approximation can be useful in terms of pro-
viding a quick estimate, although it can either underestimate or
overestimate the actual capacity, depending on the parameters.

V. CONCLUSIONS

Our Shannon-theoretic investigation indicates that the use
of low-precision ADC may be a feasible option for designing
future high-bandwidth communication systems. The availabil-
ity of a large amount of bandwidth encourages power-efficient
communication using small constellations, so that the symbol
rate, and hence the sampling rate, for a given bit rate must be

high. This forces us towards using ADCs with lower precision,
but fortunately, this is consistent with the use of small constel-
lations in the first place for power-efficient design. Thus, if we
plan on operating at low to moderate SNR, the small reduction
in spectral efficiency due to low-precision ADC is acceptable
in such systems, given that the bandwidth is plentiful.

There are several unresolved technical issues that we leave
as open problems. While we show that at most K + 1 points
are needed to achieve capacity for K-bin output quantization
of the AWGN channel, our numerical results reveal that K
mass points are sufficient. Can this be proven analytically,
at least for symmetric quantizers ? Are symmetric quantizers
optimal ? Does our iterative procedure (with the benchmark
initialization, or some other judicious initialization) for joint
optimization of the input and the quantizer converge to an
optimal solution in general ?

A technical assumption worth revisiting is that of Nyquist
sampling (which induces the discrete-time memoryless
AWGN-Quantized Output channel model considered in this
work). While symbol rate Nyquist sampling is optimal for
unquantized systems in which the transmit and receive filters
are square root Nyquist and the channel is ideal, for quan-
tized samples, we have obtained numerical results that show
that fractionally spaced samples can actually lead to small
performance gains. A detailed study quantifying such gains is
important in understanding the tradeoffs between ADC speed
and precision. However, we do not expect oversampling to
play a significant role at low to moderate SNR, given the
small degradation in our Nyquist sampled system relative
to unquantized observations (for which Nyquist sampling is
indeed optimal) in these regimes. Of course, oversampling in
conjunction with hybrid analog/digital processing (e.g., using
ideas analogous to delta-sigma quantization) could produce
bigger performance gains, but this falls outside the scope of
the present model.

While our focus in this paper was on non-spread systems, it
is known that low-precision ADC is often employed in spread
spectrum systems for low cost implementations [32]. In our
prior examination of Shannon limits for direct sequence spread
spectrum systems with 1-bit ADC [10], we demonstrated
that binary signaling was suboptimal, but did not completely
characterize an optimal input distribution. The approach in the
present paper implies that, for a spreading gain G, a discrete
input distribution with at most G + 2 points can achieve
capacity (although in practice, much smaller constellations
would probably work well).

Finally, we would like to emphasize that the Shannon-
theoretic perspective provided in this paper is but a first
step towards the design of communication systems with low-
precision ADC. Major technical challenges include the design
of ADC-constrained methods for receiver tasks such as carrier
and timing synchronization, channel estimation and equaliza-
tion, demodulation and decoding.

APPENDIX A
PROOF OF PROPOSITION 2

Denote by S the set of probability distributions on [A1, A2]
satisfying the average power constraint P . We need to prove
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that the maximum of I(X;Y ) over S is achievable by a
discrete input with at most K+1 points. The proof has two
parts: 1) showing that maximum occurs at an extreme point of
a suitably defined constraint set; 2) showing that every extreme
point of this constraint set has at most K+1 support points.
The first part of the proof relies on the fact that I(X;Y ) is
linear given the output constraints (as in [5]), while the second
part is an application of Dubins’ theorem [6] along the lines
of [5].

The existence of an optimal distribution F ∗ ∈ S follows
from standard function analytic arguments [23] (see [24] for
more details). Let R∗ = [p∗1, ..., p

∗
K ] be the corresponding

output distribution. Consider the (convex) set

U = {F ∈ S|R(y; F ) = R∗ and E(X2) = P0} , (11)

where P0 ≤ P is the average power of X under F ∗. On this
set, I(X;Y ) is a linear functional of the distribution of X
(that is, it is a linear functional of F ):

I(X; Y ) = H(Y )−H(Y |X)

= −
K∑

i=1

pi
∗ log pi

∗ +
∫ A2

A1

dF (x)
K∑

i=1

Wi(x) log Wi(x).

It follows that I(X; Y ) attains its maximum over U (and
hence over S) at an extreme point of U .

To complete the proof we next show that the extreme points
of U have at most K + 1 support points. We can view the
set U as the intersection of the (convex) set of probability
distributions over [A1, A2] (say M) and the K hyperplanes:

Hi :
∫ A2

A1

Wi(x)dF (x) = pi
∗ , 1 ≤ i ≤ K − 1 , (12)

and

HK :
∫ A2

A1

x2dF (x) = P0 . (13)

Since the extreme points of M are precisely the set of unit
masses {δx, x ∈ [A1, A2]}, from Dubins’ theorem [6] we get
that the extreme points of U have at most K+1 support points.
Remark: The details of verifying that the technical conditions
required to apply Dubins’ theorem are indeed satisfied in the
preceding setting can be found in our technical report [24].
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